中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 188-198 DOI: 10.7536/PC200650 Previous Articles   Next Articles

• Review •

One-Dimensional New Carbon Allotrope: Carbon Chain

Jun Jin1, Ziheng Lin1, Lei Shi1,*()   

  1. 1 School of Material Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Sun Yat-sen University,Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Contact: Lei Shi
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(51902353); Natural Science Foundation of Guangdong Province(2019A1515011227); Fundamental Research Funds for the Central Universities(29000-31610028); Science and Technology Innovation Strategy Fund of Guangdong Province(pdjh2020b0018)
Richhtml ( 24 ) PDF ( 540 ) Cited
Export

EndNote

Ris

BibTeX

Carbon chain(CC) is a new type of carbon allotrope with one-dimensional sp-hybridized structure. Its unique chemical bonds result in superior properties than that of fullerene, graphene, and carbon nanotubes. For example, theoretical calculations predict that the mechanical strength of the CC is several times greater than that of graphene. Also, the thermal conductivity of the CC is similar to that of graphene and carbon nanotubes. In addition, the CC is a semiconductor with direct band gap, which can be tuned via its length, i.e., the longer the CC, the smaller the band gap. Although the research on the CC has bee started as early as the 19th century, making progress was indeed difficult and slow. Recently, several breakthroughs in research on CC has attracted extensive attention to CC again all over the world. In this review, the concept, structure, and properties of the CC are first introduced. On this basis, typical synthesis methods and applications are detailedly presented. Especially, several recent major breakthroughs in the field of the CC are highlighted. Most importantly, perspectives on the research directions of the CC are indicated. We hope that this review is able to attract domestic and international peers’ attention on this new type of one-dimensional sp-hybridized carbon allotrope.

Contents

1 Introduction

2 The structure and category of carbon chain

3 The properties of carbon chain

3.1 The band gap of polyynic carbon chain

3.2 Mechanical, thermal, and superconducting properties of carbon chain

4 The synthesis of carbon chain

4.1 Bottom-up synthesis

4.2 Arc-discharge method

4.3 Laser-ablation method

4.4 Heat-treatment method

4.5 Irradiation method

4.6 On-surface synthesis

5 Conclusion and outlook

Fig. 1 Schematic illustration of three types of hybridization of carbon[8]
Fig. 2 (a) Cumulene;(b) polyyne;(c,d) end-capped LCCs with the same or different chemical groups;(e) LCCs inside MWCNTs;(f) The scheme of crystalline polyynes;(g) LCCs derived from carbon nanotubes
Table 1 Band gap, Young’s modulus, and thermal conductivity of carbon chains, carbon nanotubes, graphene, fullerene, and diamond[26???????~34,37]
Fig. 3 (a) Band gap of carbon chain as a function of inverse number of carbon atoms in the carbon chain in different environments;(b) Band gap of carbon chain as a function of its Raman frequency[34]. Copyright 2017, APS
Fig. 4 Theoretically calculated superconductive transition temperature of carbon chains with different structures[56]
Fig. 5 Sketches representing several methods to synthesize LCCs[88].(a) arc-discharge in liquid,(b) arc-discharge in gas,(c) liquid laser ablation,(d) laser ablation in gas. Copyright 2016, RSC
Fig. 6 (a) HRTEM,(b) simulated TEM, and(c), molecular model images of a long linear carbon chain(LLCC) encapsulated in a DWCNT prepared by high-vacuum high-temperature annealing method. The line profiles for the experimental(d) and the simulated(e) LLCC@DWCNT at the corresponding marked positions are shown in(a) and (b)[34]. Copyright 2017, APS
Table 2 Summary of three common methods for the synthesis of carbon chains inside single-, double-, or multi-walled carbon nanotubes
Fig. 7 Carbon chains formed in monolayer graphene[101]. Copyright 2009, APS
Fig. 8 Illustration of synthesis of metalated carbyne on Cu(110) by coupling ethyne precursors[112]. Copyright 2016, ACS
Fig. 9 Reaction scheme for the formation of cyclo[18]carbon[114]. Copyright 2019, AAAS
[1]
Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene. Nature, 1985, 318:162.
[2]
Iijima S. Nature, 1991, 354:56.
[3]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Nature, 2005, 438:197.
[4]
Baeyer A. Ber. Dtsch. Chem. Ges., 1885, 18:2269.
[5]
Korshak V V, Krongauz E S, Sladkov A M, Sheina V E, Luneva L K. Polymer Science U.S.S.R., 1961, 2:148.
[6]
Whittaker A G. Nature, 1978, 276:695.
[7]
Alexander A J, Kroto H W, Walton D R M. J. Mol. Spectrosc., 1976, 62:175.
[8]
Pan B T, Xiao J, Li J L, Liu P, Wang C X, Yang G W. Sci. Adv., 2015, 1:e1500857.

pmid: 26601318
[9]
Shi Shun A L K, Tykwinski R R. Angew. Chem. Int. Ed., 2006, 45:1034.
[10]
Januszewski J A, Tykwinski R R. Chem. Soc. Rev., 2014, 43:3184.

doi: 10.1039/c4cs00022f pmid: 24671214
[11]
Karpfen A. J. Phys. C: Solid State Phys., 1979, 12:3227.
[12]
Wendinger D, Januszewski J A, Hampel F, Tykwinski R R. Chem. Commun., 2015, 51:14877.
[13]
Wendinger D, Tykwinski R R. Acc. Chem. Res., 2017, 50:1468.
[14]
Chalifoux W A, Tykwinski R R. Nat. Chem., 2010, 2:967.
[15]
Franz M, Januszewski J A, Wendinger D, Neiss C, Movsisyan L D, Hampel F, Anderson H L, Görling A, Tykwinski R R. Angew. Chem. Int. Ed., 2015, 54:6645.
[16]
Milani A, Tommasini M, Fazzi D, Castiglioni C, Zoppo M D, Zerbi G. J. Raman Spectrosc., 2008, 39:164.
[17]
Casari C S, Tommasini M, Tykwinski R R, Milani A. Nanoscale, 2016, 8:4414.

pmid: 26847474
[18]
Kastner J, Kuzmany H, Kavan L, Dousek F P, Kuerti J. Macromolecules, 1995, 28:344.
[19]
Szczepanski J, Fuller J, Ekern S, Vala M. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2001, 57:775.
[20]
Lagow R J, Kampa J J, Wei H C, Battle S L, Genge J W, Laude D A, Harper C J, Bau R, Stevens R C, Haw J F, Munson E. Science, 1995, 267:362.
[21]
McCarthy M C, Thaddeus P. Chem. Soc. Rev., 2001, 30:177.
[22]
Ott A K, Rechtsteiner G A, Felix C, Hampe O, Jarrold M F, van Duyne R P, Raghavachari K. J. Chem. Phys., 1998, 109:9652.
[23]
Ravagnan L, Manini N, Cinquanta E, Onida G, Sangalli D, Motta C, Devetta M, Bordoni A, Piseri P, Milani P. Phys. Rev. Lett., 2009, 102:245502.
[24]
Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P, Pichler T. Confined Linear Carbon Chains as a Route to Bulk Carbyne. Nat. Mater., 2016, 15:634.

doi: 10.1038/nmat4617 pmid: 27043782
[25]
Heeg S, Shi L, Poulikakos L V, Pichler T, Novotny L. Nano Lett., 2018, 18:5426.
[26]
Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I. ACS Nano, 2013, 7:10075.

pmid: 24093753
[27]
Wu Y, Zhao J, Sun G Y, Shi L. Appl. Phys. Lett., 2018, 112:091906.
[28]
Treacy M M J, Ebbesen T W, Gibson J M. Nature, 1996, 381:678.
[29]
Kim P, Shi L, Majumdar A, McEuen P L. Phys. Rev. Lett., 2001, 87:215502.

pmid: 11736348
[30]
Pop E, Mann D, Wang Q, Goodson K, Dai H J. Nano Lett., 2006, 6:96.
[31]
Cao K, Feng S Z, Han Y, Gao L B, Hue Ly T, Xu Z P, Lu Y. Nat. Commun., 2020, 11:284.
[32]
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[33]
Kolyadina E. Semiconductor Physics Quantum Electronics and Optoelectronics, 2015, 18:349.
[34]
Kizuka T, Saito K, Miyazawa K. Diam. Relat. Mater., 2008, 17:972.
[35]
Anthony T R, Banholzer W F, Fleischer J F, Wei L H, Kuo P K, Thomas R L, Pryor R W. Phys. Rev. B, 1990, 42:1104.
[36]
Klein C A, Cardinale G F. Diam. Relat. Mater., 1993, 2:918.
[37]
Yu R C, Tea N, Salamon M B, Lorents D, Malhotra R. Phys. Rev. Lett., 1992, 68:2050.
[38]
Shi L, Rohringer P, Wanko M, Rubio A, Waßerroth S, Reich S, CambrÉ S, Wenseleers W, Ayala P, Pichler T. Phys. Rev. Materials, 2017, 1:075601.
[39]
Ellis J K, Lucero M J, Scuseria G E. Appl. Phys. Lett., 2011, 99:261908.
[40]
Yang S J, Kertesz M. J. Phys. Chem. A, 2006, 110:9771.
[41]
Asaka K, Toma S, Saito Y. SN Appl. Sci., 2019, 1:493.
[42]
Mostaani E, Monserrat B, Drummond N D, Lambert C J. Phys. Chem. Chem. Phys., 2016, 18:14810.
[43]
Andrade N F, Vasconcelos T L, Gouvea C P, Archanjo B S, Achete C A, Kim Y A, Endo M, Fantini C, Dresselhaus M S, Souza Filho A G. Carbon, 2015, 90:172.
[44]
Fantini C, Cruz E, Jorio A, Terrones M, Terrones H, van Lier G, Charlier J C, Dresselhaus M S, Saito R, Kim Y A, Hayashi T, Muramatsu H, Endo M, Pimenta M A. Phys. Rev. B, 2006, 73:193408.
[45]
Malard L M, Nishide D, Dias L G, Capaz R B, Gomes A P, Jorio A, Achete C A, Saito R, Achiba Y, Shinohara H, Pimenta M A. Phys. Rev. B, 2007, 76:233412.
[46]
Shi L, Senga R, Suenaga K, Kataura H, Saito T, Paz A P, Rubio A, Ayala P, Pichler T. Nano Lett., 2021, 21:1096.
[47]
Agarwal N R, Lucotti A, Fazzi D, Tommasini M, Castiglioni C, Chalifoux W A, Tykwinski R R. J. Raman Spectrosc., 2013, 44:1398.
[48]
Eisler S, Slepkov A D, Elliott E, Luu T, McDonald R, Hegmann F A, Tykwinski R R. J. Am. Chem. Soc., 2005, 127:2666.
[49]
Peach M J G, Tellgren E I, Sałek P, Helgaker T, Tozer D J. J. Phys. Chem. A, 2007, 111:11930.

pmid: 17963369
[50]
Weimer M, Hieringer W, Sala F D, Görling A. Chem. Phys., 2005, 309:77.
[51]
Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 393:51.
[52]
Wanko M, Cahangirov S, Shi L, Rohringer P, Lapin Z J, Novotny L, Ayala P, Pichler T, Rubio A. Phys. Rev. B, 2016, 94:195422.
[53]
Deng Y C, Cranford S W. Comput. Mater. Sci., 2017, 129:226.
[54]
Kudryavtsev Y P, Evsyukov S E, Guseva M B, Babaev V G, Khvostov V V. Russ. Chem. Bull., 1993, 42:399.
[55]
Heimann R B, Kleiman J, Salansky N M. Nature, 1983, 306:164.
[56]
Wong C H, Lortz R, Buntov E A, Kasimova R E, Zatsepin A F. Sci. Rep., 2017, 7:15815.
[57]
Gibtner T, Hampel F, Gisselbrecht J P, Hirsch A. Chem. Eur. J., 2002, 8:408.

pmid: 11843154
[58]
Bohlmann F. Angew. Chem., 1955, 67:389.
[59]
Jones E R H, Lee H H, Whiting M C. J. Chem. Soc., 1960,3483.
[60]
Eastmond R, Johnson T R, Walton D R M. Tetrahedron, 1972, 28:4601.
[61]
Eastmond R, Walton D R M. Tetrahedron, 1972, 28:4591.
[62]
Johnson T R, Walton D R M. Tetrahedron, 1972, 28:5221.
[63]
Siemsen P, Livingston R, Diederich F. Angewandte Chemie, 2000, 112:2740.
[64]
Chodkiewicz W. Ann. Chim.(Paris), 1957, 2:819.
[65]
Bartik B, Dembinski R, Bartik T, Arif A M, Gladysz J A. New J. Chem., 1997,21.
[66]
Eglinton G, Galbraith A R. Chem. Ind.(London), 1956,737.
[67]
Brady M, Weng W Q, Gladysz J A. J. Chem. Soc., Chem. Commun., 1994,2655.
[68]
Bartik T, Bartik B, Brady M, Dembinski R, Gladysz J A. Angew. Chem. Int. Ed. Engl., 1996, 35:414.
[69]
Dembinski R, Bartik T, Bartik B, Jaeger M, Gladysz J A. J. Am. Chem. Soc., 2000, 122:810.
[70]
Peters T B, Bohling J C, Arif A M, Gladysz J A. Organometallics, 1999, 18:3261.
[71]
Kloster-Jensen E. Angew. Chem. Int. Ed. Engl., 1972, 11:438.
[72]
Bohlmann F. Chem. Ber., 1953, 86:657.
[73]
Chalifoux W, McDonald R, Ferguson M, Tykwinski R. Angew. Chem. Int. Ed., 2009, 48:7915.
[74]
Nakagawa M, Akiyama S, Nakasuji K, Nishimoto K. Tetrahedron, 1971, 27:5401.
[75]
Cataldo F, Ravagnan L, Cinquanta E, Castelli I E, Manini N, Onida G, Milani P. J. Phys. Chem. B, 2010, 114:14834.
[76]
Bruce M I, Low P J. Advances in Organometallic Chemistry. Amsterdam: Elsevier, 2004,179.
[77]
Long N J, Williams C K. Angew. Chem. Int. Ed., 2003, 42:2586.
[78]
Krätschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Solid C60: a new form of carbon. Nature, 1990, 347:354.
[79]
Iijima S, Ichihashi T. Nature, 1993, 363:603.
[80]
Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R. J. Phys. Chem. C, 2009, 113:4257.
[81]
Cataldo F. Carbon, 2004, 42:129.
[82]
Cataldo F. Tetrahedron, 2004, 60:4265.
[83]
Cataldo F. Tetrahedron Lett., 2004, 45:141.
[84]
Cataldo F, Ursini O, Ragni P. Plasma Chem. Plasma Process., 2013, 33:355.
[85]
Cataldo F. Int. J. Astrobiol., 2006, 5:37.
[86]
Cataldo F. Int. J. Astrobiol., 2004, 3:237.
[87]
Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T. Phys. Rev. Lett., 2003, 90:187401.

doi: 10.1103/PhysRevLett.90.187401 pmid: 12786041
[88]
Cazzanelli E, Castriota M, Caputi L S, Cupolillo A, Giallombardo C, Papagno L. Phys. Rev. B, 2007, 75:121405.
[89]
Kim Y A, Muramatsu H, Hayashi T, Endo M. Carbon, 2012, 50:4588.
[90]
Scuderi V, Scalese S, Bagiante S, Compagnini G, D’Urso L, Privitera V. Carbon, 2009, 47:2134.
[91]
Scalese S, Scuderi V, Bagiante S, Simone F, Russo P, D’Urso L, Compagnini G, Privitera V. J. Appl. Phys., 2010, 107:014304.
[92]
Zhang Y F, Zhao J W, Fang Y H, Liu Y, Zhao X L. Nanoscale, 2018, 10:17824.
[93]
Zhang Y F, Chang W W, Liu Y, Maruyama T, Zhao X L. Carbon, 2020, 158:672.
[94]
Kang C S, Fujisawa K, Ko Y I, Muramatsu H, Hayashi T, Endo M, Kim H J, Lim D, Kim J H, Jung Y C, Terrones M, Dresselhaus M S, Kim Y A. Carbon, 2016, 107:217.

doi: 10.1016/j.carbon.2016.05.069
[95]
Tsuji M, Tsuji T, Kuboyama S, Yoon S H, Korai Y, Tsujimoto T, Kubo K J, Mori A, Mochida I. Chem. Phys. Lett., 2002, 355:101.
[96]
Taguchi Y, Endo H, Abe Y, Matsumoto J, Wakabayashi T, Kodama T, Achiba Y, Shiromaru H. Carbon, 2015, 94:124.
[97]
Shin S K, Song J K, Park S M. Appl. Surf. Sci., 2011, 257:5156.
[98]
Zhao J W, Zhang Y F, Fang Y H, Fan Z F, Ma G H, Liu Y, Zhao X L. Chem. Phys. Lett., 2017, 682:96.
[99]
Heath J R, Zhang Q, O’Brien S C, Curl R F, Kroto H W, Smalley R E. J. Am. Chem. Soc., 1987, 109:359.
[100]
Zhang J Y, Feng Y Q, Ishiwata H, Miyata Y, Kitaura R, Dahl J E P, Carlson R M K, Shinohara H, Tománek D. ACS Nano, 2012, 6:8674.
[101]
Jinno M, Ando Y, Bandow S, Fan J, Yudasaka M, Iijima S. Chem. Phys. Lett., 2006, 418:109.
[102]
Endo M, Kim Y, Hayashi T, Muramatsu H, Terrones M, Saito R, Villalpando-Paez F, Chou S, Dresselhaus M. Small, 2006, 2:1031.

pmid: 17193164
[103]
Zhao C, Kitaura R, Hara H, Irle S, Shinohara H. J. Phys. Chem. C, 2011, 115:13166.
[104]
Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S. Phys. Rev. Lett., 2009, 102:205501.
[105]
Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U. New J. Phys., 2009, 11:083019.
[106]
Casillas G, Mayoral A, Liu M J, Ponce A, Artyukhov V I, Yakobson B I, Jose-Yacaman M. Carbon, 2014, 66:436.
[107]
La Torre A, Botello-Mendez A, Baaziz W, Charlier J C, Banhart F. Nat. Commun., 2015, 6:6636.

pmid: 25818506
[108]
Cretu O, Botello-Mendez A R, Janowska I, Pham-Huu C, Charlier J C, Banhart F. Nano Lett., 2013, 13:3487.
[109]
Toma S, Asaka K, Irita M, Saito Y. Surf. Interface Anal., 2019, 51:131.
[110]
Asaka K, Toma S, Saito Y. E-J. Surf. Sci. Nanotechnol., 2020, 18:159.
[111]
Murakami T, Matsuda M, Kisoda K, Itoh C. AIP Adv., 2016, 6:085303.
[112]
Otero G, Biddau G, Sánchez-Sánchez C, Caillard R, LÓpez M F, Rogero C, Palomares F J, Cabello N, Basanta M A, Ortega J, MÉndez J, Echavarren A M, PÉrez R, GÓmez-Lor B, Martín-Gago J A. Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation. Nature, 2008, 454:865.

pmid: 18704082
[113]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466:470.

doi: 10.1038/nature09211 pmid: 20651687
[114]
Sanchez-Valencia J R, Dienel T, Gröning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R. Nature, 2014, 512:61.

doi: 10.1038/nature13607 pmid: 25100481
[115]
Sun Q, Cai L L, Wang S Y, Widmer R, Ju H X, Zhu J F, Li L, He Y B, Ruffieux P, Fasel R, Xu W. J. Am. Chem. Soc., 2016, 138:1106.
[116]
Yu X, Li X, Lin H P, Liu M X, Cai L L, Qiu X, Yang D D, Fan X, Qiu X H, Xu W. J. Am. Chem. Soc., 2020, 142:8085.

doi: 10.1021/jacs.0c01925 pmid: 32321241
[117]
Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L, Anderson H L. Science, 2019, 365:1299.

doi: 10.1126/science.aay1914 pmid: 31416933
[118]
Rabia A, Tumino F, Milani A, Russo V, Li Bassi A, Achilli S, Fratesi G, Onida G, Manini N, Sun Q, Xu W, Casari C S. Nanoscale, 2019, 11:18191.

doi: 10.1039/c9nr06552k pmid: 31560011
[119]
Ma C R, Xiao J, Yang G W. J. Mater. Chem. C, 2016, 4:4692.
[120]
Slepkov A D, Hegmann F A, Eisler S, Elliott E, Tykwinski R R. J. Chem. Phys., 2004, 120:6807.

doi: 10.1063/1.1707011 pmid: 15267578
[121]
Shiraishi S, Kobayashi T, Oya A. Chem. Lett., 2005, 34:1678.
[122]
Sorokin P B, Lee H, Antipina L Y, Singh A K, Yakobson B I. Nano Lett., 2011, 11:2660.

doi: 10.1021/nl200721v pmid: 21648444
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[6] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[7] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[8] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[9] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[10] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[11] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[12] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[13] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[14] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[15] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.