中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 349-359 DOI: 10.7536/PC220936   Next Articles

• Review •

Covalent Organic Frameworks for Photocatalytic CO2 Reduction

Liu Yvfei, Zhang Mi, Lu Meng(), Lan Yaqian()   

  1. School of Chemistry, South China Normal University, Guangzhou 510631, China
  • Received: Revised: Online: Published:
  • Contact: *menglu@m.scnu.edu.cn(Meng Lu); yqlan@m.scnu.edu.cn(Ya-Qian Lan)
  • Supported by:
    National Natural Science Foundation of China(21871141); National Natural Science Foundation of China(21871142); National Natural Science Foundation of China(22071109); National Natural Science Foundation of China(21901122); National Natural Science Foundation of China(22105080); National Natural Science Foundation of China(22201083); China Postdoctoral Science Foundation(2020M682747); China Postdoctoral Science Foundation(2021M701270); Guangdong Basic and Applied Basic Research Foundation(2023A1515010779); Guangdong Basic and Applied Basic Research Foundation(2023A1515010928)
Richhtml ( 245 ) PDF ( 2417 ) Cited
Export

EndNote

Ris

BibTeX

With the massive global consumption of fossil fuels, the energy crisis is getting worse and the emission of greenhouse gases such as CO2 has made the environmental problems become increasingly prominent. Photocatalytic reduction of CO2 to energy compounds is considered to be one of the best ways to effectively solve this problem. Covalent organic frameworks (COFs) are a new type of crystalline porous organic polymer materials with high stability and pre-design ability, which makes COFs own great potential ability in the field of photocatalytic CO2 reduction. This paper summarizes the research progress of COFs in the field of photocatalytic CO2 reduction, including the introduction of different metal ions to provide the active site and increasing the photosensitive functional groups to improve their utilization of visible light. Since the research of COFs as photocatalytic CO2 reduction catalyst is still an initial field, further exploration of synthesis, modification, and mechanism of COFs for CO2 reduction is still promising research work.

Contents

1 Introduction

2 Covalent organic frameworks

2.1 Basic information of COFs

2.2 Application of COFs in photocatalysis

3 Basic principles of photocatalytic CO2 reduction

4 COFs for photocatalytic CO2 reduction

5 Conclusion and outlook

Fig. 1 (a) Schematic of topology of typical 2D COFs material; (b) Schematic of topology of typical 3D COFs material
Fig.2 Schematic diagram of the CO2 photoreduction mechanism based on the semiconductor band theory [5]
Fig. 3 (a) synthesis of COF and Re-COF; (b) side view of crystal; (c) AA overlapping stacked COF units; (d) CO2 reduction mechanism [21]
Fig. 4 Synthesis and metal coordination process of DQTP COF and DATP COF and its structure [22]
Fig. 5 Synthesis and structure of the COF-367 NSs[9]
Fig. 6 (a) DFT-calculated and related Gibbs free energy profiles for the CO2 reduction reaction. (b) Reaction mechanism for the photoconversion of CO2 into CO on Ni-TpBpy[24]
Fig. 7 (a) Schematic depiction for the synthesis of MP-TPE-COF; (b) PXRD patterns of NiP-TPE-COF; (c) top and side views for AA-stacking mode of NiP-TPE-COF (color online)[25]
Fig. 8 (a) Schematic representation of the mechanism of TTCOF-MCO2RR with water oxidation;(b) UV-vis DRS theoretical simulations of TTCOF-Zn and PET paths under light excitation[26]
Fig. 9 Schematic representation of the inorganic semiconductor-crystalline COFs Z-Scheme materials for artificial photosynthesis[27]
Fig.10 Structure of COF-POM material and its application in CO2 reduction[28]
Fig.11 Structure of Co-Py-CON material and its application in CO2 reduction[29]
Fig. 12 Synthesis and photocatalytic applications of COF-367-Co with different spin states of Co[31]
Fig. 13 (a) Schematic representation of the synthesis of CT-COF; (b) Time courses of photocatalytic activity for CO production[32]
Fig. 14 Photocatalytic application of the MOF@COF heterojunction catalysts with different morphologies [33]
Fig. 15 Schematic diagram of the synthesis and photocatalytic application of PdIn@N3-COF[34]
[1]
Guo K, Zhu X L, Peng L L, Fu Y H, Ma R, Lu X Q, Zhang F M, Zhu W D, Fan M H. Chem. Eng. J., 2021, 405: 127011.
[2]
Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369
[3]
El-Kaderi H M, Hunt J R, Mendoza-CortÉs J L, Coôteé A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

pmid: 17431178
[4]
Meng Y, Luo Y, Shi J L, Ding H M, Lang X J, Chen W, Zheng A M, Sun J L, Wang C. Angew. Chem. Int. Ed., 2020, 59(9): 3624.

doi: 10.1002/anie.201913091 pmid: 31773844
[5]
Lu M, Doctoral Dissertation of Nanjing Normal University, 2021.
(路猛. 南京师范大学博士论文, 2021.).
[6]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.

doi: 10.1021/ja204728y pmid: 21721558
[7]
Chen R F, Shi J L, Ma Y, Lin G Q, Lang X J, Wang C. Angew. Chem. Int. Ed., 2019, 58(19): 6430.

doi: 10.1002/anie.v58.19
[8]
Chen X Y, Geng K Y, Liu R Y, Tan K T, Gong Y F, Li Z P, Tao S S, Jiang Q H, Jiang D L. Angew. Chem., 2020, 132(13): 5086.

doi: 10.1002/ange.v132.13
[9]
Liu W B, Li X K, Wang C M, Pan H H, Liu W P, Wang K, Zeng Q D, Wang R M, Jiang J Z. J. Am. Chem. Soc., 2019, 141(43): 17431.

doi: 10.1021/jacs.9b09502
[10]
Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5(7): 2789.

doi: 10.1039/C4SC00016A
[11]
Liu Y T, Wu H, Wu S Q, Song S Q, Guo Z Y, Ren Y X, Zhao R, Yang L X, Wu Y Z, Jiang Z Y. J. Membr. Sci., 2021, 618: 118693.

doi: 10.1016/j.memsci.2020.118693
[12]
Zeng Y F, Zou R Q, Zhao Y L. Adv. Mater., 2016, 28(15): 2855.

doi: 10.1002/adma.201505004
[13]
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J. Science, 2015, 349(6253): 1208.

doi: 10.1126/science.aac8343
[14]
Diercks C S, Lin S, Kornienko N, Kapustin E A, Nichols E M, Zhu C H, Zhao Y B, Chang C J, Yaghi O M. J. Am. Chem. Soc., 2018, 140(3): 1116.

doi: 10.1021/jacs.7b11940
[15]
Zhang H W, Zhu Q Q, Yuan R R, He H M. Sens. Actuat. B Chem., 2021, 329: 129144.

doi: 10.1016/j.snb.2020.129144
[16]
Wang Y J, Yue X L, Wu T, Huai Y J, Cheng Q L, Zhang M Y. Energy Environmental Protection, 2022, 36(2): 52.
(王玉杰, 岳喜龙, 吴彤, 怀燕瑾, 程庆霖, 张曼莹. 能源环境保护, 2022, 36(2): 52.).
[17]
Ge L, Qiao C Y, Tang Y K, Zhang X K, Jiang X Q. Nano Lett., 2021, 21(7): 3218.

doi: 10.1021/acs.nanolett.1c00488
[18]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.
[19]
Zhou Y S, Wang Z T, Huang L, Zaman S, Lei K, Yue T, Li Z A, You B, Xia B Y. Adv. Energy Mater., 2021, 11(8): 2003159.
[20]
Lu M, Zhang M, Liu J, Chen Y F, Liao J P, Yang M Y, Cai Y P, Li S L, Lan Y Q. Angewandte Chemie Int. Ed., 2022, 61(15): e202200003.
[21]
Yang S Z, Hu W H, Zhang X, He P L, Pattengale B, Liu C M, Cendejas M, Hermans I, Zhang X Y, Zhang J, Huang J E. J. Am. Chem. Soc., 2018, 140(44): 14614.

doi: 10.1021/jacs.8b09705
[22]
Lu M, Li Q, Liu J, Zhang F M, Zhang L, Wang J L, Kang Z H, Lan Y Q. Appl. Catal. B Environ., 2019, 254: 624.

doi: 10.1016/j.apcatb.2019.05.033
[23]
Bi J H, Xu B, Sun L, Huang H M, Fang S Q, Li L Y, Wu L. ChemPlusChem, 2019, 84(8): 1149.

doi: 10.1002/cplu.v84.8
[24]
Zhong W F, Sa R J, Li L Y, He Y J, Li L Y, Bi J H, Zhuang Z Y, Yu Y, Zou Z G. J. Am. Chem. Soc., 2019, 141(18): 7615.

doi: 10.1021/jacs.9b02997
[25]
Lv H W, Sa R J, Li P Y, Yuan D Q, Wang X C, Wang R H. Sci. China Chem., 2020, 63(9): 1289.

doi: 10.1007/s11426-020-9801-3
[26]
Lu M, Liu J, Li Q, Zhang M, Liu M, Wang J L, Yuan D Q, Lan Y Q. Angew. Chem., 2019, 131(36): 12522.

doi: 10.1002/ange.v131.36
[27]
Zhang M, Lu M, Lang Z L, Liu J, Liu M, Chang J N, Li L Y, Shang L J, Wang M, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2020, 59(16): 6500.

doi: 10.1002/anie.202000929 pmid: 31989745
[28]
Lu M, Zhang M, Liu J, Yu T Y, Chang J N, Shang L J, Li S L, Lan Y Q. J. Am. Chem. Soc., 2022, 144(4): 1861.

doi: 10.1021/jacs.1c11987
[29]
Wang X Y, Fu Z W, Zheng L R, Zhao C X, Wang X, Chong S Y, McBride F, Raval R, Bilton M, Liu L J, Wu X F, Chen L J, Sprick R S, Cooper A I. Chem. Mater., 2020, 32(21): 9107.

doi: 10.1021/acs.chemmater.0c01642
[30]
Fu Z W, Wang X Y, Gardner A M, Wang X, Chong S Y, Neri G, Cowan A J, Liu L J, Li X B, Vogel A, Clowes R, Bilton M, Chen L J, Sprick R S, Cooper A I. Chem. Sci., 2020, 11(2): 543.

doi: 10.1039/C9SC03800K
[31]
Gong Y N, Zhong W H, Li Y, Qiu Y Z, Zheng L R, Jiang J, Jiang H L. J. Am. Chem. Soc., 2020, 142(39): 16723.

doi: 10.1021/jacs.0c07206
[32]
Lei K, Wang D, Ye L Q, Kou M P, Deng Y, Ma Z Y, Wang L, Kong Y. ChemSusChem, 2020, 13(7): 1725.

doi: 10.1002/cssc.v13.7
[33]
Zhang M, Chang J N, Chen Y F, Lu M, Yu T Y, Jiang C, Li S L, Cai Y P, Lan Y Q. Adv. Mater., 2021, 33(48): 2105002.
[34]
Huang Y M, Du P Y, Shi W X, Wang Y, Yao S, Zhang Z M, Lu T B, Lu X Q. Appl. Catal. B Environ., 2021, 288: 120001.

doi: 10.1016/j.apcatb.2021.120001
[1] Ziqing Wang, Jinfeng Du, Futai Lu, Qiliang Deng. Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications [J]. Progress in Chemistry, 2024, 36(1): 67-80.
[2] Weiyu Zhang, Jie Li, Hong Li, Jiaqi Ji, Chenliang Gong, Sanyuan Ding. Covalent Organic Frameworks for Proton Exchange Membranes [J]. Progress in Chemistry, 2024, 36(1): 48-66.
[3] Yunchao Ma, Yuxin Yao, Yue Fu, Chunbo Liu, Bo Hu, Guangbo Che. Progress of Covalent Organic Frameworks in Iodine Capture [J]. Progress in Chemistry, 2023, 35(7): 1097-1105.
[4] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[5] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[6] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[7] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[8] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[9] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[10] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[11] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[12] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[13] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[14] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[15] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.