中文
Announcement
More
Progress in Chemistry Top access Back to home
  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • Review
    Zaiyang Zheng, Huibin Sun, Wei Huang
    Progress in Chemistry. 2025, 37(3): 295-316. https://doi.org/10.7536/PC240516
           

    Nowadays stretchable electronic devices have become a hot research topic in the field of information electronics because of their excellent mechanical and electrical properties. As the high-speed electron transmission channel in stretching electronic devices, stretchable conductive materials play a crucial role in realizing the functions of stretching electronic devices. Liquid metal has become a hot research object in the field of stretchable conductive composites in recent years because of its intrinsic flexibility and excellent conductivity. Liquid metal is a room temperature liquid conductive material, which exhibits excellent stretchability and tunability due to its inherent high conductivity, fluidity, and ductility. Liquid metal-based stretchable conductive composites preparation and patterning techniques have been reported and many stretchable devices with excellent combination of mechanical and electrical properties have been prepared. In view of the general structural characteristics of liquid metal-based stretchable composites, the key to the preparation is how to solve the interfacial non-impregnation problem caused by the physical property differences between different materials. Therefore, starting from the common types of composites, this paper firstly briefly introduces the components and physical properties of liquid metals generally used, as well as the stretchable polymer matrix materials usually employed. Then, the composite methods of conductive materials and elastomer materials in liquid metal-based electrodes are reviewed from the two ways of "passive" and "active" to deal with the problem of non-wetting at the interface, as well as the blending and dispersion method and the new modification method. Finally, the latest research progress is introduced, and the current status of liquid metal research is summarized. Future development and potential problems to be faced are also discussed.

    Contents

    1 Introduction

    2 Liquid metal-based flexible device material composition

    2.1 Liquid metal and its composite materials

    2.2 Flexible substrate material

    3 Preparation method of liquid metal-based flexible conductive composites

    3.1 Passive internal embedding method

    3.2 Active surface structure modification method

    3.3 Direct blending composite method

    3.4 New methods for the preparation and patterning of liquid metal electrodes

    4 Conclusion and outlook

  • Review
    Haozhe Zhang, Wenlong Xu, Fansheng Meng, Qiang Zhao, Yingyun Qiao, Yuanyu Tian
    Progress in Chemistry. 2025, 37(2): 226-234. https://doi.org/10.7536/PC240512
           

    Plastic products represented by polyethylene terephthalate (PET) have become an important part of modern life and global economy. In order to solve the resource waste and environmental problems caused by PET waste and to realize high-value recycling of materials, there is an urgent need to explore low-cost green and efficient conversion and recycling methods. Chemical depolymerization can deal with low-value, mixed, and contaminated plastics, recover polymer monomers through different chemical reactions or chemically upgrade and recycle to produce new high value-added products, realizing the closed-loop recycling of plastic waste and high value-added applications, which is a key way to establish a circular polymer economy. This paper reviews the latest research progress of chemical depolymerization process of PET waste, analyzes the problems of chemical depolymerization technology of PET waste, and looks forward to the future development trend of chemical depolymerization process of PET waste.

    Contents

    1 Introduction

    2 Chemical recovery methods

    2.1 Hydrolysis

    2.2 Alcoholysis

    2.3 Ammonolysis and aminolysis

    2.4 Supercritical depolymerization

    3 Conclusion and outlook

  • Microplastics Special Issue
    Hongwei Liu, Yuxin Yuan, Tianchi Cao, Tong Zhang, Wei Chen
    Progress in Chemistry. 2025, 37(1): 103-111. https://doi.org/10.7536/PC240708
           

    Due to the rapid growth in the number of vehicles and freight transport, tire wear particles (TWPs), generated from the friction between tires and road surfaces, have become the main source of microplastics in the environment. TWPs are widely detected in various environmental media, including soil, surface water, and sediments. An in-depth mechanistic understanding of the environmental interfacial processes of TWPs is of great significance for the control of microplastic pollution. In this paper, we first summarized recent progress in the interfacial chemical processes of TWPs, including the transport behavior, environmental transformation, release of toxic additives, and the adsorption of co-existing pollutants on TWPs. We then addressed some existing issues in current research and proposed future directions toward a better understanding of the environmental behavior and potential environmental risks of TWPs.

    Contents

    1 Introduction

    2 Fate and transport of TWPs in the environment

    2.1 Transport via rainfall and runoff

    2.2 Atmospheric transport

    2.3 Aggregation and sedimentation behavior of TWPs in the aquatic environment

    3 Transformations of TWPs in the environment

    3.1 Physical and chemical transformations of TWPs

    3.2 Microbial transformation of TWPs

    4 Release of additives from TWPs

    5 Accumulation of contaminants on TWPs

    6 Conclusion and outlook

  • Microplastics Special Issue
    Kefu Ye, Minjie Xie, Xingqi Chen, Zhiyu Zhu, Shixiang Gao
    Progress in Chemistry. 2025, 37(1): 2-15. https://doi.org/10.7536/PC240710
           

    This review highlights the advantages and research advancements of Raman spectroscopy in detecting micro- and nanoplastics in the environment. With the worsening issue of microplastic pollution, particularly its widespread presence in aquatic and terrestrial ecosystems, Raman spectroscopy has emerged as a non-destructive, high-resolution analytical technique widely employed for identifying and quantitatively analyzing micro- and nanoplastics. This is attributed to its unique spectral characteristics and reduced susceptibility to water interference compared to infrared spectroscopy. The strengths of Raman spectroscopy in detecting micro- and nanoplastics lie in its high spatial resolution, broad spectral range, and exceptional sensitivity. However, challenges such as fluorescence interference and low signal-to-noise ratios persist in the detection process. To enhance Raman signals, researchers have introduced various approaches, including sample pretreatment, surface-enhanced Raman spectroscopy (SERS), and nonlinear Raman spectroscopy techniques. Furthermore, this paper underscores the necessity of building a comprehensive Raman spectroscopy database to boost detection accuracy and efficiency. Future research directions include developing more effective preprocessing methods, dynamically monitoring the behavior of micro- and nanoplastics, and integrating intelligent detection systems.

    Contents

    1 Introduction

    2 Raman spectroscopy methods for micro-and nanoplastics

    2.1 Basic principles and conventional Raman spectroscopy

    2.2 Surface-enhanced Raman spectroscopy (SERS)

    2.3 Coherent Raman spectroscopy (CRS)

    2.4 Raman imaging

    3 Identification in environmental samples with Raman spectroscopy

    3.1 Fluorescence interference and its elimination

    3.2 Machine learning applications with Raman spectral databases

    4 Quantitative Analysis

    4.1 In situ concentration and mass concentration

    4.2 Number concentration via µ-Raman and imaging

    5 Conclusion and outlook

  • Review
    Yuchen Yang, Zhenjie Liu, Chunhua Lu, Kai Guo, Xin Hu, Ning Zhu
    Progress in Chemistry. 2025, 37(3): 383-396. https://doi.org/10.7536/PC240521
           

    As an important family of synthetic polymers, poly(meth)acrylates have a wide range of applications in the fields of coatings, adhesives, biomedines, electronic and electrical materials. However, the (meth)acrylates monomers are mainly derived from petrochemical resources.Transformations of biomass into (meth)acrylate monomers and polymers have attracted growing research interest from the viewpoint of sustainability. The bio-based poly(meth)acrylates not only serve as the supplement for the fossil based product but also provide great chance for the development of value-added high performance materials with designed novel structures. This article highlights the recent progress in the synthesis and polymerization of bio-based (meth)acrylates. The lignin, terpene, plant oil, glucose, isosorbide, and furan derivatives as the biomass feedstock are respectively reviewed in consecutive order. The properties and applications of the corresponding bio-based poly(meth)acrylates are summarized. Moreover, the challenges and opportunities of bio-based poly(meth)acrylates are also discussed.

    Contents

    1 Introduction

    2 Preparation of bio-based (meth)acrylates and polymers from lignin

    3 Preparation of bio-based (meth)acrylates and polymers from terpene

    4 Preparation of bio-based (meth)acrylates and polymers from plant oils

    5 Preparation of bio-based (meth)acrylates and polymers from glucose

    6 Preparation of bio-based (meth)acrylates and polymers from isosorbide

    7 Preparation of bio-based (meth)acrylates and polymers from furan derivatives

    8 Conclusion and outlook

  • Microplastics Special Issue
    Hongqin Guo, Kai Yang, Li Cui
    Progress in Chemistry. 2025, 37(1): 112-123. https://doi.org/10.7536/PC240706
        CSCD(1)      

    Due to the highly stable chemical properties of plastics, plastic wastes disposed into environments are difficult to degrade and can only be broken down into microplastics with smaller particle size and larger surface area through the weathering process. Microplastic pollution has become one of the most pressing environmental issues. There is an urgent need to reduce microplastic pollution in order to protect the ecological and human health. Biodegradation of microplastics can ultimately convert microplastics into environmentally friendly substances such as biomass, CO2, CH4 and H2O or other valuable intermediates. It is thus an environmentally friendly technology to potentially make microplastics harmless and resourceful. This paper reviews the present understanding of microplastics biodegradation processes, the influencing factors, the microbial and enzymatic resources for microplastics degradation, and the up-to-date approaches for mining plastics-degrading microbial resources. It finally provides perspectives on the challenges of current research and the direction of future research on microplastic biodegradation.

    Contents

    1 Introduction

    2 Microplastic biodegradation process

    2.1 Degradation pathway

    2.2 Influence factors

    3 Microplastic biodegradation resources

    3.1 Degrading bacteria

    3.2 Catabolic enzymes

    3.3 Synthetic community

    4 Mining strategies for microplastics-degrading microorganisms

    4.1 Culture-dependent methods

    4.2 Culture-independent methods

    5 Conclusion and outlook

  • Review
    Jiawen Dai, Chunlin Xie, Rui Zhang, Huanhuan Li, Haiyan Wang
    Progress in Chemistry. 2025, 37(4): 551-563. https://doi.org/10.7536/PC240519
           

    Compared to lithium-ion batteries,sodium-ion batteries have greater advantages in terms of resources,cost,safety,power performance,low-temperature performance,and so on. However,the energy density of sodium-ion batteries is relatively low. To explore broader application prospects,the development of high-specific energy sodium batteries has become a research hotspot in both academia and industry. The anode is considered the key bottleneck constraining the development of the sodium battery industry due to limitations such as the inability of graphite to serve as sodium anodes and the high cost,low Coulombic efficiency,and poor kinetics of mainstream hard carbon materials. In recent years,anode-free sodium batteries (AFSBs) have garnered widespread attention due to their advantages in energy density,process safety,and overall battery cost. However,AFSBs generally show rapid capacity loss due to the rupture of the solid-electrolyte interphase (SEI) layer,increased chemical side reactions,serious dendrite growth and the formation of dead sodium. As the AFSBs operate,active sodium is continuously consumed without additional metallic sodium to replenish it,leading to poor cycling performance and failure of AFSBs. These issues can be attributed to the following characteristics: the high reactivity of sodium,non-uniform nucleation and huge volume expansion. To elucidate the strategies for promoting dendrite-free growth on the anode side of AFSBs,this review focuses on the current collector-sodium interface and sodium-electrolyte interface,including the design of sodiophilic coatings,porous skeleton structure to regulate the sodium nucleation process,and the construction of robust SEI interface,which further guides the homogeneous sodium deposition and stripping process. This systematic review is expected to draw more attention to anode-free configurations and bring new inspiration to the design of high-specific energy batteries.

    Contents

    1 Introduction

    2 Factors affecting sodium deposition on the anode side

    2.1 High reactivity of sodium

    2.2 Inhomogeneous sodium deposition

    2.3 Volumetric deformations

    3 Critical differences between sodium and lithium

    4 Interface design principles and strategies

    4.1 Design principles

    4.2 Homogeneous nucleation regulation at the current collector-sodium interface

    4.3 Formation of robust SEI at the sodium-electrolyte interface

    5 Conclusions and prospects

  • Review
    Yifan Tang, Jutang Hu, Qianying Song, Guichao Kuang, Libao Chen
    Progress in Chemistry. 2025, 37(6): 858-867. https://doi.org/10.7536/PC240725
           

    All-solid-state batteries have the characteristics of high energy density, long cycle lifeand high safety, which is the development direction of the next generation of electrochemical energy storage. Solid-state electrolytes are the core components of all-solid-state batteries, and sulfide electrolytes have attracted extensive attention due to their advantages of high ionic conductivity and good mechanical ductility. As one of the most studied sulfide electrolytes in recent years, lithium-phosphorus-sulfur-chloride sulfide (LPSC) has high ionic conductivity and relatively low cost, but its practical application is limited by shortcomings such as poor stability and poor compatibility of positive and negative electrode materials. The composite solid-state electrolyte has good electrochemical and mechanical properties, and the composite solid-state electrolyte is prepared by modifying the LPSC with polymers, aiming to improve the interfacial compatibility and electrochemical stability of the LPSC. In this paper, the basic composition, recombination mode, modification strategy and ion transport mechanism of LPSC composite solid electrolyte are reviewed, and the future research direction and application prospect of LPSC composite electrolyte are prospected.

    Contents

    1 Introduction

    2 Ion transport mechanism in LPSC composite solid electrolyte

    3 Classification of LPSC composite solid electrolytes

    3.1 LPSC-CSSE based on polymers

    3.2 LPSC-CSSE based on sulfides

    4 Conclusion and outlook

  • Review
    Guang Yang, Demei Yu
    Progress in Chemistry. 2025, 37(4): 536-550. https://doi.org/10.7536/PC241001
           

    With the advancement of technology,flexible pressure sensors have been widely utilized in wearable device fields such as medical monitoring and motion monitoring,primarily due to their thinness,lightness,flexibility,good ductility,as well as their faster response speed and higher sensitivity compared to traditional rigid sensors. When subjected to external forces,the elastic elements within these sensors undergo deformation,converting mechanical signals into electrical signals. Consequently,the choice of elastic elements significantly impacts the overall performance of flexible pressure sensors. Polydimethylsiloxane (PDMS) is extensively used as a flexible substrate in sensors because of its stable chemical properties,good thermal stability,low preparation cost,and excellent biocompatibility. By collecting relevant information,this paper reviews the sensing mechanisms of PDMS-based flexible pressure sensors,introduces preparation techniques to improve the properties of PDMS materials,including the recently popular methods of introducing porous structures and constructing surface architectures,and discusses the applications of PDMS-based flexible pressure sensors in medical monitoring,electronic skin,and other fields. Finally,the challenges faced by PDMS-based flexible sensors and their future opportunities are prospected.

    Contents

    1 Introduction

    2 Flexible pressure sensor

    3 Fabrication technology of flexible sensor with improved performance

    3.1 Pore structure

    3.2 Surface micro-nano structures

    4 Application of flexible pressure sensor based on PDMS

    4.1 Health monitoring

    4.2 Electronic skin

    5 Conclusion and outlook

  • Review
    Yaqing Hu, Kunyu Xu, Haoling Yang, Fengfan Zhang, Zihao Yang, Zhaoxia Dong
    Progress in Chemistry. 2025, 37(3): 332-350. https://doi.org/10.7536/PC240505
           

    Taking into account environmental concerns and the ongoing shift towards clean energy, converting carbon dioxide (CO2) into ethylene (C2H4) through electrochemical CO2 reduction (ECO2RR) using renewable electricity is a sustainable and eco-friendly solution for achieving carbon neutrality while also providing economic benefits. Despite significant advancements in the field, issues such as low selectivity, activity and stability continue to persist. This paper presents a review of recent research progress in copper-based catalytic systems for ECO2RR in the production of ethylene. Firstly, the mechanism of ECO2RR is briefly summarized. It then highlights various catalyst design strategies for ethylene production, such as tandem catalysis, crystal surface modulation, surface modification, valence influence, size sizing, defect engineering, and morphology design. Finally, the paper discusses future challenges and prospects for the synthesis of ethylene through electrocatalytic CO2 reduction.

    Contents

    1 Introduction

    2 CO2 electroreduction mechanisms on Cu catalysts

    2.1 The adsorption and activation of CO2

    2.2 The formation of *CO intermediates

    2.3 C-C coupling

    3 Key performance parameter

    4 Catalyst design strategies

    4.1 Tandem catalysis

    4.2 Facet exposure

    4.3 Surface modification

    4.4 Valence state

    4.5 Size control

    4.6 Defects engineering

    4.7 Morphology design

    5 Conclusion and prospect

  • Microplastics Special Issue
    Mianmo Li, Minghao Sui
    Progress in Chemistry. 2025, 37(1): 124-132. https://doi.org/10.7536/PC240617
           

    As public concern regarding the safety of drinking water continues growing, microplastics and antibiotics have emerged as new contaminants of interest within the field of water treatment. Microplastics and antibiotics not only pollute aquatic environments and endanger both aquatic life and human health, but their coexistence in water can also lead to physical and chemical interactions, such as adsorption. These interactions are influenced by various factors, including the morphology, functional groups, and aging degree of microplastics, as well as the pH, temperature, salinity, heavy metal ions, and organic macromolecules in the water. The resulting microplastic-antibiotic complex pollutants exhibit greater toxicity and are more challenging to remove. This review discusses the hazards of microplastics and antibiotics in water, their interaction mechanisms, and influencing factors. It also highlights the removal characteristics of complex pollutants using two typical water treatment technologies: coagulation and advanced oxidation. The principles and degradation effects of these treatment processes are analyzed in detail.

    Contents

    1 Introduction

    2 Hazards of microplastic-antibiotic composite pollutants

    3 Mechanisms of interaction between microplastics and antibiotics

    4 Factors influencing the interaction between micro- plastics and antibiotics

    5 Coagulation removal of microplastic-antibiotic composite pollution

    6 Advanced oxidation degradation of microplastic- antibiotic composite pollution

    7 Conclusion and outlook

  • Review
    Aowei Zhu, Zhanfeng Li, Kunping Guo, Yanqin Miao, Baoyou Liu, Gang Yue
    Progress in Chemistry. 2025, 37(3): 317-331. https://doi.org/10.7536/PC240520
           

    Organic light emitting diodes (OLEDs) have attracted extensive attention and research interest in advanced display and solid-state lighting due to their self-luminescence, low drive voltage, wide color gamut, surface luminescence, flexibility and rapid response. One of the primary colors of OLED, the development of blue emitter is still lagging far behind. Interestingly, 9,9'-bianthracene as a promising blue-emitter for high-performance fluorescent OLEDs exhibits excellent optoelectronic performance in recent years. Here, we review the progress with the development of 9,9'-anthracene-based blue fluorescent materials and gain insight into their contribution towards enhanced OLED performance. Different approaches to achieve blue emission from molecular design including isomerization, fluorine substitution, asymmetrical structuring, and steric hindrance effects are discussed, with particular focus on device efficiency and stability. Furthermore, an outlook for future challenges and opportunities of OLEDs from the development of new molecular structures, understanding of luminescence mechanisms as well as innovation in flexible and large-scale panels is provided.

    Contents

    1 Introduction

    1.1 OLED structure and principle

    1.2 OLED emissive materials

    2 9,9'-Bianthracene-based blue light-emitting materials and device performance

    2. 1 Basic structure of bianthracene

    2. 2 9,9'-Bianthracene-based blue light-emitting materials and devices

    2. 3 Structures and chemical properties of other bianthracene derivatives

    2. 4 BT. 2020 blue light

    Correlation between the structure and performance of 9,9'-Bianthracene-based blue light-emitting materials

    3. 1 Isomerization effects in bianthracene

    3. 2 Halogen substitution effects

    3. 3 Asymmetric effects

    3. 4 Steric hindrance effects

    3. 5 Blue-emitting device design

    4 Conclusion and prospects

    4. 1 Summary

    4. 2 Prospects

  • Microplastics Special Issue
    Yulong Wang, Yue Li, Fengbang Wang, Maoyong Song
    Progress in Chemistry. 2025, 37(1): 46-58. https://doi.org/10.7536/PC240707
           

    Microplastic pollution has become a major environmental issue of global concern. Microplastics can undergo aging under various environmental conditions. The aging process will change the physical and chemical properties of microplastics, thereby leading to changes in their environmental behaviors and toxicities. Therefore, exploring the aging process and mechanism of microplastics is of significance for understanding the environmental processes and health risks of microplastics. This article focuses on the aging process of microplastics in the environment and reviews it from the aspects of aging pathways, influencing factors, interactions with pollutants, release of chemical substances, and changes in toxicities. It also looks forward to the existing challenges and future research directions in the current studies on microplastic aging.

    Contents

    1 Introduction

    2 Pathways of microplastics aging

    2.1 Physical aging of microplastics

    2.2 Chemical aging of microplastics

    2.3 Biological aging of microplastics

    2.4 Artificial aging of microplastics

    3 The factors influencing microplastics aging

    3.1 The impact of physical and chemical properties on microplastics aging

    3.2 The impact of environmental conditions on microplastics aging

    4 The impact of aging on microplastics

    4.1 The impact of aging on the physical and chemical properties of microplastics

    4.2 The impact of aging on the interaction between microplastics and pollutants

    4.3 The impact of aging on the release of chemicals from microplastics

    4.4 The impact of aging on the toxicities of microplastics

    5 Conclusions and perspectives

  • Microplastics Special Issue
    Yongfeng Deng, Ailin Zhao, Changzhi Shi, Ao Guo, Ruqin Shen, Mingliang Fang
    Progress in Chemistry. 2025, 37(1): 59-75. https://doi.org/10.7536/PC240904
           

    The global concern over white pollution and microplastic contamination caused by traditional non-degradable plastic waste has garnered widespread attention. Promoting biodegradable plastics (BPs) as alternatives to non-degradable plastics is a strategic approach to mitigating these forms of plastic pollution. However, under real-world environmental conditions, BPs often face challenges in achieving rapid degradation and may release significant quantities of biodegradable microplastics (BMPs) during the degradation process, posing potential environmental and health risks. In this review, we critically examine the environmental risks associated with traditional non-degradable plastic waste and the use of BPs. We systematically evaluate current pre-treatment techniques, analytical methods, and occurrence patterns of BMPs in environmental and biological samples. Furthermore, we highlight recent advancements in understanding the potential impacts of BMPs on organisms across various trophic levels, including human health. Finally, we address the challenges in applying BPs, particularly in identifying, analyzing, assessing health impacts, and developing future regulatory standards and measures for BMPs. This review provides theoretical foundations and technical guidance for advancing environmentally friendly and safe BPs.

    Contents

    1 Introduction

    1.1 The importance of plastics in modern human social life and production

    1.2 Ecological and environmental risks associated with the use of traditional refractory plastics

    1.3 Production, application status, and potential risks of emerging degradable plastics

    2 Analytical methods and environmental occurrence of degradable plastics

    2.1 Methods for analyzing biodegradable microplastics

    2.2 Environmental occurrence of degradable plastics

    3 Research progress on potential environmental and health risks of biodegradable plastics

    3.1 Potential ecological and environmental risks of degradable plastics

    3.2 Potential health risks of biodegradable plastics

    4 Conclusion and outlook

    4.1 Insufficient public awareness of BPs and BMPs

    4.2 Suitable for BMPs extraction and detection method vacancy

    4.3 The long-term migration and transformation of BMPs in vivo and its health risks need to be clarified

    4.4 Bioplastics and BMPs management and control methods and governance standards are missing

  • Microplastics Special Issue
    Xujun Liang, Yujing Ren, Ling Ding, Xinran Qiu, Xuetao Guo, Lingyan Zhu
    Progress in Chemistry. 2025, 37(1): 16-31. https://doi.org/10.7536/PC240711
           

    As an emerging pollutant, microplastics (MPs) pollution has become a focal point of global environmental research. MPs are widely detected in various environmental matrices, including the atmosphere, soil, oceans, and inland waters. Once introduced into the environment, MPs undergo a series of transformation and transport processes across different environmental compartments and accumulate in biota, thereby posing significant threats to ecosystems and human health. This review aims to summarize the sampling and detection methods for MPs, followed by an assessment of their pollution levels in different matrices. The inter-compartmental transformation and transport of MPs, along with their ecological effects, are then reviewed and analyzed. Finally, the limitations in understanding the environmental geochemical behaviors and ecological risks of MPs, as well as prospects for future research, are outlined.

    Contents

    1 Introduction

    2 Detection methods of microplastics (MPs) in the environment

    2.1 Sampling and separation

    2.2 Detection

    3 Environmental occurrences of MPs

    3.1 Oceans

    3.2 Freshwater

    3.3 Soil

    3.4 Atmosphere

    4 Environmental behaviors of MPs

    4.1 Weathering

    4.2 Migration

    5 Ecological risks of MPs

    5.1 Toxicological effects of MPs on microorganisms

    5.2 Toxicological effects of MPs on plants

    5.3 Toxicological effects of MPs on fauna

    6 Conclusions and future prospects

  • Review
    Yanhong Liu, Dongju Zhang
    Progress in Chemistry. 2025, 37(2): 281-292. https://doi.org/10.7536/PC240411
           

    The visible-light-driven copper-catalyzed decarboxylative coupling reaction of carboxylic acids and their derivatives is a novel, efficient, and green synthetic method. It allows the construction of various carbon-carbon and carbon-heteroatom bonds for the synthesis of a wide range of high-value-added chemicals, making it a hot topic in the field of modern synthetic chemistry. In recent years, researchers worldwide have conducted extensive studies in this area, achieving a series of innovative results that have been widely applied in organic synthesis, materials science, and medicinal chemistry. This paper reviews the latest experimental and theoretical advances in the visible-light-driven copper-catalyzed decarboxylative coupling reactions of carboxylic acids and their derivatives, with a focus on several typical cross-coupling reactions that form C—X (X = C, N, O, S) bonds. It also discusses the future development prospects of this catalytic method.

    Contents

    1 Introduction

    2 Mechanism of photocatalyst and copper complex co-catalysis

    3 Photocatalyst and copper complex co-catalyzed carboxylic acid (ester) decarboxylative coupling reactions

    3.1 C—C coupling

    3.2 C—N coupling

    3.3 C—O coupling

    3.4 C—S coupling

    4 Conclusion and outlook

  • Review
    Saiqun Nie, Pengcheng Xiao, Jiayao Chen, Fuli Luo, Tian Zhao, Yi Chen
    Progress in Chemistry. 2025, 37(4): 621-638. https://doi.org/10.7536/PC240523
           

    Due to HKUST-1 has ultra-high specific surface area and porosity,excellent thermal stability,and adjustable structure and function,HKUST-1 is one of the most widely studied MOFs. The HKUST-1-based composites have achieved excellent multi-component properties and demonstrated new physical and chemical properties,which have a significant impact on their applications. The structural characteristics and physicochemical properties of HKUST-1 and HKUST-1-based composites make them have broad application prospects in gas storage,gas adsorption,catalysis,drug delivery and release sensing and photodegradation. This article focuses on the application progress of HKUST-1 and HKUST-1-based composites in various fields in recent years,and finally looks forward to the research on HKUST-1-based composites.

    Contents

    1 Introduction

    1.1 Introduction to HKSUT-1

    1.2 Introduction to HKSUT-1 based composite

    2 Progress in applications of HKSUT-1 and HKUST-1 based composites

    2.1 Gas storage

    2.2 Gas adsorption

    2.3 Catalysis

    2.4 Drug delivery and release

    2.5 Sensor

    2.6 Photodegradation

    2.7 The influence of structure on properties and applications

    3 Conclusion and outlook

  • Review
    Wuyuxin Zhu, Linjun Qin, Guorui Liu
    Progress in Chemistry. 2025, 37(4): 479-507. https://doi.org/10.7536/PC240606
           

    Polyphenolic compounds are a class of naturally occurring bioactive substances widely found in the environment. Their characteristics,such as low toxicity,low cost,and broad availability,make them become to be widely used chelating agents,reducing agents,and capping agents for treating typical pollutants in water. Currently,polyphenols are extensively used in advanced oxidation processes (AOPs) through the coupling of common transition metal ions and peroxides. However,the chemical mechanisms of polyphenolic substances in water pollution remediation still lack systematic conclusions. This study reviews and summarizes the compositions of homogeneous and heterogeneous systems containing polyphenolic compounds,as well as the pro-oxidant,antioxidant,and chelating-reduction effects exhibited by polyphenols within these systems. It explains the main active species generated by polyphenolic substances under different systems from both radical and non-radical perspectives,along with the corresponding mechanisms for the removal of water pollutants. The dual role of polyphenols as natural redox mediators (RMs) in constructing complex catalytic systems is emphasized,and the effects of external energies such as light,heat,electricity,ultrasound,and plasma on the reaction mechanisms and pollutant degradation effectiveness in these systems are described. Finally,the article looks ahead to the future development directions of polyphenolic compounds in the field of water treatment.

    Contents

    1 Introduction

    2 H2O2/PS/PAA activation

    2.1 ROS of H2O2/PS/PAA

    2.2 Polyphenols/Fe(Cu) ions/peroxide systems

    2.3 Chelation and reduction of polyphenol-metal ions

    2.4 Non-radical reactions

    3 High-valent metal species

    3.1 Fe ions

    3.2 Cu ions

    3.3 Mn ions

    4 Solid catalyst

    4.1 Zero-valent metal monomers

    4.2 Monometallic compounds

    4.3 Polymetallic compounds

    4.4 Metal-organic complexes

    4.5 Carbon-based materials

    4.6 Inorganic salt supported metal catalysts

    5 Polyphenol-SQ•--Quinone

    5.1 Periodate and permanganate

    5.2 Peroxide

    5.3 O2,H2O and others

    5.4 Redox mediators

    6 External energy

    7 Conclusion and outlook

  • Review
    Junping Miao, Zhaoqian Zhang, Shaopeng Xin, Yunxia Hu
    Progress in Chemistry. 2025, 37(2): 195-210. https://doi.org/10.7536/PC240312
           

    Membrane separation technology has been intensively used in numerous applications such as seawater desalination, water treatment and reuse, fine separation and product concentration, biomedical treatment and so forth owing to its low operation temperature, easy operation process, modularity, and high separation efficiency. However, due to membrane materials, membrane structures, and membrane manufacturing technology, the trade-off behavior between the water flux and the rejection rate of conventional separation membranes has become a technical bottleneck. The preparation of high-performance separation membranes using proteins as membrane materials is expected to break the trade-off behavior of conventional separation membranes. Protein separation membrane works super-efficiently for the target separation and transport, as well as the antibacterial and antifouling properties, where an emerging membrane material of proteins can transport the solute due to their inherent specific water or ion channels, rich binding sites with metal ions, regular nanostructures or low-cost and multifunctional. In this review, the widely implemented membrane materials and fabrication strategies for protein separation membranes are summarized in detail, and the research progress of the various protein separation membranes is described. Furthermore, the challenges faced by protein separation membranes are comprehensively reviewed. This review provides some insights into the construction and prospect of protein separation membranes.

    Contents

    1 Introduction

    2 Novel protein materials for membrane fabrication

    2.1 Protein containing channels

    2.2 Protein containing rich binding sites with metal ions

    2.3 Protein containing regular nanostructures

    2.4 Low-cost and multifunctional protein

    3 Fabrication methods of protein separation membranes

    3.1 Amyloid-like assembly

    3.2 Interfacial polymerization

    3.3 Layer-by-layer self-assembly

    3.4 Mussel-inspired biomimetic co-deposition

    3.5 Other methods

    4 Research progress of protein separation membranes

    4.1 Aquaporin biomimetic separation membranes

    4.2 Lysozyme separation membranes

    4.3 Protein separation membrane for chelating metal ions

    4.4 Other protein separation membrane

    5 Conclusion and outlook

  • Review
    Jiansong Liu, Guida Pan, Feng Zhang, Wei Gao, Juntao Tang, Guipeng Yu
    Progress in Chemistry. 2025, 37(5): 686-697. https://doi.org/10.7536/PC240705
           

    In recent years,covalent organic frameworks(COFs)have emerged as focal points in the research of membrane materials. Distinguished by their distinctive porous structures and structural versatility,COFs offer a promising avenue for advancement in membrane applications compared to conventional polymeric materials. This article delves into diverse interfacial systems,systematically detailing the methodologies for fabricating high-performance COF membranes via interfacial polymerization. The mechanisms underlying membrane formation across various interfacial systems and the strategies for precisely controlling the membrane structure will be elucidated. Furthermore,the intricate relationship between the membrane structure and application performance will be summarized. The challenges and perspectives in this field will be highlighted in the last part of this review.

    Contents

    1 Introduction

    2 Gas/liquid interface polymerization

    2.1 Langmuir-Blodgett method

    2.2 Surfactant-mediated

    3 Liquid/liquid interface polymerization

    3.1 Regulation of the system

    3.2 Additive-mediated

    3.3 Optimizing synthetic conditions

    4 Liquid/solid interface polymerization

    5 Solid/gas interface polymerization

    6 Applications of COF membrane

    6.1 Water resource treatment

    6.2 Gas separation and storage

    6.3 Membrane catalysis

    6.4 Electric device

    7 Conclusion and outlook