中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 360-374 DOI: 10.7536/PC220922 Previous Articles   Next Articles

• Review •

Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization

Jiang Haoyang2†, Xiong Feng1†, Qin Mulin1, Gao Song1, He Liuruyi2, Zou Ruqiang1()   

  1. 1. School of Materials Science and Engineering, Peking University, Beijing 100871, China
    2. Army Logistics Academy of PLA, Chongqing 401331, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: rzou@pku.edu.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    Youth Scientific Research Fund of Army Logistics Academy of PLA China(LQ-QN-202117); National Key Research and Development Program of China(2020YFA0210701)
Richhtml ( 64 ) PDF ( 710 ) Cited
Export

EndNote

Ris

BibTeX

As the largest supply end and demand end in daily production respectively, the conversion, storage and utilization of electric energy and thermal energy play an important role in energy systems. Therefore, it is of great significance to develop high-efficiency materials for electro-thermal conversion and storage, especially facing today’s energy crises, environmental pollution and extreme climates. Among heat storage materials, phase change materials (PCMs) own unique advantages because of their high latent heat storage density and constant temperature during heat absorption and release. However, the low intrinsic conductivity of most PCMs does not match the large power requirements of current energy storage systems. This issue can be effectively improved by combining PCMs with conductive materials to obtain electrically heatable PCM composites. In this article, the latest research progress of electro-thermal conversion PCMs from three aspects of the functional mechanism, affecting factors and applications are systematically reviewed. Moreover, PCMs composited with conductive fillers, conductive framework and serving as conductive polymers are summarized and compared critically. Finally, this article points out the potential direction of future research and emphasizes the key points of this field.

Contents

1 Introduction

2 Electrothermal conversion mechanism of phase change composites

3 Functional phase change composites for electrical energy conversion, storage and utilization

3.1 Phase change composites doped with conductive fillers

3.2 Phase change composites supported by conductive framework

3.3 Phase change composites composed of conductive polymer

4 Application of electrothermal phase change composites

5 Conclusion and outlook

Fig. 1 (a) Classification of phase change materials; (b) mechanism of thermal energy storage and release of PCMs
Fig. 2 Electrothermal conversion mechanism of electrothermal phase change composites including conductive additives, conductive framework and conductive polymer, respectively
Fig. 3 (a) Classification of electrothermal phase change composites via different enhancing mechanisms. (b) Comparison of electrothermal phase change composites via different enhancing mechanisms
Table 1 Properties of conductive filler electrothermal phase change composite
Conductive filler PCMs Filler content
(wt%)
T m a
( ℃)
Latent heat
(J/g)
λW/(m·k) σb
(S/m)
The trigger voltagec (V) ηd
(%)
The working voltage e (V) ref
acetylene black PEG2000·
CaCl2
20 51.48 78.5 1.2 3.3 1.5 29.7 1.5 15
acetylene black PEG2000·
CaCl2
20 51.48 78.5 1.2 3.3 1.5 64.7 2.5 15
carbon
nanofiber
paraffin wax 2 70 - - 0.2 - - - 16
single-wall CNT hexadecyl acrylate - 36.7 52 0.4675 718 - - - 17
multi-wall CNT hexadecyl acrylate - 38 40 0.877 389 - - - 17
CNTs PEG2000-
CaCl2
20 49.72 89.81 0.91 0.01 - 58.3 1.5 18
CNTs PEG2000-
CaCl2
20 49.72 89.81 0.91 0.01 - 70.2 2 18
expanded graphite PEG2000-
CaCl2
6 49.3 107.5 3.73 0.2 2 48.2 2 19
expanded graphite PEG2000-
CaCl2
6 49.3 107.5 3.73 0.2 2 86.9 5 19
expanded graphite Methyl stearate 15 33.4 147 3.6 - 1.4 47 1.4 20
expanded graphite Methyl stearate 15 33.4 147 3.6 - 1.4 72 1.7 20
expanded graphite N-eicosane 15 36.41 199.4 3.56 - 1.9 65.7 2.1 21
expanded graphite N-eicosane 30 36.31 163.5 4.21 - 1.9 42.9 2.1 21
expanded graphite paraffin 20 56.2 120 1.38 5 - - - 22
expanded graphite paraffin 70 43.05 47.76 19.27 4545 - - 4.4 23
graphene Hexadecyl acrylate - 32.7 57 3.957 219 - - 30 24
graphene oxide/CNT PEG1000 22 37.24 110.7 0.45 - 5.8 70 6.6 25
graphene oxide/CNT docosane 3.3 38.1 240.8 - 52.63 - - - 26
graphene/
PANI
PEG20000 - 57.93 115.97 - - - - - 27
CNT/PU/
PDA/
PEDOT:PSS
paraffin wax - 20 106.86 - - - 42.92 3 28
CNT/PU/
PDA/
PEDOT:PSS
paraffin wax - 20 106.86 - - - 91.03 4.2 28
CNT/PU/Ag nanoflower Lauric acid - 46 124.5 0.479 190 - 70.1 20 29
cotton/
stainless steel wire
PEG - 53.53 33.46 0.281 - - - - 30
Ti3C2 MXene
nanosheets
PEG4000 22.5 60 131.2 2.052 10.41 - - 7.2 31
Table 2 Properties of conductive framework phase change composites
Conductive framework PCMS Filler content
(wt%)
Tm
( ℃)
Latent heat
(J/g)
λ
W/(m·k)
σ
(S/m)
The trigger voltage (V) η
(%)
The working voltage(V) ref
carbon foam PEG6000 - 62.82 163.9 - - - 85 3.6 36
carbon foam paraffin wax - 57.05 120.2 - - - 74 3.6 36
carbon foam PU(PEG6000) 33.3 43.2 61.9 0.48 - 0.8 75 1.1 37
carbon fiber scaffold paraffin wax 15 39.22 182.22 0.424 19.6 2 81.1 3 38
carbon aerogel paraffin wax 5 53.5 115.2 - 3.4 - 71.4 15 39
cotton cloth/TPU paraffin wax 50.75 34.13 93.5 - 296.68 3 67.39 4 40
CNT sponge paraffin wax 13 24 131.7 1.2 - 1.5 52.5 1.75 41
CNT sponge PU 10 59.41 132.02 2.4 - 1.3 94 2 42
CNT array n-eicosane 10 34 217.3 - - 1 74.7 1.3 43
single-wall CNT scaffold eicosane 27.1 36.7 204.8 - 620.3 3 80.1 4 44
single-wall CNT scaffold eicosane 27.1 36.7 204.8 - 620.3 3 91.3 5 44
graphite foam Paraffin wax 20 50.2 174.2 1.38 - - 74.6 5 45
graphite foam PU(PEG4000) 18 41 64.5 3.5 - - 69 1.4 46
graphite foam PU(PEG6000) 18 42.5 76.1 3.6 - - 85 1.4 46
graphite foam PU(PEG8000) 18 46.1 80.3 3.4 - - 45 1.4 46
graphite foam PU(PEG6000) 27 43.8 60.3 10.86 - 1.5 85 1.8 47
graphite foam/MPU octadecanol 52.5 56.1 130 5.55 - - 61.4 - 48
graphite nanoplatelets Pentaerythritol 20 186 225.3 27 32 300 0.22 92.73 0.34 50
3D reduced graphene/
carbon scaffold
paraffin wax 20 39.53 157 33.5 294.9 - 88 - 51
3D reduced graphene/
BN scaffold
PEG10000 15.2 59.5 164.1 0.59 - - 87.9 7 52
graphene aerogel paraffin wax 3 57 202.2 1.06 - - - - 53
graphene aerogel Paraffin 6 46.05 193.7 0.248 258.7 1 85.4 3 54
graphene
aerogel/ZnO
PU
(PEG4000)
2.29 57.1 108.1 2.99 - - 84.4 15 55
graphene aerogel/halloysite
nanotubes
PU 1.17 57.4 103.3 - - 66.3 10 56
reduced graphene oxide
aerogel/SEBS
paraffin wax 6.47 40.19 226.3 - - - - 8 57
graphene nanoplatelets/
cellulose aerogel
PEG 6000 1.51 67.6 182.6 0.43 - - - - 58
graphene nanoplatelet/
cellulose nanofiber hybrid-
coated melamine foam
PEG 6000 4.8 61.7 178.9 1.03 6.19 - 66.13 20 59
MOF-derived carbon/
graphene oxide aerogel
lauric acid - 51 140 0.26 - 2.2 90 2.2 60
ZIF@MOF-C/CNT octadecane 30 31.9 135.9 1.35 526.32 - 94.5 1.1 61
copper nanowire aerogels paraffin 1.95 53 173.2 - 14 - - - 62
CNTs nanoarray/nickel foam 1-hexadecanamine - 50.38 132.2 0.277 - - - 30 63
PEDOT:PSS/MXene
framework
PEG20000 1.22 61.6 237.6 0.215 0.86 - - 30 64
Fig. 4 (a) randomly distributed CNT sponge PCCs and its electrothermal conversion[41]. Copyright © 2012, American Chemical Society; (b) aligned CNT array PCCs and its electrothermal conversion[43]. Copyright © 2013, American Chemical Society
Table 3 Properties of conductive polymer electrothermal phase change composites
Fig. 5 (a) Application of electrothermal PCCs, (b) Application mode of electrothermal PCCs, (c) Temperature change of battery with or without electrothermal PCCs, (d) PCCs for human thermal insulation[28]. Copyright ©#x00A9; 2022, American Chemical Society
Fig. 6 Selection of electrothermal phase change materials
[1]
Sundararajan S, Samui A B, Kulkarni P S. J. Mater. Chem. A, 2017, 5(35): 18379.

doi: 10.1039/C7TA04968D
[2]
Zhang Y A, Umair M M, Zhang S F, Tang B T. J. Mater. Chem. A, 2019, 7(39): 22218.

doi: 10.1039/C9TA06678K
[3]
Henry A, Prasher R, Majumdar A. Nat. Energy, 2020, 5(9): 635.

doi: 10.1038/s41560-020-0675-9
[4]
Su W G, Darkwa J, Kokogiannakis G. Renew. Sustain. Energy Rev., 2015, 48: 373.

doi: 10.1016/j.rser.2015.04.044
[5]
Aftab W, Usman A, Shi J M, Yuan K J, Qin M L, Zou R Q. Energy Environ. Sci., 2021, 14(8): 4268.

doi: 10.1039/D1EE00527H
[6]
Aydin D, Casey S P, Riffat S. Renew. Sustain. Energy Rev., 2015, 41: 356.

doi: 10.1016/j.rser.2014.08.054
[7]
Hyun D C, Levinson N S, Jeong U, Xia Y N. Angew. Chem. Int. Ed., 2014, 53(15): 3780.

doi: 10.1002/anie.201305201
[8]
Liu W, Zhang X L, Ji J, Wu Y F, Liu L. Energy Technol., 2021, 9(7): 2100169.
[9]
Tahan Latibari S, Sadrameli S M. Sol. Energy, 2018, 170: 1130.

doi: 10.1016/j.solener.2018.05.007
[10]
Kalidasan B, Pandey A K, Shahabuddin S, Samykano M, Thirugnanasambandam M, Saidur R. J. Energy Storage, 2020, 27: 101118.
[11]
Wang W T, Tang B T, Ju B Z, Gao Z M, Xiu J H, Zhang S F. J. Mater. Chem. A, 2017, 5(3): 958.

doi: 10.1039/C6TA07144A
[12]
Wang W T, Fan X Q, Qiu J J, Umair M M, Ju B Z, Zhang S F, Tang B T. Chem. Eng. J., 2018, 358.
[13]
Fan X Q, Xiao J Q, Wang W T, Zhang Y A, Zhang S F, Tang B T. Polymers, 2018, 10(6): 585.

doi: 10.3390/polym10060585
[14]
Horsfield A P, Bowler D R, Fisher A J, Todorov T N, Montgomery M J. J. Phys.: Condens. Matter, 2004, 16(21): 3609.
[15]
Zhang H Q, Sun Q R, Yuan Y P, Zhang Z J, Cao X L. Chem. Eng. J., 2018, 336: 342.

doi: 10.1016/j.cej.2017.12.046
[16]
Zhang K, Han B G, Yu X. Energy Convers. Manag., 2012, 64: 62.

doi: 10.1016/j.enconman.2012.06.021
[17]
Cao R R, Chen S, Wang Y Z, Han N, Liu H H, Zhang X X. Carbon, 2019, 149: 263.

doi: 10.1016/j.carbon.2019.04.005
[18]
Sun Q R, Zhang N, Zhang H Q, Yu X P, Ding Y L, Yuan Y P. Renew. Energy, 2020, 145: 2629.

doi: 10.1016/j.renene.2019.08.007
[19]
Sun Q R, Zhang N, Yu X P, Ju F L, Szilágyi I M, Yuan Y P. Int. J. Energy Res., 2021, 45(5): 7675.

doi: 10.1002/er.v45.5
[20]
Tabassum H, Huang X Y, Chen R J, Zou R Q. J. Materiomics, 2015, 1(3): 229.

doi: 10.1016/j.jmat.2015.07.002
[21]
Li C C, Zhang B, Liu Q X. J. Energy Storage, 2020, 29: 101339.
[22]
Frᶏc M, PichÓr W, Szołdra P, Szudek W. Constr. Build. Mater., 2021, 275: 122126.
[23]
Luo M Y, Song J Q, Ling Z Y, Zhang Z G, Fang X M. Mater. Today Energy, 2021, 20: 100652.
[24]
Cao R R, Wang Y Z, Chen S, Han N, Liu H H, Zhang X X. ACS Appl. Mater. Interfaces, 2019, 11(9): 8982.

doi: 10.1021/acsami.8b18282
[25]
Guo X F, Liu C, Li N, Zhang S D, Wang Z Y. Ind. Eng. Chem. Res., 2018, 57(46): 15697.

doi: 10.1021/acs.iecr.8b03093
[26]
Zheng Z L, Jin J D, Xu G K, Zou J L, Wais U, Beckett A, Heil T, Higgins S, Guan L H, Wang Y, Shchukin D. ACS Nano, 2016, 10(4): 4695.

doi: 10.1021/acsnano.6b01104
[27]
Yu C B, Youn J R, Song Y S. Fibers Polym., 2019, 20(3): 545.

doi: 10.1007/s12221-019-1067-2
[28]
Wu J J, Wang M X, Dong L, Shi J, Ohyama M, Kohsaka Y, Zhu C H, Morikawa H. ACS Nano, 2022, 16(8): 12801.

doi: 10.1021/acsnano.2c04971
[29]
Niu Z X, Qi S Y, Shuaib S S A, Yuan W Z. Compos. B Eng., 2022, 228: 109431.
[30]
Yu L X, Qin X H, Ke G Z, Tang J N, Wang Y. Compos. Commun., 2022, 32: 101152.

doi: 10.1016/j.coco.2022.101152
[31]
Lu X, Huang H W, Zhang X Y, Lin P C, Huang J T, Sheng X X, Zhang L, Qu J P. Compos. B Eng., 2019, 177: 107372.

doi: 10.1016/j.compositesb.2019.107372
[32]
Janas D, Koziol K K. Nanoscale, 2014, 6(6): 3037.

doi: 10.1039/c3nr05636h pmid: 24519536
[33]
Wu Y P, Wang T. Energy Convers. Manag., 2015, 101: 164.

doi: 10.1016/j.enconman.2015.05.006
[34]
Nat. Nanotechnol. 2010, 5: 755.
[35]
Wang J F, Shen M M, Liu Z X, Wang W J. Nano Energy, 2022, 97: 107177.

doi: 10.1016/j.nanoen.2022.107177
[36]
Maleki M, Karimian H, Shokouhimehr M, Ahmadi R, Valanezhad A, Beitollahi A. Chem. Eng. J., 2019, 362: 469.

doi: 10.1016/j.cej.2019.01.032
[37]
Wu W H, Huang X Y, Yao R M, Chen R J, Li K, Zou R Q. Acta Phys. Chim. Sin. 2017, 33(1): 255.

doi: 10.3866/PKU.WHXB201610181
[38]
Umair M M, Zhang Y A, Tehrim A, Zhang S F, Tang B T. Ind. Eng. Chem. Res., 2020, 59(4): 1393.

doi: 10.1021/acs.iecr.9b06288
[39]
Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K. J. Mater. Chem. A, 2014, 2(21): 7759.

doi: 10.1039/C4TA00839A
[40]
Umair M M, Zhang Y A, Zhang S F, Jin X, Tang B T. J. Mater. Chem. A, 2019, 7(46): 26385.

doi: 10.1039/C9TA09088F
[41]
Chen L J, Zou R Q, Xia W, Liu Z P, Shang Y Y, Zhu J L, Wang Y X, Lin J H, Xia D G, Cao A Y. ACS Nano, 2012, 6(12): 10884.

doi: 10.1021/nn304310n
[42]
Aftab W, Mahmood A, Guo W H, Yousaf M, Tabassum H, Huang X Y, Liang Z B, Cao A Y, Zou R Q. Energy Storage Mater., 2019, 20: 401.
[43]
Liu Z P, Zou R Q, Lin Z Q, Gui X C, Chen R J, Lin J H, Shang Y Y, Cao A Y. Nano Lett., 2013, 13(9): 4028.

doi: 10.1021/nl401097d
[44]
Chen R J, Huang X Y, Deng W B, Zheng R Z, Aftab W, Shi J M, Xie D L, Zou R Q, Mei Y. Appl. Energy, 2020, 260: 114320.

doi: 10.1016/j.apenergy.2019.114320
[45]
Liu M Y, Zhang X G, Liu X J, Wu X W, Ye X J, Qiao J X, Sun Z H, Zhu X, Huang Z H. ACS Sustainable Chem. Eng., 2022, 10(24): 8051.

doi: 10.1021/acssuschemeng.2c02125
[46]
Chen R J, Yao R M, Xia W, Zou R Q. Appl. Energy, 2015, 152: 183.

doi: 10.1016/j.apenergy.2015.01.022
[47]
Wu W H, Huang X Y, Li K, Yao R M, Chen R J, Zou R Q. Appl. Energy, 2017, 190: 474.

doi: 10.1016/j.apenergy.2016.12.159
[48]
Wu W H, Yao R M, Huang X Y, Chen R J, Li K, Gao S, Zou R Q. Mater. Chem. Front., 2017, 1(7): 1430.

doi: 10.1039/C6QM00381H
[49]
Wu M Q, Li T X, Wang P F, Wu S, Wang R Z, Lin J. Small, 2022, 18(9): 2105647.
[50]
Li T X, Wu M Q, Wu S, Xiang S Z, Xu J X, Chao J W, Yan T S, Deng T, Wang R Z. Nano Energy, 2021, 89: 106338.
[51]
Umair M M, Zhang Y A, Zhang S F, Jin X, Tang B T. Sustain. Energy Fuels, 2020, 4(8): 4285.
[52]
Yang G Q, Zhao L Y, Shen C F, Mao Z P, Xu H, Feng X L, Wang B J, Sui X F. Sol. Energy Mater. Sol. Cells, 2020, 209: 110441.
[53]
Ye S B, Zhang Q L, Hu D D, Feng J C. J. Mater. Chem. A, 2015, 3(7): 4018.

doi: 10.1039/C4TA05448B
[54]
Li G Y, Zhang X T, Wang J, Fang J H. J. Mater. Chem. A, 2016, 4(43): 17042.

doi: 10.1039/C6TA07587H
[55]
Zhou Y, Wang X J, Liu X D, Sheng D K, Ji F C, Dong L, Xu S B, Wu H H, Yang Y M. Sol. Energy Mater. Sol. Cells, 2019, 193: 13.

doi: 10.1016/j.solmat.2018.12.041
[56]
Zhou Y, Wang X J, Liu X D, Sheng D K, Ji F C, Dong L, Xu S B, Wu H H, Yang Y M. Carbon, 2019, 142: 558.

doi: 10.1016/j.carbon.2018.10.083
[57]
Cai Y X, Zhang N, Yuan Y P, Zhong W, Yu N Y. Sol. Energy Mater. Sol. Cells, 2021, 233: 111390.

doi: 10.1016/j.solmat.2021.111390
[58]
Wei X, Xue F, Qi X D, Yang J H, Zhou Z W, Yuan Y P, Wang Y. Appl. Energy, 2019, 236: 70.

doi: 10.1016/j.apenergy.2018.11.091
[59]
Wu H Y, Deng S, Shao Y W, Yang J H, Qi X D, Wang Y. ACS Appl. Mater. Interfaces, 2019, 11(50): 46851.

doi: 10.1021/acsami.9b16612
[60]
Wang M, Zhang C, Wang J Z, Wang Y, Yu F Q. J. Energy Storage, 2022, 52: 104905.
[61]
Li A, Dong C, Dong W J, Yuan F G, Gao H Y, Chen X, Chen X B, Wang G. Adv. Electron. Mater., 2020, 6(6): 1901428.
[62]
Zhang L, An L, Wang Y H, Lee A, Schuman Y, Ural A, Fleischer A S, Feng G. Chem. Eng. J., 2019, 373: 857.

doi: 10.1016/j.cej.2019.05.104
[63]
Cao X Y, Yang L J, Cui J, Feng Q B, Wang C J, Zhu Z Q, Sun H X, Li J Y, Liang W D, Li A. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 651: 129516.

doi: 10.1016/j.colsurfa.2022.129516
[64]
Jin X Z, Yang Z Y, Huang C H, Yang J H, Wang Y. Chem. Eng. J., 2022, 448: 137599.

doi: 10.1016/j.cej.2022.137599
[65]
Paul J, Pandey A K, Mishra Y N, Said Z, Mishra Y K, Ma Z J, Jacob J, Kadirgama K, Samykano M, Tyagi V V. Renew. Sustain. Energy Rev., 2022, 161: 112321.

doi: 10.1016/j.rser.2022.112321
[66]
Inagaki M, Qiu J S, Guo Q G. Carbon, 2015, 87: 128.

doi: 10.1016/j.carbon.2015.02.021
[67]
Kim J H, Jeong E, Lee Y S. J. Ind. Eng. Chem. 2015, 32: 21.

doi: 10.1016/j.jiec.2015.09.003
[68]
Wu S, Li T X, Tong Z, Chao J W, Zhai T Y, Xu J X, Yan T S, Wu M Q, Xu Z Y, Bao H, Deng T, Wang R Z. Adv. Mater., 2019, 31(49): 1905099.
[69]
Kashyap S, Kabra S, Kandasubramanian B. J. Mater. Sci., 2020, 55(10): 4127.

doi: 10.1007/s10853-019-04325-7
[70]
Aftab W, Huang X Y, Wu W H, Liang Z B, Mahmood A, Zou R Q. Energy Environ. Sci., 2018, 11(6): 1392.

doi: 10.1039/C7EE03587J
[71]
Chen X, Gao H Y, Yang M, Xing L W, Dong W J, Li A, Zheng H Y, Wang G. Energy Storage Mater., 2019, 18: 349.
[72]
Chen X, Gao H Y, Tang Z D, Wang G. Cell Rep. Phys. Sci., 2020, 1(10): 100218.
[73]
Cheng L Q, Kong L B, Zhang X, Kong X F. Sol. Energy Mater. Sol. Cells, 2022, 235: 111461.

doi: 10.1016/j.solmat.2021.111461
[74]
Kong L B, Wang Z Y, Kong X F, Wang L, Ji Z Y, Wang X M, Zhang X. ACS Appl. Mater. Interfaces, 2021, 13(25): 29965.

doi: 10.1021/acsami.1c07160
[75]
Chen L Y, Lv J C, Ding L, Yang G Q, Mao Z P, Wang B J, Feng X L, Zapotoczny S, Sui X F. Chem. Eng. J., 2020, 400: 125950.

doi: 10.1016/j.cej.2020.125950
[76]
Yun H R, Li C L, Zhang X X. e-Polymers, 2019, 19(1): 519.

doi: 10.1515/epoly-2019-0055
[77]
Gao M H, Feng W, Qi X D, Wang Y. Chin. J. Polym. Sci., 2022, 40(11): 1380.

doi: 10.1007/s10118-022-2773-6
[78]
Huang Y, Li H F, Wang Z F, Zhu M S, Pei Z X, Xue Q, Huang Y, Zhi C Y. Nano Energy, 2016, 22: 422.

doi: 10.1016/j.nanoen.2016.02.047
[79]
Yan Q S, Du X X, Liu Y, Zhou X, Xin B J. ACS Appl. Mater. Interfaces, 2022, 14(21): 24820.

doi: 10.1021/acsami.2c05155
[80]
Lv J C, Zhou P W, Zhang L P, Zhong Y, Sui X F, Wang B J, Chen Z Z, Xu H, Mao Z P. Chem. Eng. J., 2019, 361: 897.

doi: 10.1016/j.cej.2018.12.083
[1] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[2] Zhou Jianwei, Yu Dongmei, Zhao Yunhui, Su Junfeng, Yuan Xiaoyan. Organic Alkane Phase Change Materials and Their Microencapsulation [J]. Progress in Chemistry, 2011, 23(4): 695-703.