中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 199-215 DOI: 10.7536/PC200765 Previous Articles   Next Articles

• Review •

Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes

Yuanyuan Liu1, Yun Guo2, Xiaogang Luo1,3, Genyan Liu1,*(), Qi Sun2,*()   

  1. 1 Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology,Wuhan 430205, China
    2 School of Chemistry and Environmental Engineering, Wuhan Institute of Technology,Wuhan 430205, China
    3 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received: Revised: Online: Published:
  • Contact: Genyan Liu, Qi Sun
  • About author:
    * Corresponding author e-mail: (Genyan Liu);
  • Supported by:
    National Natural Science Foundation of China(21807082); Special Projects of the Central Government in Guidance of Local Science and Technology Development in Hubei Province(2020ZYYD040); second batch of the Key Research and Development Project of Hubei Province(2020BAB073); Science and Technology Research Project of Hubei Provincial Department of Education(T201908); Science and Technology Research Project of Hubei Provincial Department of Education(Q20171503); Teaching Research Project of Hubei Province(2017327)
Richhtml ( 70 ) PDF ( 1135 ) Cited
Export

EndNote

Ris

BibTeX

Fluorescent probe analysis, as a rapidly developed analytical method with high sensitivity, good selectivity, and fast responsibility, has been favored in environmental and life science field. And near-infrared fluorescent probe is one of the most developed fluorescent probes. It has been widely employed in detection, tracking and imaging of biomolecules in complex biological systems such as cells and tissues due to its distinguished features including long emission wavelength(600 to 900 nm), low cell damage, strong tissue penetration and low spontaneous fluorescence background. In this review, we summarize the development of near-infrared fluorescent probes in detection and imaging of metal ions(Hg2+, Cu2+, Zn2+, Al3+, Fe3+), small biological molecules(Cys, N2H4, H2S, H2O2), biological macromolecules(Leucine aminopeptidase, β-galactosidase) and other important biological molecules in recent five years. We further give the in-depth discussion on the in vitro and in vivo analytical applications of near-infrared fluorescent probes, and propose their future perspectives.

Contents

1 Introduction

2 Recognition of metal ions by near infrared fluorescent probes

2.1 Fluorescent probes for Hg2+

2.2 Fluorescent probes for Cu2+

2.3 Fluorescent probes for Fe3+

2.4 Fluorescent probes for Al3+

2.5 Fluorescent probes for Zn2+

3 Recognition of small molecules by near infrared fluorescent probes

3.1 Fluorescent probes for Cys

3.2 Fluorescent probes for N2H4

3.3 Fluorescent probes for H2S

3.4 Fluorescent probes for H2O2

4 Recognition of biomacromolecules by near infrared fluorescent probes

4.1 Fluorescent probes for Leucine aminopeptidase

4.2 Fluorescent probes for nucleic acids

4.3 Fluorescent probes for β-galactosidase

5 Conclusion and outlook

Fig. 1 Classical structure of fluorescent probe[13]
Table 1 Parameters of the near infrared fluorescent probes
Fluorescent probe Target molecule LOD λexem Stokes shift Quantum yield Solvent Cells imaged Ref
DCM-Hg Hg2+ 6.8 × 10 -8 mol/L 514/659 145 0.284 PBS/DMSO
(v∶v = 1∶1)
HepG2 cells 47
Cy-PT Hg2+ 0.18 μmol/L 587/708 120 - DMSO/HEPES
(v∶v = 2∶8)
A549 cells 48
CY1OH2S Hg2+ 0.32 μmol/L 630/710 95 - HEPES buffer HeLa cells 49
NIR-Cu Cu2+ 8.9 × 10 -8 mol/L 638/778 140 - CH3CN/HEPES
(v∶v = 1∶4)
SMMC7721 cells
and Living Mouse
50
NRh-Cu Cu2+ 0.95 ppb 590/735 145 - C2H6O/H2O
(v∶v = 1∶1)
HeLa cells and
living mice
51
DCM-Cu Cu2+ 2.54 × 10 -8 mol/L 560/700 140 0.23 DMSO/PBS
(v∶v = 1∶1)
MCF-7 cells 52
RHCC Fe3+ 1.2 × 10 -7 mol/L 650/700 50 0.283 C2H3N/HEPES
(v∶v = 1∶1 )
A549 cells and
zebrafishes
53
B-1 Fe3+ 14.2 nmol/L 565/627 62 0.47 H2O A549 cells 54
NIR-Rh Al3+ 3.0 × 10 -8 mol/L 690/743 53 - H2O/EtOH
(v∶v = 9∶1)
HeLa cells 55
BTZ-SF Al3+ 2.2 μmol/L 476/568 - 0.54 THF/H2O
(v∶v = 1∶9)
HeLa cells 56
YPT Zn2+ 12 nmol/L 502/670 168 - DMSO/H2O
(v∶v = 3∶2)
HeLa cells 57
NR-Zn Zn2+ 0.44 μmol/L 540/661 131 C2H6O/HEPES
(v∶v = 3∶7)
MCF-7 cells 58
Cys-WR Cys 0.83 μmol/L 580/653 73 - PBS A549 cells
and zebrafish
59
Cp-NIR Cys 48 nmol/L 600/760 160 - DMSO/PBS
(v∶v = 1∶1)
HeLa cells 60
SHCy-C Cys 31 nmol/L 610/770 - ethanol/PBS
(v∶v = 1∶4)
HeLa cells 61
Cy-WR N2H4 0.38 μmol/L 560/640 80 0.98 H2O A549 cells and zebrafish 62
DXM-OH N2H4 0.09 μmol/L 567/651 - - DMSO/PBS
(v∶v = 6∶4)
LO2 cells 63
Mito-NIR-SH H2S 6 nmol/L 570/660 90 PBS HeLa cells 64
DBT H2S 6.74 nmol/L 527/716 77 - C4H8O/PBS
(v∶v = 4∶1)
HCT116 cells, HepG2 cells and PC12 cells 65
NBD-SH H2S 0.27 μmol/L 600/660 40 0.29 DMSO/PBS
(v∶v = 1∶9)
HeLa cells 66
DCM-AC H2O2 2.1×10-8 mol/L 560/704 144 0.002 PBS HepG2 cells
and tumors
67
NRBE H2O2 75 nmol/L 585/670 - 0.36 PBS HepG2 cells 68
Cy-H2O2 H2O2 65 nmol/L 730/790 - - CH3OH/H2O
(v∶v = 85∶15)
HeLa cells and zebrafish 69
BODIPY-C-Leu LAP 41.9 ng/mL 480/578 98 0.94 PBS HeLa cells and A549 cells 70
TMN-Leu LAP 0.38 ng/mL 460/658 198 - DMSO/PBS
(v∶v = 1∶999)
HCT116 cells 71
DCM-Leu LAP 46 ng/mL 455/660 205 - DMSO/PBS
(v∶v = 3∶7)
SMMC-7721 cells
and HeLa cells
72
Gal-Pro β-galactosidase 0.057 nmol/L 596/703 107 0.95 PBS Human diploid and fibroblast(HDF) cells 73
Lyso-Gal β-galactosidase 0.022 units/mL 660/725 - - DMSO/PBS
(v∶v = 2∶8)
3T3, HeLa, MCF-7, and SKOV-3 cells 74
DP-GLU β-galactosidase 1.45×10-2 μg/L 550/670 131 - C2H3N/H2O
(v/v = 10/1)
HeLa cells and HepG2 cells 75
Fig. 2 The mechanism of Hg2+ recognition by the DCM-Hg probe[47]
Fig. 3 The mechanism of Hg2+ recognition by the Cy-PT probe[48]
Fig. 4 The mechanism of Hg2+ recognition by the CY1OH2S probe[48]
Fig. 5 The mechanism of Cu2+ recognition by the NIR-Cu probe[50]
Fig. 6 The recognition mechanism of Cu2+ by the NRh-Cu probe[51]
Fig. 7 The recognition mechanism of Cu2+ by the DCM-Cu probe[53]
Fig. 8 The recognition mechanism of Fe3+ by the RHCC probe[53]
Fig. 9 The recognition mechanism of Fe3+ by the B-1 probe[54]
Fig. 10 The recognition mechanism of Al3+ by the NIR-Rh probe[55]
Fig. 11 The recognition mechanism of Al3+ by the BTZ-SF probe[56]
Fig. 12 The recognition mechanism of Zn2+ by the YPT probe[57]
Fig. 13 The recognition mechanism of Zn2+ by the NR-Zn probe[58]
Fig. 14 The recognition mechanism of Cys by the Cys-WR probe[59]
Fig. 15 The recognition mechanism of Cys by the CP-NIR probe[60]
Fig. 16 The recognition mechanism of Cys by the CP-NIR probe[61]
Fig. 17 The recognition mechanism of hydrazine by Cy-WR probe[62]
Fig. 18 Selectivity of Cy-WR: 1. Probe; 2. N2H4; 3. CH3NH2; 4. NH4OH; 5. Morpholine; 6. DIPEA; 7. Aniline; 8. Isoniazid; 9. Cys; 10. Hcy; 11. GSH; 12. H2S; 13. Urea; 14. Zn2+; 15. Hg2+; 16. Cd2+[62]
Fig. 19 Cell imaging of the Cy-WR probe[62]
Fig. 20 Zebrafish image of the Cy-WR probe[62]
Fig. 21 The recognition mechanism of N2H4 by DXM-OH probe[63]
Fig. 22 The recognition mechanism of H2S by Mito-NIR-SH probe[64]
Fig. 23 The recognition mechanism of H2S by DBT probe[65]
Fig. 24 The recognition mechanism of H2S by NBD-SH probe[66]
Fig. 25 The recognition mechanism of H2O2 by DCM-AC probe[67]
Fig. 26 The recognition mechanism of LAP by NRBE probe[68]
Fig. 27 The recognition mechanism of H2O2 by Cy-H2O2 probe[69]
Fig. 28 The recognition mechanism of LAP by BODIPY-C-Leu probe[70]
Fig. 29 Zebrafish image of the BODIPY-C-Leu probe[70]
Fig. 30 Selectivity of BODIPY-C-Leu: a: blank control; b: Ca2+; c: Mg2+; d: Zn2+; e: Cys; f: GSH; g: NaHS; h: glucose; i: lipase; j: aprotinin; k: trypsin; l: cellulase; m: α-amylase; n: sulfatase; o: GGT; p: ELA; q: α-Chy; r: LAP [70]
Fig. 31 Cell imaging of the BODIPY-C-Leu probe[70]
Fig. 32 The mechanism of recognizing LAP by the TMN-Leu probe[71]
Fig. 33 The mechanism of recognizing LAP by the DCM-Leu probe[72]
Fig. 34 The fluorescence intensity change curve and linear curve of probe DCM-Leu after the reaction with different concentration of LAP[72]
Fig. 35 Cell imaging of the DCM-Leu probe[72]
Fig. 36 The mechanism of recognizing β-galactosidase by the Gal-Pro probe [73]
Fig. 37 The mechanism of recognizing β-galactosidase by the Lyso-Gal probe [74]
Fig. 38 Cell imaging of the Lyso-Gal probe[74]
Fig. 39 CLSM time-lapse images of SKOV-3 cells incubated with Lyso-Gal at different time points[74]
Fig. 40 The mechanism of recognizing β-galactosidase by the DP-GLU probe [75]
[1]
Yan F, Fan K, Bai Z, Zhang R, Zu F, Xu J, Li X. Trac-Trend. Anal. Chem., 2017, 97:15.
[2]
Li H D, Fan J L, Peng X J. Progress in Chemistry, 2017, 29(1):17.
李海东, 樊江莉, 彭孝军. 化学进展, 2017, 29(1):17.
[3]
Yu F B, Li P, Song P, Wang B S, Zhao J Z, Han K L. Chem. Commun., 2012, 48:2852.
[4]
Zhu J L, Ling Q H, Liu Q, Xu L. Journal of Applied Technology, 2019, 19(3):189.
朱俊龙, 凌庆慧, 刘茜, 徐林. 应用技术学报, 2019, 19(3):189.
[5]
Pak Y, Swamy K, Yoon J. Sensors, 2015, 15:24374.

pmid: 26402684
[6]
Wang L L, Du W, Hu Z J, Uvdal K, Li L, Huang W. Angew. Chem. Int. Ed., 2019, 58:14026.
[7]
Wang Y, Huang C S, Jia N Q. Progress in Chemistry, 2020, 32(2):204.
王阳, 黄楚森, 贾能勤. 化学进展, 2020, 32(2):204.
[8]
Yang L, Niu J Y, Sun R, Xu Y J, Ge J F. Anal., 2018, 143:1813.
[9]
Minta A, Kao J Y, Tsien R Y. J. Biol. Chem., 1989, 264:8171.

pmid: 2498308
[10]
Yuan L, Lin W Y, Zheng K B, He L W, Huang W M. Chem. Soc. Rev., 2013, 42:622.

doi: 10.1039/c2cs35313j pmid: 23093107
[11]
Tsien R Y, Harootunian A T. Cell Calcium, 1990, 11:93.

pmid: 2354507
[12]
Chin J, Kim H J. Coord. Chem. Rev., 2018, 354:169.
[13]
Gao G B, Gong D J, Zhang M X, Sun T L. Acta Chimica Sin., 2016, 74:363.
高冠斌, 龚德君, 张明曦, 孙涛垒. 化学学报, 2016, 74:363.
[14]
Chang X H, Zhang J, Wu L H, Peng Y K, Yang X Y, Li X L, Ma A J, Ma J C, Chen G Q. Micromachines (Basel)., 2019, 10(6):422.
[15]
Li M, Li Y, Wang X, Cui X, Wang T. Chinese Chem. Lett., 2019, 30:1682.
[16]
Guo Z Q, Park S, Yoon J, Shin I. Chem. Soc. Rev., 2014, 43:16.

doi: 10.1039/c3cs60271k pmid: 24052190
[17]
Huang X, Fang Y, Li X, Xie Y X, Zhu W H. Dyes Pigments, 2011, 90:297.
[18]
Beija M, Afonso C A M, Martinho J M G. Chem. Soc. Rev., 2009, 38:2410.

doi: 10.1039/b901612k pmid: 19623358
[19]
Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H. J. Phys. Chem. B, 2003, 107:597.
[20]
Boens N, Leen V, Dehaen W. Chem. Soc. Rev., 2012, 41:1130.

pmid: 21796324
[21]
Merkes J M, Lammers T, Kancherla R, Rueping M, Kiessling F, Banala S. Adv. Optical Mater., 2020, 8:1902115.

doi: 10.1002/adom.v8.11
[22]
Ushiroda S, Ruzycki N, Lu Y, Spitler M T, Parkinson B A. J. Am. Chem. Soc., 2005, 127:5158.

doi: 10.1021/ja044001t pmid: 15810850
[23]
Guo W, Zhang H X, Liu J. J. Shanxi Univ. Nat. Sci. Ed., 2017, 40:590.
郭炜, 张洪星, 刘景. 山西大学学报(自然科学版), 2017, 40:590.
[24]
Koreiviene J. Methods. Mol. Biol., 2020, 1980:47.

doi: 10.1007/7651_2017_101 pmid: 29218464
[25]
Ge X L, Huang B, Zhang Z L, Liu X L, He M, Yu Z L, Hu B, Cui R, Liang X J, Pang D W. J. Mater. Chem. B, 2019, 7:5782.

doi: 10.1039/c9tb01112a pmid: 31482937
[26]
Du M, Huo B L, Liu J M, Li M W, Fang L Q, Yang Y X. Progress in Chemistry, 2018, 30(6):809.
杜曼, 霍宝龙, 霍宝龙, 刘杰民, 李梦文, 房乐秋, 杨运旭. 化学进展, 2018, 30(6):809.
[27]
Fu Y, Yang F Y, Zheng T C, Wu X L, Sun F Z, Chen L. Progress in Chemistry, 2015, 27(9):1213. 07b18a16-9241-45eb-8a0a-855f2ba73992

doi: 10.7536/PC150156
付杨, 颜范勇, 郑坦承, 母雪玲, 孙凤展, 陈莉. 化学进展, 2015, 27(9):1213. 07b18a16-9241-45eb-8a0a-855f2ba73992

doi: 10.7536/PC150156
[28]
Singleton M R, Dillingham M S, Wigley D B. Annu. Rev. Biochem., 2007, 76:23.

doi: 10.1146/annurev.biochem.76.052305.115300 pmid: 17506634
[29]
Lv H, Yuan G, Zhang G B, Ren Z Q, He H P, Sun Q, Zhang X H, Wang S F. Dye. Pigment., 2020, 172:107658.

doi: 10.1016/j.dyepig.2019.107658
[30]
Xu Z H, Wang H W, Hou X F, Xu W L, Xiang T C, Wu C Z. Sensor Actuat. B: Chem., 2014, 201:469.

doi: 10.1016/j.snb.2014.05.026
[31]
Li C M, Chen T, Ocsoy I, Zhu G Z, Yasun E, You M X, Wu C C, Zheng J, Song E Q, Huang C Z, Tan W H. Adv. Funct. Mater., 2014, 24:1772.

doi: 10.1002/adfm.201301659 pmid: 25530745
[32]
Park H M, Oh B N, Kim J H, Qiong W, Hwang I H, Jung K D, Kim C, Kim J. Tetrahedron Lett., 2011, 52:5581. 2711ed54-8415-484f-b88b-7729a7cd8999

doi: 10.1016/j.tetlet.2011.08.045
[33]
Ogasawara H, Grzybowski M, Hosokawa R, Sato Y, Taki M, Yamaguchi S. Chem. Commun., 2018, 54:299.

doi: 10.1039/C7CC07344E
[34]
Shen B X, Zhu W, Zhi X, Qian Y. Talanta, 2020, 208:120461.

doi: 10.1016/j.talanta.2019.120461 pmid: 31816791
[35]
Mao C Y, Zuo F, Hou Y, Bu X H, Feng P Y. Angew. Chem. Int. Ed., 2014, 53:10485.

doi: 10.1002/anie.201406017
[36]
Paul B D, Snyder S H. Nat. Rev. Mol. Cell Biol., 2012, 13:499.

doi: 10.1038/nrm3391 pmid: 22781905
[37]
Al-Ansi N, Salah A, Adlat S, Qi B. Synth. Met., 2020, 264:116380.

doi: 10.1016/j.synthmet.2020.116380
[38]
Wang J P, Huang S Y, He Q Q, Bing H J, Chen X, Zhang X F, Tian X, Zhou J, Wilcke W, Wu Y H. Biol. Fertil. Soils, 2020, 56:281.

doi: 10.1007/s00374-019-01419-x
[39]
Jiang G Y, Zeng G J, Zhu W P, Li Y D, Dong X B, Zhang G X, Fan X L, Wang J G, Wu Y Q, Tang B Z. Chem. Commun., 2017, 53:4505.

doi: 10.1039/C7CC00249A
[40]
Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G. Coord. Chem. Rev., 2009, 253:2665.
[41]
Gaeta A, Hider R C. Br. J. Pharmacol., 2005, 146:1041.
[42]
Panda S, Panda A, Zade S S. Coord. Chem. Rev., 2015, 300:86.
[43]
Yang Z L, Loh K Y, Chu Y T, Feng R P, Satyavolu N S R, Xiong M Y, Nakamata Huynh S M, Hwang K, Li L L, Xing H, Zhang X B, Chemla Y R, Gruebele M, Lu Y. J. Am. Chem. Soc., 2018, 140:17656.

pmid: 30427666
[44]
Long L, Tan X, Luo S L, Shi C M. New J. Chem., 2017, 41:8899.
[45]
Zong L Y, Xie Y J, Li Q Q, Li Z. Sensor Actuat. B: Chem., 2017, 238:735.
[46]
Wang J L, Li W L, Long L P. Sensor. Actuat. B-Chem., 2017, 245:462.
[47]
Huang L Y, Yang Z, Zhou Z L, Li Y Q, Tang S P, Xiao W P, Hu M, Peng C, Chen Y X, Gu B, Li H T. Dye. Pigment., 2019, 163:118.
[48]
Yuan G, Lv H, Liu H, He H P, Sun Q, Zhang X H, wang S F. Dye. Pigment., 2020, 183:108674.
[49]
Wang Y, Hou X F, Li Z S, Liu C H, Hu S S, Li C M, Xu Z H, Wang Y. Dye. Pigment., 2020, 173:107951.
[50]
Guo R, Wang Q A, Lin W Y. J. Fluoresc., 2017, 27:1655.

pmid: 28424935
[51]
Peng X, Wei X, Chen T Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 208:349.
[52]
Li Z, Xu Y Q, Xu H D, Cui M Y, Liu T G, Ren X Y, Sun J F, Deng D W, Gu Y Q, Wang P. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2021, 244:118819.
[53]
Gu X F, Zhang X X, Liu Z, Cheng Y, Ma F L, Dai Y P, Xue T Z, Zheng Y, Qi Z J. J. Lumin., 2019, 207:613.
[54]
Hu Y, Zhao F, Hu S L, Dong Y Y, Li D Z, Su Z H. J. Photochem. Photobiol. A: Chem., 2017, 332:351.
[55]
Li Z S, Li L J, Sun T T, Liu L M, Xie Z G. Dye. Pigment., 2016, 128:165.
[56]
Chen Y H, Wei T W, Zhang Z J, Chen T T, Li J, Qiang J, Lv J, Wang F, Chen X Q. Ind. Eng. Chem. Res., 2017, 56:12267.
[57]
Zhang W X, Jin X X, Chen W, Jiang C H, Lu H F. Anal. Methods, 2019, 11:2396.
[58]
Zhang Y B, Yuan B F, Ma D G. Inorganica Chimica Acta, 2020, 508:119640.
[59]
Zhang X Y, Liu H, Ma Y Y, Qu W B, He H P, Zhang X H, Wang S F, Sun Q, Yu F B. Dye. Pigment., 2019, 171:107722.
[60]
Qi Y, Huang Y, Li B W, Zeng F, Wu S Z. Anal. Chem., 2018, 90:1014.
[61]
Cai S T, Liu C, Jiao X J, Zhao L C, Zeng X S. J. Mater. Chem. B, 2020, 8:2269.
[62]
Li J, Cui Y C, Bi C X, Feng S Q, Yu F Z, Yuan E, Xu S Z, Hu Z, Sun Q, Wei D G, Yoon J. Anal. Chem., 2019, 91:7360.
[63]
Wu C Y, Xie R H, Pang X, Li Y Q, Zhou Z L, Li H T. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 243:118764.
[64]
Zhao X J, Li Y T, Jiang Y R, Yang B Q, Liu C, Liu Z H. Talanta, 2019, 197:326.
[65]
Li Q Y, Wang Z C, Zhao M, Hong Y P, Jin Q W, Yao S Y, Zheng C L, Quan Y Y, Ye X X, Huang Z S. Sensor Actuat. B: Chem., 2019, 298:126898.
[66]
Ismail I, Chen Z Y, Ji X R, Sun L, Yi L, Xi Z. Molecules, 2020, 25:437.
[67]
Xiong J, Xia L, Li L, Cui M, Gu Y, Wang P. Sensor. Actuat. B-Chem., 2019, 288:127.
[68]
Diao Q P, Guo H, Yang Z W, Luo W W, Li T C, Hou D Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 223:117284.
[69]
Huang X, Li Z P, Liu Z X, Zeng C C, Hu L M. Dye. Pigment., 2019, 165:518.
[70]
Zhou Z, Wang F Y, Yang G C, Lu C F, Nie J Q, Chen Z X, Ren J, Sun Q, Zhao C C, Zhu W H. Anal. Chem., 2017, 89:11576.
[71]
Zhang W D, Liu F Y, Zhang C, Luo J G, Luo J, Yu W Y, Kong L Y. Anal. Chem., 2017, 89:12319.

doi: 10.1021/acs.analchem.7b03332 pmid: 29048879
[72]
Gu K Z, Liu Y J, Guo Z Q, Lian C, Yan C X, Shi P, Tian H, Zhu W H. ACS Appl. Mater. Interfaces, 2016, 8:26622.

pmid: 27667645
[73]
Zhang J T, Li C, Dutta C, Fang M X, Zhang S W, Tiwari A, Werner T, Luo F T, Liu H Y. Anal. Chimica Acta, 2017, 968:97.
[74]
Li X Q, Pan Y T, Chen H, Duan Y K, Zhou S W, Wu W B, Wang S W, Liu B. Anal. Chem., 2020, 92:5772.
[75]
Wei X Z, Hao M J, Hu X X, Song Z L, Wang Y, Sun R H, Zhang J, Yan M, Ding B Y, Yu J H. Sensor. Actuat. B Chem., 2021, 326:128849.
[76]
Bruijn L I, Miller T M, Cleveland D W. Annu. Rev. Neurosci., 2004, 27:723.
[77]
Jung H S, Kwon P S, Lee J W, Kim J I, Hong C S, Kim J W, Yan S H, Lee J Y, Lee J H, Joo T, Kim J S. J. Am. Chem. Soc., 2009, 131:2008.

doi: 10.1021/ja808611d pmid: 19191706
[78]
Li P, Duan X, Chen Z Z, Liu Y, Xie T, Fang L B, Li X R, Yin M, Tang B. Chem. Commun., 2011, 47:7755.
[79]
Hurrell R, Egli I. Am. J. Clin. Nutr., 2010, 91:1461S.
[80]
Li R H. Journal of kaifeng institute of education, 2015, 35:282.
李荣华. 开封教育学院学报, 2015, 35:282.
[81]
Sahoo, Crisponi. Molecules, 2019, 24:3267.
[82]
Bugaenko D I, Karchava A V, Yunusova Z A, Yurovskaya M A. Chem. Heterocycl. Compd., 2019, 55:483.
[83]
Zhang D N, Wang S F, Gomez M A, Wang Y, Jia Y F. Chemosphere, 2019, 237:124503.

pmid: 31398610
[84]
Tiwari K, Mishra M, Singh V P. RSC Adv., 2013, 3:12124.
[85]
Han T, Feng X, Tong B, Shi J B, Chen L, Zhi J G, Dong Y P. Chem. Commun., 2012, 48:416.
[86]
Bao X F, Cao Q S, Xu Y Z, Gao Y X, Xu Y, Nie X M, Zhou B J, Pang T, Zhu J. Bioorg. Med. Chem., 2015, 23:694.
[87]
Gupta V, Jain A, Maheshwari G. Talanta, 2007, 72:1469.

doi: 10.1016/j.talanta.2007.01.064 pmid: 19071785
[88]
Xu Z C, Kim G H, Han S J, Jou M J, Lee C, Shin I, Yoon J. Tetrahedron, 2009, 65:2307.
[89]
Provinciali M, Donnini A, Argentati K, di Stasio G, Bartozzi B, Bernardini G. Free. Radic. Biol. Med., 2002, 32:431.
[90]
Yan J, Fan L, Qin J C, Li C R, Yang Z Y. Tetrahedron Lett., 2016, 57:2910.
[91]
Xu Z C, Yoon J, Spring D R. Chem. Soc. Rev., 2010, 39:1996.

doi: 10.1039/b916287a pmid: 20428518
[92]
Yang M D, Zhang Y, Zhu W J, Wang H Z, Huang J, Cheng L H, Zhou H P, Wu J Y, Tian Y P. J. Mater. Chem. C, 2015, 3:1994.
[93]
Gu X F, Zhang X X, Liu Z, Cheng Y, Ma F L, Dai Y P, Xue T Z, Zheng Y, Qi Z J. J. Lumin., 2019, 207:613.

doi: 10.1016/j.jlumin.2018.12.014
[94]
Yang X Z, Wei X R, Sun R, Xu Y J, Ge J F. Talanta, 2020, 209:120580.
[95]
Wang X, Zhao Q, Sun J, Lv J Z, Tang B. Progress in Chemistry, 2013, 25:179.
王栩, 赵谦, 孙娟, 吕建政, 唐波. 化学进展, 2013, 25:179.
[96]
Yang X Z, Wei X R, Sun R, Xu Y J, Ge J F. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 226:117582.
[97]
Abdulle A E, van Roon A M, Smit A J, Pasch A, Meurs M, Bootsma H, Bakker S J L, Said M Y, Fernandez B O, Feelisch M, Goor H, Mulder D J. Physiol. Rep., 2019, 7:e14017.

pmid: 30916482
[98]
Xia S, Zhang Y B, Fang M X, Mikesell L, Steenwinkel T E, Wan S L, Phillips T, Luck R L, Werner T, Liu H Y. ChemBioChem, 2019, 20:1986.

doi: 10.1002/cbic.201900071 pmid: 31197917
[99]
Yin C X, Xiong K M, Huo F J, Salamanca J C, Strongin R M. Angew. Chem. Int. Ed., 2017, 56:13188.
[100]
Guo S H, Leng T H, Wang K, Shen Y J, Wang C Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 223:117344.
[101]
Yang Y, Liu L, Zha J H, Yuan N Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 204:799.
[102]
Zhu S S, Lin W Y, Yuan L. Anal. Methods, 2013, 5:3450.
[103]
Wei Y F, Wu M X, Wei X R, Sun R, Xu Y J, Ge J F. Talanta, 2020, 218:121164.

doi: 10.1016/j.talanta.2020.121164 pmid: 32797918
[104]
Lu Z L, Shi X M, Ma Y F, Fan W L, Lu Y N, Wang Z, Fan C H. Sensor Actuat. B: Chem., 2018, 258:42.
[105]
Sun L J, Chen Z J. Curr. Opin. Cell Biol., 2004, 16:339.
[106]
Lavu M, Bhushan S, Lefer D J. Clin. Sci., 2011, 120:219.
[107]
Skovgaard N, Gouliaev A, Aalling M, Simonsen U. Curr. Pharm. Biotechnol., 2011, 12:1385.
[108]
Martelli A, Testai L, Breschi M C, Blandizzi C, Virdis A, Taddei S, Calderone V. Med. Res. Rev., 2012, 32:1093.

doi: 10.1002/med.20234 pmid: 23059761
[109]
Jin X L, Zhao S M, Wang T, Si L L, Liu Y G, Zhao C J, Zhou H W, Leng X, Zhang X H. Anal. Bioanal. Chem., 2019, 411:5985.

pmid: 31236651
[110]
Wu M X, Sha X L, Wei X R, Sun R, Chen Y, Gao J. Anal. Chim. Acta, 2019, 1068:60.

pmid: 31072478
[111]
Hong J X, Feng W Y, Feng G Q. Sensor Actuat. B: Chem., 2018, 262:837.
[112]
Luo W F, Xue H Y, Ma J J, Wang L, Liu W S. Anal. Chimica Acta, 2019, 1077:273.
[113]
Bokare A D, Choi W. J. Hazard. Mater., 2014, 275:121.

doi: 10.1016/j.jhazmat.2014.04.054 pmid: 24857896
[114]
Chen X Q, Tian X Z, Shin I, Yoon J. Chem. Soc. Rev., 2011, 40:4783.

doi: 10.1039/c1cs15037e pmid: 21629957
[115]
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Physiol. Rev., 2009, 89:27.

pmid: 19126754
[116]
Zhang R L, Zhao J, Han G M, Liu Z J, Liu C, Zhang C, Liu B H, Jiang C L, Liu R Y, Zhao T T, Han M Y, Zhang Z P. J. Am. Chem. Soc., 2016, 138:3769.

pmid: 26938117
[117]
Li H D, Yao Q C, Fan J L, Du J J, Wang J Y, Peng X J. Biosens. Bioelectron., 2017, 94:536.

doi: 10.1016/j.bios.2017.03.039 pmid: 28347967
[118]
Feng F D, He F, An L L, Wang S, Li Y L, Zhu D B. Adv. Mater., 2008, 20:2959.
[119]
Tatikolov A S. J. Photochem. Photobiol. C: Photochem. Rev., 2012, 13:55.
[120]
Chai Y, Gao Y T, Xiong H W, Lv W, Yang G C, Lu C F, Nie J Q, Ma C, Chen Z X, Ren J, Wang F Y. Anal., 2019, 144:463.
[121]
Wang T L, Sun Q, Xiong H W, Ma C, Lu C F, Nie J Q, Yang G C, Chen Z X, Zhang Y X, Ren J, Wang F Y, Zhu W H. Sensor Actuat. B: Chem., 2020, 321:128631.
[122]
Lee H W, Heo C H, Sen D, Byun H O, Kwak I H, Yoon G, Kim H M. Anal. Chem., 2014, 86:10001.

pmid: 25293957
[123]
Kamiya M, Asanuma D, Kuranaga E, Takeishi A, Sakabe M, Miura M, Nagano T, Urano Y. J. Am. Chem. Soc., 2011, 133:12960.

pmid: 21786797
[124]
Yang X Z, Xu B, Shen L, Sun R, Xu Y J, Song Y L, Ge J F. Anal. Chem., 2020, 92:3517.

doi: 10.1021/acs.analchem.0c00054 pmid: 32066230
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[4] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[5] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[6] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[7] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[8] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[9] Yang Wang, Chusen Huang, Nengqin Jia. Molecular Fluorescent Probe for Monitoring Cellular Microenvironment and Active Molecules [J]. Progress in Chemistry, 2020, 32(2/3): 204-218.
[10] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[11] Yanan Zheng, Dan Wang. Structures, Properties, and Applications of Metalloregulatory Proteins [J]. Progress in Chemistry, 2019, 31(10): 1372-1383.
[12] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[13] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[14] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[15] Gaobo Lin, Ting Luo, Lvbing Yuan, Wenjie Liang*, Hai Xu*. High Performance n-Type and Ambipolar Small Organic Semiconductors for Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(11): 1316-1330.