中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 204-218 DOI: 10.7536/PC190513 Previous Articles   Next Articles

Molecular Fluorescent Probe for Monitoring Cellular Microenvironment and Active Molecules

Yang Wang, Chusen Huang**(), Nengqin Jia**()   

  1. Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Material, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
  • Received: Online: Published:
  • Contact: Chusen Huang, Nengqin Jia
  • About author:
    ** e-mail: (Chusen Huang);
    (Nengqin Jia)
  • Supported by:
    National Natural Science Foundation of China(21672150); National Natural Science Foundation of China(21302125); Alexander von Humboldt Foundation (AvH) the Shanghai Rising-Star Program(19QA1406400); Doctoral Fund of Ministry of Education of China(20133127120005); Shanghai Science and Technology Committee(18DZ2254200); Shanghai Science and Technology Committee(17070503000); Program for Changjiang Scholars and Innovative(IRT_16R49); Shanghai Key Laboratory of Rare Earth Functional Material, and the Shanghai Engineering Research Center of Green Energy Chemical Engineering.()
Richhtml ( 62 ) PDF ( 1283 ) Cited
Export

EndNote

Ris

BibTeX

Small molecular fluorescent probe technology has become a potential tool for biosensing and bioimaging since it can realize real-time dynamic tracking and monitoring of active molecules and microenvironment changes in living organisms with advantages of less disturbance to biological samples, extremely high sensitivity and specificity. In this review, we summarize some characteristics of cellular microenvironment and related bioactive molecules commonly found in them. The design strategies of the molecular fluorescent probes utilized to monitor changes of cellular microenvironments and active molecules are also discussed. Some recently developed molecular fluorescent probes used to monitor microenvironmental changes and active molecules in organisms have also been listed in this review. Additionally, sensing behavior and potential application of these fluorescent probes have also been discussed.

Fig.1 Structures of cysteine(Cys), homocysteine(Hcy), and glutathione(GSH)
Fig.2 Structures of the fluorescence probe[64]
Fig.3 Structures of common fluorophores[65]
Fig.4 Mechanism of PET process[67]
Fig.5 Mechanism of ICT[69]
Fig.6 Mechanism of ESIPT process[72]
Fig.7 Mechanism of FRET process[82]
Fig.8 (a)Proposed mitochondrion-specific pH sensing mechanism for probe 1.(b)The structure of probe 1.(c)nutrient-deprived cells. The images were recorded at time points consisting of t=0, 90, 180, 270 and 360 s[84]. Reprinted with permission from ref 84. Copyright 2014, American Chemical Society
Fig.9 (a)Design strategies of fluorescent probes 2(CN-pH). (b)Proposed sensing mechanism and the fluorescence photographs of 5 μM probes 2(CN-pH) at pH 4.5, 6.5, and 8.5 under 365 nm.(c)The structure of fluorescent probe 2(CN-pH) and Confocal fluorescence images of probe 2(CN-pH)[85]. Reprinted with permission from ref 85. copyright 2016, American Chemical Society
Fig.10 The mechanism of probe 3(CPH) to pH and dual-modal colorimetric/fluorescence images[29]. Reprinted with permission from ref 29. copyright 2016, American Chemical Society
Fig.11 (a) The mechanism of probe 4(CPY) to pH.(b) The fluorescence response of probe 4(CPY) towards different pH values.(c) Relationship between lysosomal pH changes and heat stroke in HeLa cells[86]. Reprinted with permission from ref 86. copyright 2018, the Royal Society of Chemistry
Fig.12 (a) Design of the dual-site fluorescent probe 5 for Cys metabolism.(b) Confocal images of probe 5 responding to exogenous Cys and S O 3 2 - and endogenous thiols in 5-day-old zebrafish.(c) Cys metabolism imaging with probe 5 in A549 cells[20]. Reprinted with permission from ref 20. copyright 2017, American Chemical Society
Fig.13 Schematic representation of hepatocyte targeted imaging of probe 6[87]. Reprinted with permission from ref 87. copyright 2012, American Chemical Society
Fig.14 The mechanism of probe 7(VTAF) to VDPs and ratiometric fluorescence images[88]. Reprinted with permission from ref 88. copyright 2014, American Chemical Society
Fig.15 (a) Schematic of probe 8(C7H) and control probe 9(Con-C7H).(b) Time-dependent fluorescence imaging in larval zebrafish with probe 8(C7H)[89]. Reprinted with permission from ref 89. copyright 2019, the Royal Society of Chemistry
Fig.16 (a)Proposed sensing mechanisms of probe 10(PTZ-Cy2). (b)Changes in fluorescence and adsorption spectra of probe 10(PTZ-Cy2) upon addition of ·OH.(c)Changes in fluorescence and adsorption spectra of probe 10(PTZ-Cy2) upon addition of ClO-. (d)Confocal fluorescence images of probe 10(PTZ-Cy2)[14]. Reprinted with permission from ref 14. copyright 2013, the Royal Society of Chemistry
Fig.17 (a)Proposed sensing mechanisms of probe 11(MitoClO).(b)Confocal fluorescence images of probe 11(MitoClO)[93]. Reprinted with permission from ref 93. copyright 2013, the Royal Society of Chemistry
Fig.18 The structure of lysosome-targetable H2O2 probe 12[94]. Reprinted with permission from ref 94. copyright 2015, scientific reports
Fig.19 Structure of probe 13 and the mechanism of its response to ONO O - [ 95 ] . Reprinted with permission from ref 95. copyright 2014, the Royal Society of Chemistry
Fig.20 The structure of mito-targetable H2O2 and viscosity probe 14[96]. Reprinted with permission from ref 96. copyright 2017, American Chemical Society
Fig.21 Schematic representation of the synthesis procedures of probe 15(EIN) and its working principle[97]. Reprinted with permission from ref 97. copyright 2016, the Royal Society of Chemistry
Fig.22 Working principle of lysosomal viscosity probe 16(Lyso-V)[23]. Reprinted with permission from ref 23. copyright 2013, American Chemical Society
Fig.23 (a) Design procedures for the viscosity probe 17(Lys-V); (b) Fluorescence spectrum of probe 17(Lys-V) with increasing solvent viscosity;(c) Maximum fluorescence intensity of probe 17(Lys-V) in the different pH buffer solutions at various viscosities;(d) The lysosome-targeting properties of probe 17(Lys-V) in live MCF-7 cells;(e) Real-time monitoring of fluorescence changes in probe 17(Lys-V) labelled live MCF-7 after the cells were treated with dexamethasone[98]. Reprinted with permission from ref 98. copyright 2018, the Royal Society of Chemistry
Fig.24 Structures of fluorescent probe 18~21[102,103,104,105]
Fig.25 Structures of fluorescent probe 22 and its reaction with NTP, ATP and NTP/ATP[106]. Reprinted with permission from ref 106. copyright 2018, the Royal Society of Chemistry
Fig.26 ESIPT probe 23 for discrimination between live and dead cells[113]. Reprinted with permission from ref 113. copyright 2018, American Chemical Society
Fig.27 (a)Chemical structure of probe 24. (b)The fluorescence spectra of probe 24 in the presence of different concentrations of ATP. (c)Images of HeLa cell treated with apyrase from 0 to 60 min[114]. Reprinted with permission from ref 114. copyright 2014, the Royal Society of Chemistry
Fig.28 (a)Proposed response mechanism of probe 25 to ATP.(b)Colocation imaging of HeLa cells staining with probe 25 and Mtio-Tracker Green[115]. Reprinted with permission from ref 115. copyright 2017, American Chemical Society
[1]
Ma Y, Tang Y, Zhao Y, Gao S, Lin W . Anal. Chem., 2017,89(17):9388. https://www.ncbi.nlm.nih.gov/pubmed/28795798

doi: 10.1021/acs.analchem.7b02216 pmid: 28795798
[2]
He L, Yang X, Xu K, Lin W . Anal. Chem., 2017,89(17):9567. https://www.ncbi.nlm.nih.gov/pubmed/28791863

doi: 10.1021/acs.analchem.7b02649 pmid: 28791863
[3]
Jiang M, Gu X, Lam J W Y, Zhang Y, Kwok R T K, Wong K S, Tang B Z . Chem. Sci., 2017,8(8):5440. https://www.ncbi.nlm.nih.gov/pubmed/28970923

doi: 10.1039/c7sc01400g pmid: 28970923
[4]
Zhou X, Su F, Lu H, Senechal-Willis P, Tian Y, Johnson R H, Meldrum D R . Biomaterials, 2012,33(1):171. https://www.ncbi.nlm.nih.gov/pubmed/21982292

doi: 10.1016/j.biomaterials.2011.09.053 pmid: 21982292
[5]
Li L L, Li K, Li M Y, Shi L, Liu Y H, Zhang H, Pan S L, Wang N, Zhou Q, Yu X Q . Anal. Chem., 2018,90(9):5873. https://www.ncbi.nlm.nih.gov/pubmed/29600703

doi: 10.1021/acs.analchem.8b00590 pmid: 29600703
[6]
Lee D, Swamy K M K, Hong J, Lee S, Yoon J. Sens . Actuators B, 2018,266:416.
[7]
Vu T T, Méallet-Renault R, Clavier G, Trofimov B A, Kuimova M K . J. Mater. Chem. C, 2016,4(14):2828. http://xlink.rsc.org/?DOI=C5TC02954F

doi: 10.1039/C5TC02954F
[8]
Zhu J L, Xu Z, Yang Y, Xu L . Chem. Commun., 2019,55(47):6629. https://www.ncbi.nlm.nih.gov/pubmed/31119257

doi: 10.1039/c9cc03299a pmid: 31119257
[9]
Lee D, Lim C S, Ko G, Kim D, Cho M K, Nam S J, Kim H M, Yoon J . Anal. Chem., 2018,90(15):9347. https://www.ncbi.nlm.nih.gov/pubmed/29968465

doi: 10.1021/acs.analchem.8b01960 pmid: 29968465
[10]
Sedgwick A C, Han H H, Gardiner J E, Bull S D, He X P, James T D . Chem. Sci., 2018,9(15):3672. https://www.ncbi.nlm.nih.gov/pubmed/29780497

doi: 10.1039/c8sc00733k pmid: 29780497
[11]
Zhang J, Chai X, He X P, Kim H J, Yoon J, Tian H . Chem. Soc. Rev., 2019,48(2):683. https://www.ncbi.nlm.nih.gov/pubmed/30520895

doi: 10.1039/c7cs00907k pmid: 30520895
[12]
Huang C, Jia T, Yu C, Zhang A, Jia N . Biosens. Bioelectron., 2015,63:513. https://www.ncbi.nlm.nih.gov/pubmed/25145984

doi: 10.1016/j.bios.2014.08.005 pmid: 25145984
[13]
Xu Z, Xu L . Chem. Commun., 2016,52(6):1094. https://www.ncbi.nlm.nih.gov/pubmed/26621071

doi: 10.1039/c5cc09248e pmid: 26621071
[14]
Liu F, Wu T, Cao J, Zhang H, Hu M, Sun S, Song F, Fan J, Wang J, Peng X . Analyst, 2013,138(3):775. https://www.ncbi.nlm.nih.gov/pubmed/23232359

doi: 10.1039/c2an36030f pmid: 23232359
[15]
Zhang S, Fan J, Zhang S, Wang J, Wang X, Du J, Peng X . Chem. Commun., 2014,50(90):14021. https://www.ncbi.nlm.nih.gov/pubmed/25268252

doi: 10.1039/c4cc05094k pmid: 25268252
[16]
Li H D, Yao Q C, Fan J L, Jiang N, Wang J Y, Xia J, Peng X J . Chem. Commun., 2015,51(90):16225. https://www.ncbi.nlm.nih.gov/pubmed/26400755

doi: 10.1039/c5cc06612c pmid: 26400755
[17]
Shen S L, Zhang X F, Ge Y Q, Zhu Y, Lang X Q, Cao X Q . Sens. Actuators B, 2018,256:261.
[18]
Kwon N, Cho M K, Park S J, Kim D, Nam S J, Cui L, Kim H M, Yoon J . Chem. Commun., 2017,53(3):525. https://www.ncbi.nlm.nih.gov/pubmed/27959364

doi: 10.1039/c6cc08971b pmid: 27959364
[19]
He L, Yang X, Xu K, Kong X, Lin W . Chem. Sci., 2017,8(9):6257. https://www.ncbi.nlm.nih.gov/pubmed/28989659

doi: 10.1039/c7sc00423k pmid: 28989659
[20]
Yue Y, Huo F, Ning P, Zhang Y, Chao J, Meng X, Yin C . J. Am. Chem. Soc., 2017,139(8):3181. https://www.ncbi.nlm.nih.gov/pubmed/28170238

doi: 10.1021/jacs.6b12845 pmid: 28170238
[21]
Zhou Z, Li Y, Su W, Gu B, Xu H, Wu C, Yin P, Li H, Zhang Y . Sens. Actuators B, 2019,280:120.
[22]
Ueno T, Nagano T . Nat. Methods, 2011,8(8):642. https://www.ncbi.nlm.nih.gov/pubmed/21799499

doi: 10.1038/nmeth.1663 pmid: 21799499
[23]
Wang L, Xiao Y, Tian W, Deng L . J. Am. Chem. Soc., 2013,135(8):2903. https://www.ncbi.nlm.nih.gov/pubmed/23409947

doi: 10.1021/ja311688g pmid: 23409947
[24]
Giovanni S R N, Lorenzo A, Barbara S, Ranieri B . J. Am. Chem. Soc., 2010,132(4):1276. https://www.ncbi.nlm.nih.gov/pubmed/20050646

doi: 10.1021/ja9050444 pmid: 20050646
[25]
Xiao H, Liu X, Wu C, Wu Y, Li P, Guo X, Tang B . Biosens. Bioelectron., 2017,91:449. https://www.ncbi.nlm.nih.gov/pubmed/28064130

doi: 10.1016/j.bios.2016.12.068 pmid: 28064130
[26]
Liu F, Wu T, Cao J, Cui S, Yang Z, Qiang X, Sun S, Song F, Fan J, Wang J, Peng X . Chem. Eur. J., 2013,19(5):1548. https://www.ncbi.nlm.nih.gov/pubmed/23255410

doi: 10.1002/chem.201202646 pmid: 23255410
[27]
Fan L, Wang X, Ge J, Li F, Zhang C, Lin B, Shuang S, Dong C . Chem. Commun., 2019,55(47):6685. https://www.ncbi.nlm.nih.gov/pubmed/31106798

doi: 10.1039/c9cc02511a pmid: 31106798
[28]
Yin J, Hu Y, Yoon J . Chem. Soc. Rev., 2015,44(14):4619. https://www.ncbi.nlm.nih.gov/pubmed/25317749

doi: 10.1039/c4cs00275j pmid: 25317749
[29]
Wu L, Li X, Huang C, Jia N . Anal. Chem., 2016,88(16):8332. https://www.ncbi.nlm.nih.gov/pubmed/27431089

doi: 10.1021/acs.analchem.6b02398 pmid: 27431089
[30]
Tian M, Ma Y, Lin W . Acc.Chem. Res., 2019,52(8):2147.
[31]
Granja S, Tavares-Valente D, Queiros O, Baltazar F . Semin. Cancer. Biol., 2017,43:17. https://www.ncbi.nlm.nih.gov/pubmed/28065864

doi: 10.1016/j.semcancer.2016.12.003 pmid: 28065864
[32]
Martínez-Zaguilán E A S, Seftor E A, Seftor R E B, Chu Y W, Gillies R J, Hendrix M J C . Clinical. Experimental Metastasis, 1996,14(2):176. https://www.ncbi.nlm.nih.gov/pubmed/8605731

doi: 10.1007/BF00121214 pmid: 8605731
[33]
Melvin S S G, Ed H, Sanford M . Simon. Biochemistry, 1996,35(9):2811. https://www.ncbi.nlm.nih.gov/pubmed/8608115

doi: 10.1021/bi952234e pmid: 8608115
[34]
Platt F M, Boland B, van der Spoel A C . J. Cell. Biol., 2012,199(5):723. https://www.ncbi.nlm.nih.gov/pubmed/23185029

doi: 10.1083/jcb.201208152 pmid: 23185029
[35]
Kirkegaard T, Jaattela M . Biochim. Biophys. Acta, 2009,1793(4):746. https://www.ncbi.nlm.nih.gov/pubmed/18948147

doi: 10.1016/j.bbamcr.2008.09.008 pmid: 18948147
[36]
Zhang L, Sheng R, Qin Z . Acta Biochimica. Biophys., 2009,41(6):437. https://www.ncbi.nlm.nih.gov/pubmed/19499146

doi: 10.1093/abbs/gmp031 pmid: 19499146
[37]
Appelqvist H, Waster P, Kagedal K, Ollinger K, Ollinger . J. Mol. Cell. Biol., 2013,5(4):214. https://www.ncbi.nlm.nih.gov/pubmed/23918283

doi: 10.1093/jmcb/mjt022 pmid: 23918283
[38]
Abad M F, Di Benedetto G, Magalhaes P J, Filippin L, Pozzan T . J. Biol. Chem., 2004,279(12):11521. https://www.ncbi.nlm.nih.gov/pubmed/14701849

doi: 10.1074/jbc.M306766200 pmid: 14701849
[39]
Kazuhiro N H I, Tomoko K, Masayoshi A, Nakagawa A Y . J. Biol. Chem., 1999,274:29294. https://www.ncbi.nlm.nih.gov/pubmed/10506188

doi: 10.1074/jbc.274.41.29294 pmid: 10506188
[40]
Gould N, Doulias P T, Tenopoulou M, Raju K, Ischiropoulos H . J. Biol. Chem., 2013,288(37):26473. https://www.ncbi.nlm.nih.gov/pubmed/23861393

doi: 10.1074/jbc.R113.460261 pmid: 23861393
[41]
Seshadri S, Beiser A, Selhub J, Jacques P F, Rosenberg I H, Agostino R B, Wilson P W F, Wolf P A . N. Engl. J. Med., 2002,346:476. https://www.ncbi.nlm.nih.gov/pubmed/11844848

doi: 10.1056/NEJMoa011613 pmid: 11844848
[42]
Minagawa H, Watanabe A, Akatsu H, Adachi K, Ohtsuka C, Terayama Y, Hosono T, Takahashi S, Wakita H, Jung C G, Komano H, Michikawa M . J. Biol. Chem., 2010,285(49):38382. https://www.ncbi.nlm.nih.gov/pubmed/20889503

doi: 10.1074/jbc.M110.146258 pmid: 20889503
[43]
Mager A, Orvin K, Koren-Morag N, Lev I E, Assali A, Kornowski R, Shohat M, Battler A, Hasdai D . Am. J. Cardiol., 2009,104(6):745. https://www.ncbi.nlm.nih.gov/pubmed/19733705

doi: 10.1016/j.amjcard.2009.05.011 pmid: 19733705
[44]
Zhou C, Wu J, Fang S . Clin. Nutr., 2013,32(2):314. https://www.ncbi.nlm.nih.gov/pubmed/23433911

doi: 10.1016/j.clnu.2013.01.001 pmid: 23433911
[45]
Forman H J, Zhang H, Rinna A . Molecular Aspects of Medicine, 2009,30:1. https://www.ncbi.nlm.nih.gov/pubmed/18796312

doi: 10.1016/j.mam.2008.08.006 pmid: 18796312
[46]
Monostori P, Wittmann G, Karg E, Turi S . J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009,877(28):3331. https://www.ncbi.nlm.nih.gov/pubmed/19560987

doi: 10.1016/j.jchromb.2009.06.016 pmid: 19560987
[47]
Smith L L . Free. Radic. Biol. Med., 2004,37(3):318. https://www.ncbi.nlm.nih.gov/pubmed/15223065

doi: 10.1016/j.freeradbiomed.2004.04.024 pmid: 15223065
[48]
Nathan C . J. Clin. Invest., 2003,111(6):769. https://www.ncbi.nlm.nih.gov/pubmed/12639979

doi: 10.1172/JCI18174 pmid: 12639979
[49]
Radi R . J. Biol. Chem., 2013,288(37):26464. https://www.ncbi.nlm.nih.gov/pubmed/23861390

doi: 10.1074/jbc.R113.472936 pmid: 23861390
[50]
Kao H P . J. Cell. Biol., 1993,120(1):175. https://www.ncbi.nlm.nih.gov/pubmed/8416987

doi: 10.1083/jcb.120.1.175 pmid: 8416987
[51]
Yang Z, He Y, Lee J H, Park N, Suh M, Chae W S, Cao J, Peng X, Jung H, Kang C, Kim J S . J. Am. Chem. Soc., 2013,135(24):9181. https://www.ncbi.nlm.nih.gov/pubmed/23713894

doi: 10.1021/ja403851p pmid: 23713894
[52]
Roopa R, Kumar N, Bhalla V, Kumar M . Chem. Commun., 2015,51(86):15614. https://www.ncbi.nlm.nih.gov/pubmed/26759839

doi: 10.1039/c5cc07098h pmid: 26759839
[53]
Peng X, Yang Z, Wang J, Fan J, He Y, Song F, Wang B, Sun S, Qu J, Qi J, Yan M . J. Am. Chem. Soc., 2011,133(17):6626. https://www.ncbi.nlm.nih.gov/pubmed/21476543

doi: 10.1021/ja1104014 pmid: 21476543
[54]
Haidekker M A, Brady T P, Chalian S H, Akers W, Lichlyter D, Theodorakis E A . Bioorg. Chem., 2004,32(4):274. https://www.ncbi.nlm.nih.gov/pubmed/15210341

doi: 10.1016/j.bioorg.2004.04.002 pmid: 15210341
[55]
Guo R, Yin J, Ma Y, Li G, Wang Q, Lin W . Sens. Actuators B, 2018,271:321. https://linkinghub.elsevier.com/retrieve/pii/S0925400518309316

doi: 10.1016/j.snb.2018.05.055
[56]
Su D, Teoh C L, Wang L, Liu X, Chang Y T . Chem. Soc. Rev., 2017,46(16):4833. https://www.ncbi.nlm.nih.gov/pubmed/28692081

doi: 10.1039/c7cs00018a pmid: 28692081
[57]
Nadiv M S, Manu H, Hecht D, Roberts C T, LeRoith D, Zick Y . Biochem. J., 1994,298:443. https://www.ncbi.nlm.nih.gov/pubmed/8135754

doi: 10.1042/bj2980443 pmid: 8135754
[58]
Jiang N, Fan J, Zhang S, Wu T, Wang J, Gao P, Qu J, Zhou F, Peng X . Sens. Actuators B, 2014,190:685.
[59]
Jun Y W, Cho S W, Jung J, Huh Y, Kim Y, Kim D, Ahn K H . ACS Cent. Sci., 2019,5(2):209. https://www.ncbi.nlm.nih.gov/pubmed/30834309

doi: 10.1021/acscentsci.8b00951 pmid: 30834309
[60]
Liu H W, Chen L, Xu C, Li Z, Zhang H, Zhang X B, Tan W . Chem. Soc. Rev., 2018,47(18):7140. https://www.ncbi.nlm.nih.gov/pubmed/30140837

doi: 10.1039/c7cs00862g pmid: 30140837
[61]
Zhang Y, Park K Y, Suazo K F, Distefano M D . Chem. Soc. Rev., 2018,47(24):9106. https://www.ncbi.nlm.nih.gov/pubmed/30259933

doi: 10.1039/c8cs00537k pmid: 30259933
[62]
Davalos D, Grutzendler J, Yang G, Kim J V, Zuo Y, Jung S, Littman D R, Dustin M L, Gan W B . Nat. Neurosci., 2005,8(6):752. https://www.ncbi.nlm.nih.gov/pubmed/15895084

doi: 10.1038/nn1472 pmid: 15895084
[63]
Burnstock G . Trends. Pharmacol. Sci., 2006,27(3):166. https://www.ncbi.nlm.nih.gov/pubmed/16487603

doi: 10.1016/j.tips.2006.01.005 pmid: 16487603
[64]
Fu Y, Finney N S . RSC Adv., 2018,8(51):29051.
[65]
Alford R, Simpson H M, Duberman J, Hill G C, Ogawa M, Regino C, Kobayashi H, Choyke P L . Mol. Imaging, 2009,8(6):7290.
[66]
Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J, James T D . Chem. Soc. Rev., 2017,46(23):7105. https://www.ncbi.nlm.nih.gov/pubmed/29019488

doi: 10.1039/c7cs00240h pmid: 29019488
[67]
Daly B, Ling J, de Silva A P . Chem. Soc. Rev., 2015,44(13):4203. https://www.ncbi.nlm.nih.gov/pubmed/25695939

doi: 10.1039/c4cs00334a pmid: 25695939
[68]
Lee M H, Kim J S, Sessler J L . Chem. Soc. Rev., 2015,44(13):4185. https://www.ncbi.nlm.nih.gov/pubmed/25286013

doi: 10.1039/c4cs00280f pmid: 25286013
[69]
Zhang C, Han Z, Wang M, Yang Z, Ran X, He W . Dalton Trans., 2018,47(7):2285. https://www.ncbi.nlm.nih.gov/pubmed/29363695

doi: 10.1039/c7dt04345g pmid: 29363695
[70]
Li X, Zhang S, Cao J, Xie N, Liu T, Yang B, He Q, Hu Y . Chem. Commun., 2013,49(77):8656. https://www.ncbi.nlm.nih.gov/pubmed/23949387

doi: 10.1039/c3cc44539a pmid: 23949387
[71]
Myochin T, Kiyose K, Hanaoka K, Kojima H, Terai T, Nagano T . J. Am. Chem. Soc., 2011,133(10):3401. https://www.ncbi.nlm.nih.gov/pubmed/21341656

doi: 10.1021/ja1063058 pmid: 21341656
[72]
Sedgwick A C, Wu L, Han H H, Bull S D, He X P, James T D, Sessler J L, Tang B Z, Tian H, Yoon J . Chem. Soc. Rev., 2018,47(23):8842. https://www.ncbi.nlm.nih.gov/pubmed/30361725

doi: 10.1039/c8cs00185e pmid: 30361725
[73]
Zhu H, Fan J, Wang J, Mu H, Peng X . J. Am. Chem. Soc., 2014,136(37):12820. https://www.ncbi.nlm.nih.gov/pubmed/25171114

doi: 10.1021/ja505988g pmid: 25171114
[74]
Demchenko A P, Tang K C, Chou P T . Chem. Soc. Rev., 2013,42(3):1379. https://www.ncbi.nlm.nih.gov/pubmed/23169387

doi: 10.1039/c2cs35195a pmid: 23169387
[75]
Wu J, Liu W, Ge J, Zhang H, Wang P . Chem. Soc. Rev., 2011,40(7):3483. https://www.ncbi.nlm.nih.gov/pubmed/21445455

doi: 10.1039/c0cs00224k pmid: 21445455
[76]
Taya P, Maiti B, Kumar V, De P, Satapathi S . Sens. Actuators B, 2018,255:2628.
[77]
Hughes A D, Glenn I C, Patrick A D, Ellington A, Anslyn E V . Chemistry, 2008,14(6):1822. https://www.ncbi.nlm.nih.gov/pubmed/18161712

doi: 10.1002/chem.200701546 pmid: 18161712
[78]
Dempsey M E, Marble H D, Shen T L, Fawzi N L, Darling E M . Bioconjug. Chem., 2018,29(2):335. https://www.ncbi.nlm.nih.gov/pubmed/29272914

doi: 10.1021/acs.bioconjchem.7b00671 pmid: 29272914
[79]
Fan J, Hu M, Zhan P, Peng X . Chem. Soc. Rev., 2013,42(1):29. https://www.ncbi.nlm.nih.gov/pubmed/23059554

doi: 10.1039/c2cs35273g pmid: 23059554
[80]
He L, Dong B, Liu Y, Lin W . Chem. Soc. Rev., 2016,45(23):6449. https://www.ncbi.nlm.nih.gov/pubmed/27711651

doi: 10.1039/c6cs00413j pmid: 27711651
[81]
Lin Y, Lin W L, Zheng K B, Zhu S S . Acc. Chem. Res., 2013,46(7):1462. https://www.ncbi.nlm.nih.gov/pubmed/23419062

doi: 10.1021/ar300273v pmid: 23419062
[82]
He L, Lin W, Xu Q, Wei H . Chem. Commun., 2015,51(8):1510. https://www.ncbi.nlm.nih.gov/pubmed/25502568

doi: 10.1039/c4cc08522a pmid: 25502568
[83]
Burgess J H A K . Chem. Rev., 2010,110(5):2709. https://www.ncbi.nlm.nih.gov/pubmed/19831417

doi: 10.1021/cr900249z pmid: 19831417
[84]
Lee M H, Park N, Yi C, Han J H, Hong J H, Kim K P, Kang D H, Sessler J L, Kang C, Kim J S . J. Am. Chem. Soc., 2014,136(40):14136. https://www.ncbi.nlm.nih.gov/pubmed/25158001

doi: 10.1021/ja506301n pmid: 25158001
[85]
Dong B, Song X, Wang C, Kong X, Tang Y, Lin W . Anal. Chem., 2016,88(7):4085. https://www.ncbi.nlm.nih.gov/pubmed/26987045

doi: 10.1021/acs.analchem.6b00422 pmid: 26987045
[86]
Wu L, Wang Y, James T D, Jia N, Huang C . Chem. Commun., 2018,54(44):5518. https://www.ncbi.nlm.nih.gov/pubmed/29670954

doi: 10.1039/c8cc02330a pmid: 29670954
[87]
Lee M H, Han J H, Kwon P S, Bhuniya S, Kim J Y, Sessler J L, Kang C, Kim J S . J. Am. Chem. Soc., 2012,134(2):1316. https://www.ncbi.nlm.nih.gov/pubmed/22171762

doi: 10.1021/ja210065g pmid: 22171762
[88]
Huang C, Jia T, Tang M, Yin Q, Zhu W, Zhang C, Yang Y, Jia N, Xu Y, Qian X . J. Am. Chem. Soc., 2014,136(40):14237. https://www.ncbi.nlm.nih.gov/pubmed/25225148

doi: 10.1021/ja5079656 pmid: 25225148
[89]
Zhao R, Jia T, Shi H, Huang C . J. Mater. Chem. B, 2019,7:2782. https://www.ncbi.nlm.nih.gov/pubmed/32255080

doi: 10.1039/c9tb00219g pmid: 32255080
[90]
Simon H U, Haj-Yehia A, Levi-Schaffer F . Apoptosis, 2000,5(5):415. https://www.ncbi.nlm.nih.gov/pubmed/11256882

doi: 10.1023/a:1009616228304 pmid: 11256882
[91]
Chen X, Wang F, Hyun J Y, Wei T, Qiang J, Ren X, Shin I, Yoon J . Chem. Soc. Rev., 2016,45(10):2976. https://www.ncbi.nlm.nih.gov/pubmed/27092436

doi: 10.1039/c6cs00192k pmid: 27092436
[92]
Dickinson B C, Srikun D, Chang C J . Curr. Opin. Chem. Biol., 2010,14(1):50. https://www.ncbi.nlm.nih.gov/pubmed/19910238

doi: 10.1016/j.cbpa.2009.10.014 pmid: 19910238
[93]
Cheng G, Fan J, Sun W, Sui K, Jin X, Wang J, Peng X . Analyst, 2013,138(20):6091. https://www.ncbi.nlm.nih.gov/pubmed/23961536

doi: 10.1039/c3an01152f pmid: 23961536
[94]
Kim D, Kim G, Nam S J, Yin J, Yoon J . Sci. Rep., 2015,5:8488. https://www.ncbi.nlm.nih.gov/pubmed/25684681

doi: 10.1038/srep08488 pmid: 25684681
[95]
Sun X, Xu Q, Kim G, Flower S E, Lowe J P, Yoon J, Fossey J S, Qian X, Bull S D, James T D . Chem. Sci., 2014,5(9):3368.
[96]
Ren M, Deng B, Zhou K, Kong X, Wang J Y, Lin W . Anal. Chem., 2017,89(1):552. https://www.ncbi.nlm.nih.gov/pubmed/27958699

doi: 10.1021/acs.analchem.6b04385 pmid: 27958699
[97]
Zhao M, Zhu Y, Su J, Geng Q, Tian X, Zhang J, Zhou H, Zhang S, Wu J, Tian Y . J. Mater. Chem. B, 2016,4(35):5907. https://www.ncbi.nlm.nih.gov/pubmed/32263763

doi: 10.1039/c6tb01240j pmid: 32263763
[98]
Li X, Zhao R, Wang Y, Huang C . J. Mater. Chem. B, 2018,6(41):6592. https://www.ncbi.nlm.nih.gov/pubmed/32254867

doi: 10.1039/c8tb01885e pmid: 32254867
[99]
Wu J B, Lin T P, Gallagher J D, Kushal S, Chung L W, Zhau H E, Olenyuk B Z, Shih J C . J. Am. Chem. Soc., 2015,137(6):2366. https://www.ncbi.nlm.nih.gov/pubmed/25585152

doi: 10.1021/ja512613j pmid: 25585152
[100]
Wu X, Li L, Shi W, Gong Q, Li X, Ma H . Anal. Chem., 2016,88(2):1440. https://www.ncbi.nlm.nih.gov/pubmed/26652905

doi: 10.1021/acs.analchem.5b04303 pmid: 26652905
[101]
Ning J, Liu T, Dong P, Wang W, Ge G, Wang B, Yu Z, Shi L, Tian X, Huo X, Feng L, Wang C, Sun C, Cui J, James T D, Ma X . J. Am. Chem. Soc., 2018,141(2):1126. https://www.ncbi.nlm.nih.gov/pubmed/30525564

doi: 10.1021/jacs.8b12136 pmid: 30525564
[102]
Wu X, Li L, Shi W, Gong Q, Ma H . Angew. Chem. Int. Ed. Engl., 2016,55(47):14728. https://www.ncbi.nlm.nih.gov/pubmed/27775216

doi: 10.1002/anie.201609895 pmid: 27775216
[103]
Kim T I, Park J, Park S, Choi Y, Kim Y . Chem. Commun., 2011,47(47):12640. https://www.ncbi.nlm.nih.gov/pubmed/22031105

doi: 10.1039/c1cc15061h pmid: 22031105
[104]
Yan S, Huang R, Wang C, Zhou Y, Wang J, Fu B, Weng X, Zhou X . Chem. Asian J., 2012,7:2782. https://www.ncbi.nlm.nih.gov/pubmed/23023989

doi: 10.1002/asia.201200762 pmid: 23023989
[105]
Zhou J, Shi W, Li L, Gong Q, Wu X, Li X, Ma H . Anal. Chem., 2016,88(8):4557. https://www.ncbi.nlm.nih.gov/pubmed/27021123

doi: 10.1021/acs.analchem.6b00742 pmid: 27021123
[106]
Fang Y, Shi W, Hu Y, Li X, Ma H . Chem. Commun., 2018,54(43):5454. https://www.ncbi.nlm.nih.gov/pubmed/29749411

doi: 10.1039/c8cc02209g pmid: 29749411
[107]
Li Y, Sun Y, Li J, Su Q, Yuan W, Dai Y, Han C, Wang Q, Feng W, Li F . J. Am. Chem. Soc., 2015,137(19):6407. https://www.ncbi.nlm.nih.gov/pubmed/25923361

doi: 10.1021/jacs.5b04097 pmid: 25923361
[108]
Liu Y, Teng L, Chen L, Ma H, Liu H W, Zhang X B . Chem. Sci., 2018,9(24):5347. https://www.ncbi.nlm.nih.gov/pubmed/30009005

doi: 10.1039/c8sc01684d pmid: 30009005
[109]
Fu Y, Han H H, Zhang J, He X P, Feringa B L, Tian H . J. Am. Chem. Soc., 2018,140(28):8671. https://www.ncbi.nlm.nih.gov/pubmed/29940117

doi: 10.1021/jacs.8b05425 pmid: 29940117
[110]
Huang B, Chen W, Kuang Y Q, Liu W, Liu X J, Tang L J, Jiang J H . Org. Biomol. Chem., 2017,15(20):4383. https://www.ncbi.nlm.nih.gov/pubmed/28475190

doi: 10.1039/c7ob00781g pmid: 28475190
[111]
Guo T, Cui L, Shen J, Zhu W, Xu Y, Qian X . Chem. Commun., 2013,49(92):10820. https://www.ncbi.nlm.nih.gov/pubmed/24121427

doi: 10.1039/c3cc45367g pmid: 24121427
[112]
Li Z, He X, Wang Z, Yang R, Shi W, Ma H . Biosens. Bioelectron., 2015,63:112. https://www.ncbi.nlm.nih.gov/pubmed/25064818

doi: 10.1016/j.bios.2014.07.024 pmid: 25064818
[113]
Tian M, Sun J, Tang Y, Dong B, Lin W . Anal. Chem., 2018,90(1):998. https://www.ncbi.nlm.nih.gov/pubmed/29212319

doi: 10.1021/acs.analchem.7b04252 pmid: 29212319
[114]
Tang J L, Li C Y, Li Y F, Zou C X . Chem. Commun., 2014,50(97):15411. https://www.ncbi.nlm.nih.gov/pubmed/25350832

doi: 10.1039/c4cc08044k pmid: 25350832
[115]
Tan K Y, Li C Y, Li Y F, Fei J, Yang B, Fu Y J, Li F . Anal. Chem., 2017,89(3):1749. https://www.ncbi.nlm.nih.gov/pubmed/28208302

doi: 10.1021/acs.analchem.6b04020 pmid: 28208302
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[4] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[5] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[6] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[7] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[8] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[9] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[10] Chibao Huang*, Shaoying Chen. Two-Photon Fluorescence Probe [J]. Progress in Chemistry, 2017, 29(10): 1215-1227.
[11] Lu Xiaomei, Li Jie, Hu Wenbo, Deng Weixing, Fan Quli, Huang Wei. Recent Advances of the Water-Soluble Conjugated Polymer Brushes [J]. Progress in Chemistry, 2016, 28(4): 528-540.
[12] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.
[13] Chen Feng, Zhu Yingjie. Microwave-Assisted Synthesis of Calcium Phosphate Nanostructured Materials in Liquid Phase [J]. Progress in Chemistry, 2015, 27(5): 459-471.
[14] Jing Xiaotong, Yu Fabiao, Chen Lingxin. Fluorescent Probes for Reactive Nitrogen Species [J]. Progress in Chemistry, 2014, 26(05): 866-878.
[15] Ren Xiaojie, Lu Xiaomei, Fan Quli, Huang Wei. Conjugated Polymers with Two-Photon Absorption for Bioimaging [J]. Progress in Chemistry, 2013, 25(10): 1739-1750.