中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1450-1460 DOI: 10.7536/PC200748 Previous Articles   

• Review •

Inner Filter Effect for Environmental Monitoring

Yong Xie1,2, Mingjie Han1,2, Yuhao Xu1,2, Chenyu Xiong1,2, Ri Wang1,2, Shanhong Xia1()   

  1. 1 State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences,Beijing 100094, China
    2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Shanhong Xia
  • Supported by:
    National Basic Research Program of China(2015CB352100)
Richhtml ( 52 ) PDF ( 1211 ) Cited
Export

EndNote

Ris

BibTeX

Inner filter effect(IFE) refers to the phenomenon that the absorber absorbs the excitation and/or emission light of the fluorophore, resulting in the fluorescence quenching of the fluorophore. Compared with fluorescence resonance energy transfer(FRET) or other techniques, IFE avoids cumbersome labeling processes, and has the advantages of high sensitivity, strong selectivity, simple and flexible operation. The IFE-based fluorescent approach has broad application foreground in the field of environmental monitoring. The absorber and the fluorophore are the two main components of the IFE-based sensing system. The optical properties and the spectral overlap of the two directly affect the quenching efficiency of the IFE-based sensing system. There are relatively limited choices of materials for the absorber and the fluorophore. Discovering new nanomaterials and exploring suitable absorber/fluorophore pair are very helpful to improve the quenching efficiency of IFE and enhance the detection performance of the IFE-based fluorescent approach. In this review, we mainly focus on the recent progress of IFE researches for environmental monitoring, including the detection of heavy metal ions, anions and small molecular environmental pollutants. The important effects of nanomaterials in the IFE-based sensing system are analyzed. Finally, the challenges and future developments of the IFE-based fluorescent approach are discussed.

Contents

1 Introduction

2 IFE applied to environmental monitoring

2.1 Detection of heavy metal ions

2.2 Detection of anions

2.3 Detection of small molecule environmental pollutants

3 Conclusion and outlook

[1]
Tian B D, Wu S N, Zhang H, Jiang L, Huo F W. Prog. Chem., 2019, 31(2/3): 413.
(田丹碧, 吴胜男, 张浩, 江凌, 霍峰蔚. 化学进展, 2019, 31(2/3): 413.)

doi: 10.7536/PC180511
[2]
Chen S, Yu Y L, Wang J H. Anal. Chimica Acta, 2018, 999: 13.

doi: 10.1016/j.aca.2017.10.026
[3]
Zhang J Y, Zhou R H, Tang D D, Hou X D, Wu P. Trac Trends Anal. Chem., 2019, 110: 183.

doi: 10.1016/j.trac.2018.11.002
[4]
Bhatt S, Bhatt M, Kumar A, Vyas G, Gajaria T, Paul P. Colloids Surf. B: Biointerfaces, 2018, 167: 126.

doi: 10.1016/j.colsurfb.2018.04.008
[5]
Qiao G X, Lu D, Tang Y P, Gao J W, Wang Q M. Dyes Pigments, 2019, 163: 102.

doi: 10.1016/j.dyepig.2018.11.049
[6]
Lu H Z, Xu S F. Anal., 2020, 145(7): 2661.

doi: 10.1039/D0AN00098A
[7]
Xue D X, Yu F J, Zhang Z J, Yang Y. Sens. Actuat. B: Chem., 2019, 279: 130.

doi: 10.1016/j.snb.2018.09.101
[8]
Feng S A, Gao Z, Liu H, Huang J F, Li X L, Yang Y L. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 212: 286.

doi: 10.1016/j.saa.2018.12.055
[9]
Lu K H, Lin J H, Lin C Y, Chen C F, Yeh Y C. Microchimica Acta, 2019, 186(4): 1.

doi: 10.1007/s00604-018-3127-5
[10]
Sheng L Y, Huangfu B H, Xu Q H, Tian W L, Li Z J, Meng A, Tan S Q. J. Alloys Compd., 2020, 820: 153191.
[11]
Liu Y S, Li W, Wu P, Ma C H, Wu X Y, Luo S, Liu S X. Microchimica Acta, 2019, 186(8): 1.

doi: 10.1007/s00604-018-3127-5
[12]
Ming F L, Hou J Z, Hou C J, Yang M, Wang X F, Li J W, Huo D Q, He Q. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 222: 117165.
[13]
Liu S H, Cui J L, Huang J B, Tian B S, Jia F, Wang Z L. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206: 65.

doi: 10.1016/j.saa.2018.07.082
[14]
Huang S, Yang E L, Yao J D, Chu X, Liu Y, Xiao Q. Microchimica Acta, 2019, 186(12): 1.

doi: 10.1007/s00604-018-3127-5
[15]
Singh V K, Singh V, Yadav P K, Chandra S, Bano D, Kumar V, Koch B, Talat M, Hasan S H. New J. Chem., 2018, 42(15): 12990.
[16]
Zhang Y H, Fang X, Zhao H, Li Z X. Talanta, 2018, 181: 318.

doi: 10.1016/j.talanta.2018.01.027
[17]
Wang B G, Lin Y, Tan H, Luo M N, Dai S S, Lu H S, Huang Z Y. Anal., 2018, 143(8): 1906.

doi: 10.1039/C8AN00077H
[18]
Meng Y T, Jiao Y, Zhang Y, Li Y, Gao Y F, Lu W J, Liu Y, Shuang S M, Dong C. Talanta, 2020, 210: 120653.
[19]
Song S M, Liang F, Li M L, Du F F, Dong W J, Gong X J, Shuang S M, Dong C. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 215: 58.

doi: 10.1016/j.saa.2019.02.065
[20]
Liu Z Q, Yang L, Chen M, Chen Q S. J. Photochem. Photobiol. A, 2020, 388: 112203.
[21]
Xu W, Yu L S, Xu H F, Zhang S Q, Xu W, Lin Y, Zhu X. Microchimica Acta, 2019, 186(10): 1.

doi: 10.1007/s00604-018-3127-5
[22]
Zare-Moghadam M, Shamsipur M, Molaabasi F, Hajipour-Verdom B. Talanta, 2020, 209: 120521.
[23]
Jigyasa , Kumar D, Arora P, Singh H, Rajput J K. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 230: 118087.
[24]
Nain A, Tseng Y T, Lin Y S, Wei S C, Mandal R P, Unnikrishnan B, Huang C C, Tseng F G, Chang H T. Sens. Actuat. B: Chem., 2020, 321: 128539.
[25]
Wang Y Q, Man Y, Li S S, Wu S B, Zhao X L, Xie F Z, Qu Q S, Zou W S. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 226: 117594.
[26]
Zhou X, Zhao G F, Tan X P, Qian X C, Zhang T, Gui J W, Yang L, Xie X G. Microchimica Acta, 2019, 186(2): 1.

doi: 10.1007/s00604-018-3127-5
[27]
Yan F Y, Zu F L, Xu J X, Zhou X G, Bai Z J, Ma C, Luo Y M, Chen L. Sens. Actuat. B: Chem., 2019, 287: 231.

doi: 10.1016/j.snb.2019.01.144
[28]
Guo X R, Yue G Q, Huang J Z, Liu C, Zeng Q, Wang L S. ACS Appl. Mater. Interfaces, 2018, 10(31): 26118.
[29]
Zhang Q X, Sun Y, Liu M L, Liu Y. Nanoscale, 2020, 12(3): 1826.

doi: 10.1039/C9NR08794J
[30]
Chen M, Kutsanedzie F Y H, Cheng W, Agyekum A A, Li H H, Chen Q S. Microchimica Acta, 2018, 185(8): 1.

doi: 10.1007/s00604-017-2562-z
[31]
Shojaeifard Z, Heidari N, Hemmateenejad B. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 209: 202.

doi: 10.1016/j.saa.2018.10.042
[32]
Guo L, Liu Y, Kong R M, Chen G, Liu Z, Qu F L, Xia L, Tan W H. Anal. Chem., 2019, 91(19): 12453.
[33]
Dalapati R, Biswas S. Chem. Asian J., 2019: asia.201900546.
[34]
Li Y H, Cai J B, Liu F J, Yu H W, Lin F, Yang H, Lin Y, Li S X. Microchimica Acta, 2018, 185(2): 1.

doi: 10.1007/s00604-017-2562-z
[35]
Ma X M, Sun M, Lin Y, Liu Y J, Luo F, Guo L H, Qiu B, Lin Z Y, Chen G N, Chin. J. Anal. Chem., 2018, 46(1): 1.

doi: 10.1016/S1872-2040(17)61061-2
(马小明, 孙密, 林悦, 刘银金, 罗芳, 郭隆华, 邱彬, 林振宇, 陈国南. 分析化学, 2018, 46(1): 1.)
[36]
Hu T Y, Yan X, Na W D, Su X G. Microchimica Acta, 2016, 183(7): 2131.

doi: 10.1007/s00604-016-1831-6
[37]
Yang Y, Zhao J, Weng G J, Li J J, Zhu J, Zhao J W. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 228: 117776.
[38]
Han L, Liu S G, Dong X Z, Liang J Y, Li N B, Luo H Q. J. Hazard. Mater., 2019, 376: 170.

doi: 10.1016/j.jhazmat.2019.05.021
[39]
Li W J, Liu D, Bi X Y, You T Y. Sens. Actuat. A: Phys., 2020, 302: 111794.
[40]
Peng D, Zhang L, Liang R P, Qiu J D. ACS Sens., 2018, 3(5): 1040.

doi: 10.1021/acssensors.8b00203
[41]
Khairy G M, Duerkop A. Sens. Actuat. B: Chem., 2019, 281: 878.

doi: 10.1016/j.snb.2018.10.147
[42]
Lan M H, Zhao S J, Wu S L, Wei X F, Fu Y Z, Wu J J, Wang P F, Zhang W J. Nano Res., 2019, 12(10): 2576.

doi: 10.1007/s12274-019-2489-2
[43]
Smith J A, Singh-Wilmot M A, Carter K P, Cahill C L, Ridenour J A. Cryst. Growth Des., 2019, 19(1): 305.

doi: 10.1021/acs.cgd.8b01426
[44]
Liu L L, Yu Y Z, Zhao X J, Wang Y R, Cheng F Y, Zhang M K, Shu J J, Liu L. Dalton Trans., 2018, 47(23): 7787.

doi: 10.1039/C8DT00908B
[45]
Du F F, Li G, Gong X J, Guo Z H, Shuang S M, Xian M, Dong C. Sens. Actuat. B: Chem., 2018, 277: 492.

doi: 10.1016/j.snb.2018.09.027
[46]
Jiang X H, Qin D M, Mo G C, Feng J S, Zheng X F, Deng B Y. Anal. Chem., 2019, 91(17): 11455.
[47]
Wu L, Zhu L, Ma J, Li J J, Liu J W, Chen Y P. Microchim. Acta, 2020, 187(5): 273.

doi: 10.1007/s00604-020-04230-w
[48]
Ge K, Liu J M, Wang P H, Fang G Z, Zhang D D, Wang S. Microchimica Acta, 2019, 186(3): 1.

doi: 10.1007/s00604-018-3127-5
[49]
Shi L H, Chang D, Zhang G M, Zhang C H, Zhang Y, Dong C, Chu L L, Shuang S M. RSC Adv., 2019, 9(70): 41361.
[50]
Shao H, Xu D, Ding Y D, Hong X, Liu Y C. Microchimica Acta, 2018, 185(4): 1.

doi: 10.1007/s00604-017-2562-z
[51]
Jia S, Bian C, Sun J Z, Tong J H, Xia S H. Biosens. Bioelectron., 2018, 114: 15.

doi: 10.1016/j.bios.2018.05.004
[52]
Hui Y, Xiong C Y, Bian C, Gui S L, Tong J H, Li Y, Gao C Y, Huang Y Y, Tang W C, Xia S H. Anal. Methods, 2019, 11(20): 2669.

doi: 10.1039/C9AY00029A
[53]
Hui Y, Liu Y J, Tang W C, Song D, Madou M, Xia S D, Wu T Z. Micromachines, 2019, 10(8): 523.

doi: 10.3390/mi10080523
[54]
Chen C X, Zhao D, Hu T, Sun J, Yang X R. Sens. Actuat. B: Chem., 2017, 241: 779.

doi: 10.1016/j.snb.2016.11.010
[55]
Dong Y Q, Wang R X, Tian W R, Chi Y W, Chen G N. RSC Adv., 2014, 4(8): 3685.

doi: 10.1039/C3RA45893H
[56]
Zhai Y M, Jin L H, Wang P, Dong S J. Chem. Commun., 2011, 47(29): 8268.

doi: 10.1039/c1cc13149d
[57]
Shang L, Dong S J. Anal. Chem., 2009, 81(4): 1465.

doi: 10.1021/ac802281x pmid: 19140677
[58]
Kong Y L, Cheng Q, He Y, Ge Y L, Zhou J G, Song G W. Food Chem., 2020, 312: 126089.
[59]
Wang X F, Hou J Z, Shen X, He Q, Hou C J, Huo D Q. Anal. Methods, 2020, 12(8): 1107.

doi: 10.1039/C9AY02431J
[60]
Liu Y S, Luo S, Wu P, Ma C H, Wu X Y, Xu M C, Li W, Liu S X. Anal. Chimica Acta, 2019, 1090: 133.

doi: 10.1016/j.aca.2019.09.015
[61]
Liu J S, Liu C F, Zhou Z H. Microchimica Acta, 2019, 186(5): 1.

doi: 10.1007/s00604-018-3127-5
[62]
Shojaeifard Z, Hemmateenejad B, Shamsipur M, Ahmadi R. J. Photochem. Photobiol. A: Chem., 2019, 384: 112030.
[63]
Zhang L N, Wang Z W, Zhang J B, Jia J B, Zhao D, Fan Y C. Nanomaterials, 2018, 8(12): 1071.

doi: 10.3390/nano8121071
[64]
Zou W S, Zhao Q C, Kong W L, Wang X F, Chen X M, Zhang J, Wang Y Q. Chem. Eng. J., 2018, 337: 471.

doi: 10.1016/j.cej.2017.12.123
[65]
Yang M L, Liu M W, Wu Z P, He Y, Ge Y L, Song G W, Zhou J G. Microchimica Acta, 2019, 186(8): 1.

doi: 10.1007/s00604-018-3127-5
[66]
Wei J C, Yang Y, Dong J Y, Wang S P, Li P. Microchim. Acta, 2019, 186(2): 66.

doi: 10.1007/s00604-018-3175-x
[67]
Luo M, Wei J C, Zhao Y Y, Sun Y Z, Liang H X, Wang S P, Li P. Microchem. J., 2020, 154: 104547.
[68]
Wang R H, Zhu C L, Wang L L, Xu L Z, Wang W L, Yang C, Zhang Y. Talanta, 2019, 205: 120094.
[69]
Li H F, Wen K, Dong B L, Zhang J, Bai Y C, Liu M G, Li P P, Mujtaba M G, Yu X Z, Yu W B, Ke Y B, Shen J Z, Wang Z H. Sens. Actuat. B: Chem., 2019, 297: 126787.
[70]
Zhang J, Zhou W D, Zhai L J, Niu X Y, Hu T P. CrystEngComm, 2020, 22(6): 1050.

doi: 10.1039/C9CE01846H
[71]
Sheng E Z, Lu Y X, Tan Y T, Xiao Y, Li Z X, Dai Z H. Anal. Chem., 2020, 92(6): 4364.

doi: 10.1021/acs.analchem.9b05199 pmid: 32050759
[72]
Yang Y, Wei Q Y, Zou T, Kong Y L, Su L F, Ma D, Wang Y D. Sens. Actuat. B: Chem., 2020, 321: 128534.
[73]
Chen S Q, Gao J M, Chang J Y, Zhang Y, Feng L. Sens. Actuat. B: Chem., 2019, 297: 126701.
[74]
Yang L M, Zhang X H, Wang J X, Sun H F, Jiang L. Microchimica Acta, 2018, 185(10): 1.

doi: 10.1007/s00604-017-2562-z
[75]
Ding Y, Hua X D, Chen H, Gonzalez-Sapienza G, Barnych B, Liu F Q, Wang M H, Hammock B D. Sens. Actuat. B: Chem., 2019, 297: 126714.
[76]
Chen L L, Xu H, Wang L, Li Y, Tian X K. Microchimica Acta, 2020, 187(2): 1.

doi: 10.1007/s00604-019-3921-8
[77]
Wang Y L, Ni P J, Jiang S, Lu W D, Li Z, Liu H M, Lin J, Sun Y J, Li Z,. Sens. Actuat. B: Chem., 2018, 254: 1118.

doi: 10.1016/j.snb.2017.07.182
[78]
Miao H, Wang Y Y, Yang X M. Nanoscale, 2018, 10(17): 8139.

doi: 10.1039/C8NR02405G
[79]
Yang J, Lin Z Z, Nur A Z, Lu Y, Wu M H, Zeng J, Chen X M, Huang Z Y. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2018, 190: 450.

doi: 10.1016/j.saa.2017.09.066
[80]
Li C L, Zeng C H, Chen Z, Jiang Y F, Yao H, Yang Y Y, Wong W T. J. Hazard. Mater., 2020, 384: 121498.
[81]
Yang H W, Xu P, Ding B, Liu Z Y, Zhao X J, Yang E C. Eur. J. Inorg. Chem., 2019, 2019(48): 5077.

doi: 10.1002/ejic.201901143
[82]
Yu M K, Xie Y, Wang X Y, Li Y X, Li G M. ACS Appl. Mater. Interfaces, 2019, 11(23): 21201.
[83]
Li C H, Zhu L, Yang W X, He X, Zhao S L, Zhang X S, Tang W Z, Wang J L, Yue T L, Li Z H. J. Agric. Food Chem., 2019, 67(4): 1277.

doi: 10.1021/acs.jafc.8b06253
[84]
Li C H, Zhang X S, Wen S M, Xiang R, Han Y, Tang W Z, Yue T L, Li Z H. J. Hazard. Mater., 2020, 395: 122615.
[85]
Li X T, Fan K M, Yang R M, Du X X, Qu B H, Miao X M, Lu L H. J. Hazard. Mater., 2020, 386: 121929.
[86]
Lin B X, Zhang T Y, Xin X L, Wu D, Huang Y, Liu Y W, Cao Y J, Guo M L, Yu Y. Microchimica Acta, 2019, 186(7): 1.

doi: 10.1007/s00604-018-3127-5
[87]
Jia P, Bu T, Sun X Y, Liu Y N, Liu J H, Wang Q Z, Shui Y H, Guo S W, Wang L. Food Chem., 2019, 297: 124969.
[88]
Shao C Y, Li C B, Zhang C, Ni Z, Liu X H, Wang Y X. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 236: 118334.
[89]
Lu C S, Su Q, Yang X M. Nanoscale, 2019, 11(34): 16036.
[90]
Qian S H, Qiao L N, Xu W X, Jiang K, Wang Y H, Lin H W. Talanta, 2019, 194: 598.

doi: 10.1016/j.talanta.2018.10.097
[91]
Wang Y, Chen T X, Zhuang Q F, Ni Y N. Talanta, 2018, 179: 409.

doi: 10.1016/j.talanta.2017.11.014
[92]
Wang J L, Lu T T, Hu Y, Wang X L, Wu Y G. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226: 117651.
[93]
Ren G D, Hou X Y, Kang Y, Zhang R, Zhang M, Liu W, Li L H, Wei S Y, Wang H J, Wang B, Diao H P. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 234: 118251.
[94]
Yang S L, Wang L, Zuo L, Zhao C, Li H Y, Ding L. Microchimica Acta, 2019, 186(9): 1.

doi: 10.1007/s00604-018-3127-5
[95]
Pan H, Wang S F, Dao X Y, Ni Y H. Inorg. Chem., 2018, 57(3): 1417.

doi: 10.1021/acs.inorgchem.7b02827
[96]
Tu Y J, Wang S P, Yuan X T, Wei Y L, Qin K H, Zhang Q, Chen X M, Ji X L. Dyes Pigments, 2020, 178: 108316.
[97]
Hu Y P, Gao Z J. J. Hazard. Mater., 2020, 382: 121048.
[98]
Yang H W, Lu F N, Sun Y, Yuan Z Q, Lu C. Anal. Chem., 2018, 90(21): 12846.
[99]
Shu T, Wang J X, Lin X F, Zhou Z P, Liang F, Su L, Zhang X J. J. Mater. Chem. C, 2018, 6(18): 5033.

doi: 10.1039/C8TC00448J
[100]
Li Y L, Feng L Y, Yan W, Hussain I, Su L, Tan B E. Nanoscale, 2019, 11(3): 1286.

doi: 10.1039/C8NR07142J
[101]
Han Y X, Chen Y L, Feng J, Na M, Liu J J, Ma Y X, Ma S D, Chen X G. Talanta, 2019, 194: 822.

doi: 10.1016/j.talanta.2018.11.008
[102]
Ning K K, Xiang G Q, Wang C C, Wang J X, Qiao X H, Zhang R F, Jiang X M, He L J, Zhao W J. Can. J. Chem., 2020, 98(5): 222.

doi: 10.1139/cjc-2019-0425
[103]
Qu B H, Mu Z Y, Liu Y, Liu Y S, Yan R, Sun J H, Zhang Z S, Li P, Jing L Q. Environ. Sci.: Nano, 2020, 7(1): 262.

doi: 10.1021/es60075a606
[104]
Tawfik S M, Sharipov M, Kakhkhorov S, Elmasry M R, Lee Y I. Adv. Sci., 2019, 6(2): 1801467.
[105]
Peng D, Zhang L, Li F F, Cui W R, Liang R P, Qiu J D. ACS Appl. Mater. Interfaces, 2018, 10(8): 7315.

doi: 10.1021/acsami.7b15250
[106]
Han L, Liu S G, Liang J Y, Ju Y J, Li N B, Luo H Q. J. Hazard. Mater., 2019, 362: 45.

doi: 10.1016/j.jhazmat.2018.09.025
[107]
Fang J, Zhuo S J, Zhu C Q. Opt. Mater., 2019, 97: 109396.
[108]
Li C M, Zheng Y K, Ding H W, Jiang H, Wang X M. Microchimica Acta, 2019, 186(6): 1.

doi: 10.1007/s00604-018-3127-5
[109]
Wang X F, Hou J Z, Lan S Y, Shen C H, Huo D Q, Ji Z, Ma Y, Luo H B, Zhang S Y, He Q, Hou C J. Anal. Chimica Acta, 2020, 1108: 152.

doi: 10.1016/j.aca.2020.02.028
[110]
Saleh S M, Alminderej F M, Ali R, Abdallah O I. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 229: 117971.
[111]
Jin R, Kong D S, Yan X, Zhao X, Li H X, Liu F M, Sun P, Lin Y H, Lu G Y. ACS Appl. Mater. Interfaces, 2019, 11(31): 27605.
[112]
Khatun M N, Tanwar A S, Meher N, Iyer P K. Chem. Asian J., 2019, 14(24): 4725.

doi: 10.1002/asia.v14.24
[113]
Aparna R S, Anjali Devi J S, Sachidanandan P, George S. Sens. Actuat. B: Chem., 2018, 254: 811.

doi: 10.1016/j.snb.2017.07.097
[114]
Baheti A, Vigalok A. J. Am. Chem. Soc., 2019, 141(31): 12224.
[115]
Wang H T, Na X K, Liu S, Liu H F, Zhang L J, Xie M Z, Jiang Z C, Han F, Li Y, Cheng S S, Tan M Q. Talanta, 2019, 201: 388.

doi: 10.1016/j.talanta.2019.04.022
[116]
Wang J, Du R, Liu W, Yao L, Ding F, Zou P, Wang Y Y, Wang X X, Zhao Q B, Rao H B. Sens. Actuat. B: Chem., 2019, 290: 125.

doi: 10.1016/j.snb.2019.03.107
[117]
Yue G Z, Li S Y, Liu W, Ding F, Zou P, Wang X X, Zhao Q B, Rao H B. Sens. Actuat. B: Chem., 2019, 287: 408.

doi: 10.1016/j.snb.2019.02.060
[118]
Hu Q, Gao L, Rao S Q, Yang Z Q, Li T, Gong X J. Food Chem., 2019, 280: 195.

doi: 10.1016/j.foodchem.2018.12.050
[119]
Li C, Li W J, Sun X B, Pan W, Yu G F, Wang J P. Sensor. Actuat. B-Chem., 2018, 263: 1.

doi: 10.1016/j.snb.2018.02.050
[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[9] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[10] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[11] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[12] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[13] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[14] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[15] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.