中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (10): 1524-1533 DOI: 10.7536/PC180703 Previous Articles   Next Articles

• Review •

Real-Time Luminescence Tracking in Living Cells with Metal Complexes

Kangqiang Qiu1,2, Hongyi Zhu1, Liangnian Ji1, Hui Chao1*   

  1. 1. School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
    2. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21525105, 21471164, 21778079), the State Key Development Program for Basic Research of China(973)(No. 2015CB856301), and the China Postdoctoral Science Foundation(No. 2018M630988).
PDF ( 487 ) Cited
Export

EndNote

Ris

BibTeX

Metal complexes possess outstanding photophysical properties, such as large Stokes shifts, good photostability, long luminescent lifetimes, two-photon luminescent properties and so on. During the past years, metal complexes have attracted intensive research interest in biological imaging for their excellent properties. Moreover, they also have been applied for real-time tracking the cellular dynamics during a series of biological events. In this review, the essential requirements of the metal complexes for cellular dynamic real-time tracking are summarized. The specificity, the good photostability and the low cytotoxicity of metal complexes are the key factors for real-time tracking. According to the optical properties, the imaging modes (single photon imaging, multiphoton imaging, luminescence lifetime imaging) of the metal complexes for real-time tracking are outlined. Furthermore, the advantages and disadvantages of the imaging modes during cellular real-time dynamic tracking are compared. As for the objects of real-time tracking, the article focuses on the organelles and the microenvironment factors. The real-time dynamic tracking of organelles (mitochondria, lysosomes, lipid droplets) and microenvironment factors (hypoxia, pH, viscosity, temperature, polarity) are detailed overviewed and systemized the related research directions. In the end, some existing problems and the challenges of the metal complexes during real-time tracking are presented and discussed.
Contents
1 Introduction
2 The essential requirements of real-time tracking probes
3 The imaging modes of transition metal complexes
4 Cellular dynamics tracking
4.1 Tracking the dynamics of organelles
4.2 Tracking the dynamics of microenvironment factors
5 Conclusion and outlook

CLC Number: 

[1] Satori C P, Henderson M M, Krautkramer E A, Kostal V, Distefano M D, Arriaga E A. Chem. Rev., 2013, 113:2733.
[2] Tofaris G K. Mov. Disord., 2012, 27:1364.
[3] Bitensky L, Chayen J, Cunningham G J, Fine J. Nature, 1963, 199:493.
[4] Mohamed M M, Sloane B F. Nat. Rev. Cancer, 2006, 6:764.
[5] Balut C, vandeVen M, Despa S, Lambrichts I, Ameloot M, Steels P, Smets I. Kidney Int., 2008, 73:226.
[6] Rosenberg B, VanCamp L, Trosko J E, Mansour V H. Nature, 1969, 222:385.
[7] Poynton F E, Bright S A, Blasco S, Williams D C, Kelly J M, Gunnlaugsson T. Chem. Soc. Rev., 2017, 46:7706.
[8] Caporale C, Massi M. Coord. Chem. Rev., 2018, 363:71.
[9] Zamora A, Vigueras G, Rodriguez V, Santana M D, Ruiz J. Coord. Chem. Rev., 2018, 360:34.
[10] You Y. J. Chin. Chem. Soc., 2018, 65:352.
[11] Notaro A, Gasser G. Chem. Soc. Rev., 2017, 46:7317.
[12] Patra M, Gasser G. Nat. Rev. Chem., 2017, 1:0066.
[13] Hostachy S, Policar C, Delsuc N. Coord. Chem. Rev., 2017, 351:172.
[14] Cao Q, Li Y, Freisinger E, Qin Z P, Sigel R K O, Mao Z W. Inorg. Chem. Front., 2017, 4:10.
[15] Zhao Q, Huang C, Li F. Chem. Soc. Rev., 2011, 40:2508.
[16] You Y, Nam W. Chem. Soc. Rev., 2012, 41:7061.
[17] Zeng L, Gupta P, Chen Y, Wang E, Ji L N, Chao H, Chen Z S. Chem. Soc. Rev., 2017, 46:5771.
[18] You Y. Curr. Opin. Chem. Biol., 2013, 17:699.
[19] Ma D L, Lin S, Wang W, Yang C, Leung C H. Chem. Sci., 2017, 8:878.
[20] Kumar N, Bhalla V, Kumar M. Coord. Chem. Rev., 2013, 257:2335.
[21] Tobita S, Yoshihara T. Curr. Opin. Chem. Biol., 2016, 33:39.
[22] 张晨(Zhang C), 关瑞麟(Guan R L), 陈禹(Chen Y), 计亮年(Ji L N), 巢晖(Chao H). 药学进展(Prog. Pharm. Sci.), 2017, 41:17.
[23] Chen Y, Guan R L, Zhang C, Huang J, Ji L N, Chao H. Coord. Chem. Rev., 2016, 310:16.
[24] Zhang K Y, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Chem. Rev., 2018, 118:1770.
[25] Ridley A J, Schwartz M A, Burridge K, Firtel R A, Ginsberg M H, Borisy G, Parsons J T, Horwitz A R. Science, 2003, 302:1704.
[26] Reed J C. Cancer Cell, 2003, 3:17.
[27] Cotter T G. Nat. Rev. Cancer, 2009, 9:501.
[28] Bendris N, Lemmers B, Blanchard J M. Cell Cycle, 2015, 14:1786.
[29] Chen J J, Jing J, Chang H, Rong Y, Hai Y, Tang J, Zhang J L, Xu P. Autophagy, 2013, 9:894.
[30] Ow Y P, Green D R, Hao Z, Mak T W. Nat. Rev. Mol. Cell Biol., 2008, 9:532.
[31] Guicciardi M E, Leist M, Gores G J. Oncogene, 2004, 23:2881.
[32] Papkovsky D B, Dmitriev R I. Chem. Soc. Rev., 2013, 42:8700.
[33] Xu W, Zeng Z, Jiang J H, Chang Y T, Yuan L. Angew. Chem. Int. Ed., 2016, 55:13658.
[34] Qiu K Q, Chen Y, Rees T W, Ji L N, Chao H. Coord. Chem. Rev., 2017, DOI:10.1016/j.ccr.2017.10.022.
[35] Wallace D C. Nat. Rev. Cancer, 2012, 12:685.
[36] Gutterman, D D. Circ. Res., 2005, 97:302.
[37] Green D R, Reed J C. Science, 1998, 281:1309.
[38] Vandecasteele G, Szabadkai G, Rizzuto R. IUBMB Life, 2001, 52:213.
[39] Westerman B. Nat. Rev. Mol. Cell Bio., 2010, 11:872.
[40] Komatsu H, Shindo Y, Oka K, Hill J P, Ariga K. Angew. Chem. Int. Ed., 2014, 53:3993.
[41] Korobova F, Ramabhadran V, Higgs H N. Science, 2013, 339:464.
[42] Huang H, Zhang P, Qiu K Q, Huang J, Chen Y, Ji L N, Chao H. Sci. Rep., 2016, 6:20887.
[43] Huang H, Yang L, Zhang P, Qiu K Q, Huang J, Chen Y, Diao J, Liu J, Ji L N, Long J, Chao H. Biomaterials, 2016, 83:321.
[44] Chen Y, Rees T W, Ji L N, Chao H. Curr. Opin. Chem. Biol., 2018, 43:51.
[45] Nishikawa T, Edelstein D, Du X L, Yamagishi S, Matsumura T, Kaneda Y, Yorek M A, Beebe D, Oates P J, Hammes H P, Giardino I, Brownlee M. Nature, 2000, 404:787.
[46] Chen Y, Qiao L, Ji L N, Chao H. Biomaterials, 2014, 35:2.
[47] Chen Y, Qiao L, Yu B, Li G, Liu C, Ji L N, Chao H. Chem. Commun., 2013, 49:11095.
[48] Qiu K Q, Huang H, Liu B, Liu Y, Zhang P, Chen Y, Ji L N, Chao H. J. Mater. Chem. B, 2015, 3:6690.
[49] Dolman N J, Chambers K M, Mandavilli B, Batchelor R H, Janes M S. Autophagy, 2013, 9:1653.
[50] Wang K, Klionsky D J. Autophagy, 2011, 7:297.
[51] Jin C, Liu J, Chen Y, Guan R, Ouyang C, Zhu Y, Ji L N, Chao H. Sci. Rep., 2016, 6:22039.
[52] Chen M H, Wang F X, Cao J J, Tan C P, Ji L N, Mao Z W. ACS Appl. Mater. Interfaces, 2017, 9:13304.
[53] Luzio J P, Pryor P R, Bright N A. Nat. Rev. Mol. Cell Biol., 2007, 8:622.
[54] Saftig P, Klumperman J. Nat. Rev. Mol. Cell Biol., 2009, 10:623.
[55] Perrot R, Julien J P. FASEB J., 2009, 23:3213.
[56] Millecamps S, Julien J P. Nat. Rev. Neurosci., 2013, 14:161.
[57] Ho Y M, Au N P B, Wong K L, Chan C T L, Kwok W M, Law G L, Tang K K, Wong W Y, Ma C H E, Lam M H W. Chem. Commun., 2014, 50:4161.
[58] Qiu K Q, Huang H, Liu B, Liu Y, Huang Z, Chen Yu, Ji L N, Chao H. ACS Appl. Mater. Interfaces, 2016, 8:12702.
[59] Mizushima N, Levine B. Nat. Cell Biol., 2010, 12:823.
[60] White E. Nat. Rev. Cancer, 2012, 12:401.
[61] Mizushima N. Genes Dev., 2007, 21:2861.
[62] He L, Tan C P, Ye R R, Zhao Y Z, Liu Y H, Zhao Q, Ji L N, Mao Z W. Angew. Chem. Int. Ed., 2014, 53:12137.
[63] Martin S, Parton R G. Nat. Rev. Mol. Cell Biol., 2006, 7:373.
[64] Farese R V, Walther T C. Cell, 2009, 139:855.
[65] Guo Y, Cordes K R, Farese R V, Walther T C. J. Cell Biol., 2009, 122:749.
[66] Walther T C, Farese R V. Annu. Rev. Biochem., 2012, 81:687.
[67] Cohen J C, Horton J D, Hobbs H H. Science, 2011, 332:1519.
[68] Bader C A, Brooks R D, Ng Y S, Sorvina A, Werrett M V, Wright P J, Anwer A G, Brooks D A, Stagni S, Muzzioli S, Silberstein M, Skelton B W, Goldys E M, Plush S E, Shandala T, Massi M. RSC Adv., 2014, 4:16345.
[69] Koshel E I, Chelushkin P S, Melnikov A S, Serdobintsev P Y, Stolbovaia A Y, Saifitdinova A F, Shcheslavskiy V I, Chernyavskiy O, Gaginskaya E R, Koshevoy I O, Tunik S P. J. Photoch. Photobio. A, 2017, 332:122.
[70] Tang J, Zhang Y, Yin H Y, Xu G, Zhang J L. Chem. Asian J., 2017, 12:2533.
[71] He L, Cao J J, Zhang D Y, Hao L, Zhang M F, Tan C P, Ji L N, Mao Z W. Sensor Actuat. B-Chem., 2018, 262:313.
[72] 王可(Wang K), 马会民(Ma H M). 化学进展(Progress in Chemistry), 2010, 22:1633.
[73] Monti M, Brandt L, Ikomi-Kumm J, Olsson H. Scand. J. Haematol., 1986, 36:353.
[74] Karnebogen M, Singer D, Kallerhoff M, Ringert R H. Thermochim. Acta, 1993, 229:147.
[75] Acker T, Acker H. J. Exp. Biol., 2004, 207:3171.
[76] Aragonés J, Fraisl P, Baes M, Carmeliet P. Cell MeTab., 2009, 9:11.
[77] Lenaz G, Genova M L. Int. J. Biochem. Cell Biol., 2009, 41:1750.
[78] Brahimi-Horn C, Berra E, Pouysségur J. Trends Cell Biol., 2001, 11:S32.
[79] Braun R D, Lanzen J L, Dewhirst M W. Am. J. Physiol., 1999, 277:H551.
[80] Anada T, Fukuda J, Sai Y, Suzuki O. Biomaterials, 2012, 33:8430.
[81] Solaini G, Baracca A, Lenaz G, Sgarbi G. Biochim. Biophys. Acta, 2010, 1797:1171.
[82] Huang T, Tong X, Yu Q, Yang H, Guo S, Liu S, Zhao Q, Zhang K Y, Huang W. J. Mater. Chem. C, 2016, 4:10638.
[83] Liu S, Liang H, Zhang K Y, Zhao Q, Zhou X, Xu W, Huang W. Chem. Commun., 2015, 51:7943.
[84] Li X, Tong X, Yan H, Lu C, Zhao Q, Huang W. Chem. Eur. J., 2016, 22:17282.
[85] Yoshihara T, Murayama S, Tobita S. Sensor, 2015, 15:13503.
[86] Son A, Kawasaki A, Hara D, Ito T, Tanabe K. Chem. Eur. J., 2015, 21:2527.
[87] Zhang P, Huang H, Chen Y, Wang J, Ji L N, Chao H. Biomaterials, 2015, 53:522.
[88] Sun L, Chen Y, Kuang S, Li G, Guan R, Liu J, Ji L N, Chao H. Chem. Eur. J., 2016, 22:8955.
[89] Casey J R, Grinstein S, Orlowski J. Nat. Rev. Mol. Cell Biol., 2010, 11:50.
[90] Liu J X, Diwu Z, Leung W Y. Bioorg. Med. Chem. Lett., 2001, 11:2903.
[91] Russell D A, Pottier R H, Valenzeno D P. Photochem. Photobiol., 1994, 59:309.
[92] Ma Y, Liang H, Zeng Y, Yang H, Ho C L, Xu W, Zhao Q, Huang W, Wong W Y. Chem. Sci., 2016, 7:3338.
[93] Yu H J, Hao Z, Peng H, Rao R, Sun M, Ross A W, Ran C, Chao H, Yu L. Sensors Actuat. B-Chem., 2017, 252:313.
[94] Qiu K Q, Ke L, Zhang X, Liu Y, Rees T W, Ji L N, Diao J, Chao H. Chem. Commun., 2018, 54:2421.
[95] Nadiv O, Shinitzky M, Manu H, Hecht D, Roberts C, LeRoith D, Zick Y. Biochem. J., 1994, 298:443.
[96] Singer S J, Nicolson G L. Science, 1972, 175:720.
[97] Yang Z, Cao J, He Y, Yang J H, Kim T, Peng X, Kim J S. Chem. Soc. Rev., 2014, 43:4563.
[98] Kuimova M K, Botchway S W, Parker A W, Balaz M, Collins H A, Anderson H L, Suhling K, Ogilby P R. Nat. Chem., 2009, 1:69.
[99] Bui A T, Grichine A, Duperray A, Lidon P, Riobe F, Andraud C, Maury O. J. Am. Chem. Soc., 2017, 139:7693.
[100] Yin H, Tang J, Zhang J L. Sci. Chi. Chem., 2017, 47:267.
[101] Liu F, Wen J, Chen S S, Sun S G. Chem. Commun., 2018, 54:1371.
[102] Drubin D G, Nelson W J. Cell, 1996, 84:335.
[103] Zhuang Y D, Chiang P Y, Wang C W, Tan K T. Angew. Chem. Int. Ed., 2013, 52:8124.
[104] Huang L, Tam-Chang S W. J. Fluoresc., 2011, 21:213.
[105] Jiang N, Fan J, Xu F, Peng X, Mu H, Wang J, Xiong X. Angew. Chem. Int. Ed., 2015, 54:2510.
[106] Li X, Tong X, Yin Y, Yan H, Lu C, Huang W, Zhao Q. Chem. Sci., 2017, 8:5930.
[107] Wang X, Wolfbeis O S, Meier R J. Chem. Soc. Rev., 2013, 42:7834.
[108] Qiao J, Mu X, Qi L. Biosens. Bioelectron., 2016, 85:403.
[109] Sakaguchi R, Kiyonaka S, Mori Y. Curr. Opin. Biotech., 2015, 31:57.
[110] Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. Nature, 2004, 430:748.
[111] Zhang H, Jiang J, Gao P, Yang T, Zhang K Y, Chen Z, Liu S, Huang W, Zhao Q. ACS Appl. Mater. Interfaces, 2018, 10:17542.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[4] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[5] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[6] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[7] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[8] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[9] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[10] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[11] Yang Wang, Chusen Huang, Nengqin Jia. Molecular Fluorescent Probe for Monitoring Cellular Microenvironment and Active Molecules [J]. Progress in Chemistry, 2020, 32(2/3): 204-218.
[12] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[13] Xiaoyan Wei, Gang Wang*, Anfeng Li, Yizhou Quan, Jinwei Chen, Ruilin Wang*. Application of Electrochemical Quartz Crystal Microbalance [J]. Progress in Chemistry, 2018, 30(11): 1701-1721.
[14] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[15] Chibao Huang*, Shaoying Chen. Two-Photon Fluorescence Probe [J]. Progress in Chemistry, 2017, 29(10): 1215-1227.