中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (7): 980-995 DOI: 10.7536/PC181108 Previous Articles   Next Articles

Special Issue: 金属有机框架材料

Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes

Yuanming Tan, Hao Meng, Xia Zhang**()   

  1. Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
  • Received: Online: Published:
  • Contact: Xia Zhang
  • Supported by:
    National Natural Science Foundation of China(21501023); TNational Natural Science Foundation of China(21103017)
Richhtml ( 64 ) PDF ( 2907 ) Cited
Export

EndNote

Ris

BibTeX

The development of global industries has brought serious problem of water pollution, therefore, the efficient treatment of wastewater containing various kinds of organic and inorganic pollutants is one of the most important research topics. Metal-organic frameworks(MOFs) have been widely applied in many fields, especially in the solid phase adsorption/separation owing to their large surface area, high porosity, ordered structure and tunable porous physico-chemical properties, thermal stability, easy synthesis and abundant open active sites. The functionalization methods of MOFs such as post-synthesis modification, in situ synthesis with linkers containing substituents, and hybridization with specific functional materials could effectively increase the adsorption active sites, thus enhancing the adsorption performance and adsorption selectivity. Compared to MOFs particles, MOFs/polymer composite membranes combine the special structure and physico-chemical properties of MOFs and excellent adsorption/carrier nature of polymer films and thus exhibit extraordinary adsorption/separation performances in the removal of pollutants. In this paper, we focus on the functionalization methods of MOFs which are applied in the adsorption/removal of dyes and heavy metal ions. We also summarize the fabrication technology of MOFs/polymer composite membranes and their applications in the wastewater treatment. Finally, the development direction and research prospect of MOFs-related composite materials are also proposed.

Fig. 1 The structures of PVBTAH~ZIF-8 ion-exchange materials[39]
Fig. 2 The functionalization of MOF-808 with EDTA for metal ions adsorption[45]
Fig. 3 The adsorption of Hg2+ on Zr-DMBD framework[53]
Fig. 4 The preparation of MCNC@Zn-BTC and its application for Pb2+ adsorption[64]
Fig. 5 Sketching map of synthesis of Cu-BTC/PVDF hybrid membranes[101]
Fig. 6 Preparation of the ZIF-8/PSS/HPAN hybrid membrane[105]
Fig. 7 The preparation of TFN-mZIF composite membrane[109]
Fig. 8 Preparation of a PSP-derived membrane by photoinduced postsynthetic polymerization[93]
[1]
Yagub M T, Sen T K, Afroze S, Ang H M . Adv. Colloid Interface Sci., 2014,209:172.
[2]
Ahmad A, Mohd-Setapar S H, Chuong C S, Khatoon A, Wani W A, Kumar R, Rafatullah M . RSC Adv., 2015,5:30801.
[3]
Haque E, Lee J E, Jang I T, Hwang Y K, Chang J S, Jegal J, Jhung S H . J.Hazard. Mater., 2010,181:535.
[4]
Kobielska P A, Howarth A J, Farha O K, Nayak S . Coord. Chem. Rev., 2018,358:92.
[5]
Feng M, Zhang P, Zhou H C, Sharma V K . Chemosphere, 2018,209:783.
[6]
Hasan Z, Jhung S H . J.Hazard. Mater., 2015,283:329. https://www.ncbi.nlm.nih.gov/pubmed/25305363

doi: 10.1016/j.jhazmat.2014.09.046 pmid: 25305363
[7]
Dias J M, Alvim-Ferraz M C M, Almeida M F, Rivera-Utrilla J, Sánchez-Polo M . J. Environ. Manage., 2007,85:833. 4a255f1a-62e6-4acb-bae1-35fe9ba23089http://www.sciencedirect.com/science/article/pii/S0301479707002964

doi: 10.1016/j.jenvman.2007.07.031
[8]
Ihsanullah, Abbas A, Al-Amer A M, Laoui T, Al-Marri M J, Nasser M S, Khraisheh M, Atieh M A . Sep. Purif. Technol., 2016,157:141.
[9]
Cao Y, Li X . Adsorption, 2014,20:713.
[10]
Babel S, Kurniawan T A . J.Hazard. Mater., 2003,97:219.
[11]
Ahmed M N, Ram R N . Environ. Pollut., 1992,77:79.
[12]
Delkash M, Bakhshayesh B E, Kazemian H . Micropor. Mesopor. Mat., 2015,214:224.
[13]
Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q . J.Hazard. Mater., 2012,211:317.
[14]
Butova V V, Soldatov M A, Guda A A, Lomachenko K A, Lamberti C . Russ. Chem. Rev., 2016,85:280.
[15]
Li J, Cheng S, Zhao Q, Long P, Dong J . Int. J. Hydrogen Energ., 2009,34:1377.
[16]
Sung H J, Lee J H, Chang J S . B. Korean Chem. Soc., 2005,26:880.
[17]
Qiu L G, Li Z Q, Wu Y, Wang W, Xu T, Jiang X . Chem. Commun., 2008,3642.
[18]
Yuan W, Garay A L, Pichon A, Clowes R, Wood C D, Cooper A I, James S L . CrystEngComm, 2010,12:4063.
[19]
Peng L, Zhang J, Li J, Han B, Xue Z, Yang G . Chem. Commun., 2012,48:8688.
[20]
Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J . J.Mater. Chem., 2006,16:626.
[21]
Gangu K K, Maddila S, Mukkamala S B, Jonnalagadda S B . Inorg. Chim. Acta, 2016,446:61.
[22]
Rowsell J L C, Yaghi O M . J.Am. Chem. Soc., 2006,128:1304. https://www.ncbi.nlm.nih.gov/pubmed/16433549

doi: 10.1021/ja056639q pmid: 16433549
[23]
Li Y W, Li J R, Wang L F, Zhou B Y, Chen Q, Bu X H . J. Mater. Chem. A, 2013,1:495.
[24]
Horcajada P, Márquez-Alvarez C, Rámila A, Pérez-Pariente J, Vallet-Regí M . Solid State Sci., 2006,8:1459.
[25]
Shamzhy M V, Opanasenko M V, Garcia H, Čejka J . Micropor. Mesopor. Mat., 2015,202:297. https://linkinghub.elsevier.com/retrieve/pii/S1387181114005770

doi: 10.1016/j.micromeso.2014.10.003
[26]
Haque E, Jun J W, Jhung S H . J.Hazard. Mater., 2011,185:507. https://www.ncbi.nlm.nih.gov/pubmed/20933323

doi: 10.1016/j.jhazmat.2010.09.035 pmid: 20933323
[27]
Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F . J.Hazard. Mater., 2011,196:36.
[28]
Wang C, Liu X, Demir N K, Chen J P, Li K . Chem. Soc. Rev., 2016,45:5107.
[29]
Yang C, Kaipa U, Mather Q Z, Wang X, Nesterov V, Venero A F, Omary M A, J . Am. Chem. Soc., 2011,133:18094. https://www.ncbi.nlm.nih.gov/pubmed/21981413

doi: 10.1021/ja208408n pmid: 21981413
[30]
Taylor J M, R Vaidhyanathan, Iremonger S S, Shimizu G K, J . Am. Chem. Soc., 2012,134:14338. https://www.ncbi.nlm.nih.gov/pubmed/22909234

doi: 10.1021/ja306812r pmid: 22909234
[31]
Tong M, Liu D, Yang Q, Devautour-Vinot S, Maurin G, Zhong C . J. Mater. Chem. A, 2013,1:8534.
[32]
Xu Y, Jin J, Li X, Han Y, Meng H, Wang T, Zhang X . RSC Adv., 2015,5:19199.
[33]
Conde-gonzález J E, Peñaméndez E M, Rybáková S, Pasán J, Ruiz-Pérez C, Havel J . Chemosphere, 2016,150:659.
[34]
Tehrani M S, Zare-Dorabei R . Spectrochim. Acta A, 2016,160:8.
[35]
Bakhtiari N, Azizian S . J.Mol. Liq., 2015,206:114. https://linkinghub.elsevier.com/retrieve/pii/S0167732215000999

doi: 10.1016/j.molliq.2015.02.009
[36]
Luo X, Ding L, Luo J . J. Chem. Eng. Data, 2015,60:1732.
[37]
Bai Z Q, Yuan L Y, Zhu L, Liu Z R, Chu S Q, Zheng L R, Zhang J, Chai Z F, Shi W Q . J. Mater. Chem. A, 2014,3:525.
[38]
Wang Y, Ye G, Chen H, Hu X, Niu Z, Ma S . J. Mater. Chem. A, 2015,3:15292.
[39]
Gao L, Li C Y V, Chan K Y, Chen Z N . J. Am. Chem. Soc., 2014,136:7209. eb74183d-e991-4f7d-98c4-1e856cba47e8http://dx.doi.org/10.1021/ja501958u

doi: 10.1021/ja501958u
[40]
Peng Y, Huang H, Liu D, Zhong C . ACS Appl. Mater. Interfaces, 2016,8:8527.
[41]
Huang L, He M, Chen B, Hu B . J. Mater. Chem. A, 2016,4:5159.
[42]
Alqadami A A, Naushad M, Alothman Z A, Ahamad T . ACS Appl. Mater. Inter., 2017,9:36026.
[43]
Alqadami A A, Naushad M, Alothman Z A, Ahamad T . J.Environ. Manage., 2018,223:29. https://www.ncbi.nlm.nih.gov/pubmed/29885562

doi: 10.1016/j.jenvman.2018.05.090 pmid: 29885562
[44]
Yin N, Wang K, Li Z . Desalination, 2018,430:120.
[45]
Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, Liu D, Zhong C . Nat. Commun., 2018,9:187.
[46]
Fan L, Deng M, Lin C, Xu C, Liu Y, Shi Z, Wang Y, Xu Z, Li L, He M . RSC Adv., 2018,8:10561.
[47]
Yuan G, Zhao C, Tu H, Li M, Liu J, Liao J, Yang Y, Yang J, Liu N . Inorg. Chim. Acta, 2018,483:488.
[48]
Olorunyomi J F, Chan K Y, Gao L, Voskanyan A A, Li C Y V . Micropor. Mesopor. Mater., 2018,259:255.
[49]
Zhou X P, Xu Z, Zeller M, Hunter A D . Chem. Commun., 2009,5439.
[50]
Haque E, Lo V, Minett A, Harris A T, Church T L . J. Mater. Chem. A, 2013,2:193.
[51]
Wang K, Gu J, Yin N . Ind. Eng. Chem. Res., 2017,56:1880.
[52]
何燕萍(He Y Y), 谭衍曦(Tan Y X), 张健(Zhang J) . 化学学报 (Acta Chimica Sinica), 2014,72(12):1228.
[53]
Yee K K, Reimer N, Liu J, Cheng S Y, Yiu S M, Weber J, Stock N, Xu Z . J.Am. Chem. Soc., 2013,135:7795. https://www.ncbi.nlm.nih.gov/pubmed/23646999

doi: 10.1021/ja400212k pmid: 23646999
[54]
Luo X P, Fu S Y, Du Y M, Guo J Z, Li B . Micropor. Mesopor. Mat., 2017,237:268.
[55]
Zhang Y, Zhao X, Huang H, Li Z, Liu D, Zhong C . RSC Adv., 2015,5:72107.
[56]
Ebrahimi A K, Sheikhshoaie I, Mehran M . J.Mol. Liq., 2017,240:803. https://linkinghub.elsevier.com/retrieve/pii/S0167732217309492

doi: 10.1016/j.molliq.2017.06.097
[57]
Meng X, Zhong R L, Song X Z, Song S Y, Hao Z M, Zhu M, Zhao S N, Zhang H J . Chem. Commun., 2014,50:6406.
[58]
Xiong Y Y, Li J Q, Gong L L, Feng X F, Meng L N, Zhang L, Meng P P, Luo M B, Luo F . J.Solid State Chem., 2017,246:16.
[59]
Zou F, Yu R, Li R, Li W . ChemPhysChem, 2013,14:2825.
[60]
Yan A X, Yao S, Li Y G, Zhang Z M, Lu Y, Chen W L, Wang E B . Chem. Eur. J., 2014,20:6927.
[61]
Xiong Y, Ye F, Zhang C, Shen S, Su L, Zhao S . RSC Adv., 2014,5:5164.
[62]
Askari H, Ghaedi M, Dashtian K, Azghandi M H A . Ultrason. Sonochem., 2017,37:71.
[63]
Wang K, Tao X, Xu J, Yin N . Chem. Lett., 2016,45:1365.
[64]
Wang N, Ouyang X K, Yang L Y, Omer A M . ACS Sustain. Chem. Eng., 2017,5:10447.
[65]
Yang C, Cheng J, Chen Y, Hu Y . J.Colloid Interf. Sci., 2017,504:39.
[66]
Liang L, Liu L, Jiang F, Liu C, Yuan D, Chen Q, Wu D, Jiang H L, Hong M . Inorg. Chem., 2018,57:4891.
[67]
Yang C, Wu S, Cheng J, Chen Y . J.Alloy. Compound., 2016,687:804.
[68]
Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J . J. Mater. Chem. A, 2017,5:17933.
[69]
Abdi J, Vossoughi M, Mahmoodi N M, Alemzadeh I . Chem. Eng. J., 2017,326:1145.
[70]
Samuel M S, Subramaniyan V, Bhattacharya J, Parthiban C, Chand S, Singh N D P . Compos. Part B-Eng., 2018,152:116.
[71]
Yang J M, Ying R J, Han C X, Hu Q T, Xu H M, Li J H, Wang Q, Zhang W . Dalton Trans, 2018,47:3913.
[72]
Zhang J, Xiong Z, Li C, Wu C . J.Mol. Liq., 2016,221:43. https://linkinghub.elsevier.com/retrieve/pii/S0167732216305219

doi: 10.1016/j.molliq.2016.05.054
[73]
马苗苗(Ma M M), 李梅(Li M), 柯福生(Ke F S) . 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2018,34(09):1663.
[74]
Azhar M R, Abid H R, Sun H, Periasamy V, Tadé M O, Wang S . J.Colloid Interf. Sci., 2017,490:685. https://www.ncbi.nlm.nih.gov/pubmed/27940035

doi: 10.1016/j.jcis.2016.11.100 pmid: 27940035
[75]
Shen J, Wang X, Zhang L Yang W Tian Z Chen J Tao T . J. Clean. Prod., 2018,184:949. https://linkinghub.elsevier.com/retrieve/pii/S0959652618306644

doi: 10.1016/j.jclepro.2018.03.015
[76]
Mao J, Ge M, Huang J, Lai Y, Lin C, Zhang K, Meng K, Tang Y . J. Mater. Chem. A, 2017,5:11873.
[77]
Yin N, Wang K, Wang L, Li Z . Chem. Eng. J., 2016,306:619.
[78]
Khanjani S, Morsali A . Ultrason. Sonochem., 2014,21:1424.
[79]
Yang W, Wang J, Yang Q, Pei H, Hu N, Suo Y, Li Z, Zhang D, Wang J . Chem. Eng. J., 2018,339:230.
[80]
Li H, Li M, Li W, Yang Q, Li Y, Gu Z, Song Y . Phys. Chem. Chem. Phys., 2016,19:5746.
[81]
Li Z, Zhou G, Dai H, Yang M, Fu Y, Ying Y, Li Y . J. Mater. Chem. A, 2018,6:3402.
[82]
Ting H, Chi H Y, Lam C H, Chan K Y, Kang D Y . Environ. Sci.-Nano, 2017,4:2205.
[83]
Chi H Y, Hung S H, Kan M Y, Lee L W, Lam C H, Chen J J, Kang D Y . CrystEngComm, 2018,20:5465.
[84]
Lee A, Elam J W, Darling S B . Environ. Sci.: Water Res. Technol., 2016,2:17.
[85]
Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelechc M, Jiang Z . Chem. Soc. Rev., 2016,45:5888.
[86]
Car A, Stropnik C, Peinemann K V . Desalination, 2006,200:424.
[87]
Denny M S, Moreton J C, Benz L, Cohen S M . Nat. Rev. Mater., 2016,1:16078.
[88]
Zirehpour A, Rahimpour A, Ulbricht M . J.Membrane Sci., 2017,531:59.
[89]
Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston A G . J.Am. Chem. Soc., 2013,135:15201. https://www.ncbi.nlm.nih.gov/pubmed/24044635

doi: 10.1021/ja407665w pmid: 24044635
[90]
Sorribas S, Kudasheva A, Almendro E, Zornoza B, Iglesia Ó, Télleza C, Coronas J . Chem. Eng. Sci., 2015,124:37.
[91]
Wu B, Liang G, Lin X, Wu L, Luo J, Xu T . J.Membrane Sci., 2014,458:86.
[92]
Li Y, Wee L H, Volodin A, Martensa J A, Vankelecom I F J . Chem. Commun., 2014,51:918. http://xlink.rsc.org/?DOI=C4CC06699E

doi: 10.1039/C4CC06699E
[93]
Zhang Y, Feng X, Li H, Chen Y, Zhao J, Wang S, Wang L, Wang B . Angew. Chem. Int. Ed., 2015,54:4259.
[94]
Denny M S, Cohen S M . Angew. Chem. Int. Ed., 2015,54:9029.
[95]
Yao B J, Jiang W L, Dong Y, Liu Z X, Dong Y B . Chem. Eur. J., 2016,22:10565.
[96]
Shooto N D, Dikio C W, Wankasi D, Sikhwivhilu L M, Mtunzi F M, Dikio E D . Nanoscale Res. Lett., 2016,11:414.
[97]
Albuquerque G H, Herman G S . Cryst. Growth Des., 2017,17:156.
[98]
Makhetha T A, Moutloali R M . J.Membrane Sci., 2018,554:195.
[99]
Efome J E, Rana D, Matsuura T, Lan C Q . J. Mater. Chem. A, 2018,6:4550.
[100]
Efome J, Rana D, Matsuura T, Lan C Q . ACS Appl. Mater. Inter., 2018,10:18619.
[101]
于承鑫(Yu C X), 刘洋洋(Liu Y Y), 张霞(Zhang X) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2018,39(07):1384.
[102]
Tan Y, Sun Z, Meng H, Han Y, Wu J, Xu J, Xu Y, Zhang X . Sep. Purif. Technol., 2019,215:217.
[103]
Basu S, Balakrishnan M . Sep. Purif. Technol., 2017,179:118.
[104]
Park J, Oh M . Nanoscale, 2017,9:12850.
[105]
Zhang R, Ji S, Wang N, Wang L, Zhang G, Li J R . Angew. Chem. Int. Ed., 2015,53:9775.
[106]
Guo Y, Wang X, Hu P, Peng X . Appl. Mater. Today, 2016,5:103.
[107]
Yang L, Wang Z, Zhang J . J. Mater. Chem. A, 2017,5:15342.
[108]
Li T, Zhang W, Shu Z, Gao G, Ding J, Zhang W, Liu Y, Zhao X, Pan B, Lv L . Water Res., 2018,143:87.
[109]
Zhu J, Qin L, Uliana A, Hou J, Wang J, Zhang Y, Li Xin, Yuan S, Li J, Tian M, Lin J, Bruggen B V . ACS Appl. Mater. Inter., 2017,9:1975.
[110]
Golpour M, Pakizeh M . Chem. Eng. J., 2018,345:221.
[111]
Jia Z, Jiang M, Wu G . Chem. Eng. J., 2016,307:283.
[112]
Zhang P, Gong J L, Zeng G M, Song B, Liu H Y, Huan S Y, Li J . Chemosphere, 2018,204:378.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[3] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[6] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[7] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[8] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[9] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[10] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[11] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[12] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[13] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[14] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[15] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.