中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 752-766 DOI: 10.7536/PC200653 Previous Articles   Next Articles

• Original article •

Novel Two-Dimensional MXene for Biomedical Applications

Huifeng Xu1,*(), Yongqiang Dong2, Xi Zhu3,*(), Lishuang Yu4   

  1. 1 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
    2 Ministry of Education Key Laboratory of Analysis Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
    3 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    4 College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
  • Received: Revised: Online: Published:
  • Contact: Huifeng Xu, Xi Zhu
  • Supported by:
    NSFC(81773894); Natural Science Funds of Fujian Province for Distinguished Young Scholar(2019J06021)
Richhtml ( 68 ) PDF ( 1266 ) Cited
Export

EndNote

Ris

BibTeX

As a novel kind of two dimensional material, MXene refers to the family of two-dimensional transition metal carbides, nitrides or carbonitrides. The general formula of this material is Mn+1XnTx(n=1~3) where M is transitional metal, X is carbon or nitrogen and T is active functional groups such as fluorine, hydroxyl or oxygen-containing group. The ultra-thin structure and fascinating physical and chemical(electronic, optical, magnetic, etc.) properties of this material has attracted wide interest in mechanical engineering, optics, energy, and electronics areas. Currently, MXenes are broadening their applications in the biomedical field. This is mainly originated from their large surface area and strong absorbance in near-infrared region, combining with their facile surface modifications with various molecular or nanoparticles. This review introduces the very recent progress and novel paradigms of MXenes for state-of-the-art biomedical applications. Firstly, the preparation methods and surface modifications of MXenes designed for biomedical applications is introduced. Then their applications in the biomedical areas are emphasized, including structural- and dose-dependent antimicrobial activity, bioimaging, photothermal cancer therapy, precise biosensors and so on. Finally, the current challenges and future opportunities of applying MXene-based nanomaterials and nanocomposites in biomedical field are summarized and discussed. It is highly expected that the ultrathin MXenes and their elaborately designed nanocomposites will become one of the most attractive biocompatible inorganic nano-platforms for multiple and extensive biomedical applications.

Contents

1 Introduction

2 Preparation methods

2.1 Synthesis of MXene

2.2 Surface modifications

3 Biomedical applications

3.1 Antibacterial activity

3.2 Bioimaging

3.3 Tumor therapy

3.4 Biosensing

3.5 Others

4 Conclusion and outlook

Fig. 1 (A) The periodic table presenting the elements used for the formation of Mxenes and MAX phase and(B) schematic depicting the synthesis process of MXene using HF as the etchant[4]. Copyright 2018, Wiley-VCH.
Table 1 Different etching and delamination condition used for the synthesis of MXenes
Fig. 2 Several surface modi?cation methods of MXene-based materials:(A) Physical adsorption[28], Copyright 2017, American Chemical Society.(B) Electrostatic adsorption[26], Copyright 2017, American Chemical Society.(C) Covalent method through APTES[29], Copyright 2018, Ivyspring International Publisher.(D) SIPGP polymerization[34]. Copyright 2014, the Royal Society of Chemistry.
Fig. 3 Characterization of MXenes based antibacterial materials.(A) Antibacterial activities of the Ti3C2Tx nanosheets as a function of concentration[35]. Copyright 2016, American Chemical Society.(B) Schematic structure and antibacterial activities of the 21% Ag-decorated Ti3C2Tx -based membrane[38]. Copyright 2018, the Royal Society of Chemistry.
Fig. 4 Bioimaging of MXenes:(A) fluorescence imaging[37].(a) Bright-field imaging;(b) Merged images of the bright-field and the confocal images(Ex =488 nm) ; and(c) Fluorescent imaging(Ex = 488 nm) of THP-1 monocytes incubated with N, P-MQDs;(d~f) Corresponding images of the control cells without N, P-MQDs. Copyright 2019, The Royal Society of Chemistry.(B) PA imaging[19,46].(a) The Schematic representation of MXene-mediated PAI. Upon exposure to the NIR laser, the tissue constituents absorb light, undergo thermoelastic expansion, and subsequently produce ultrasound signals(photoacoustic effect), which can be detected by an ultrasound sensor;(b) PA images of MQDs at different excitation wavelengths;(c) PA images of different concentrations of the MQDs at 680 nm. Copyright 2017, The Royal Society of Chemistry.
Table 2 Different types of MXenes and their applications in cancer medicine
Fig. 5 MXene-based photothermal therapy.(A) Absorbance spectra of well-dispersed aqueous Nb2CTx at varied concentrations.(B) Photostability profles of an aqueous Nb2CTx solution in NIR-Ⅰ and NIR-Ⅱ biowindows for fve laser on/off cycles.(C) Schematic diagram of in vivo tumor tissue penetration for photothermal conversion based on NIR-Ⅰ and NIR-Ⅱ.(D) Relative viabilities of U87 cell line after Nb2CTx-PVP-induced photothermal eradication at various power densities of laser.(E) Cancer cellular proliferation at varied depths of tumor tissues by antigen Ki-67 immunofuorescence staining,(F) Time-dependent tumor growth curves after various treatments.(G) Temperature elevations of Nb2CTx dispersed aqueous suspensions upon exposure to NIR-Ⅰ and NIR-Ⅱ laser via photothermal conversion. Copyright 2017, American Chemical Society.
Fig. 6 Typical kinds of biosensors constructed by 2D MXenes.(A) gas sensors[62], Copyright 2017, Elsevier;(B) electrochemical sensors[63], Copyright 2017, Elsevier;(C) electrochemical immunosensors[73], Copyright 2019, Elsevier;(D) ECL sensors[80], Copyright 2020, American Chemical Society;(E) fluorescent sensors[84], Copyright 2018, American Chemical Society;(F) wearable pressure sensors[95]. Copyright 2018, American Chemical Society.
[1]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37):4248.

doi: 10.1002/adma.201102306
[2]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7):992.

doi: 10.1002/adma.201304138
[3]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2):1322.

doi: 10.1021/nn204153h
[4]
Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J W. Adv. Mater., 2018, 30:e1704561.
[5]
Jiang X T, Kuklin A V, Baev A, Ge Y Q, Ågren H, Zhang H, Prasad P N. Phys. Rep., 2020, 848:1.

doi: 10.1016/j.physrep.2019.12.006
[6]
Li J H, Zhang J, Rui B L, Lin L, Chang L M, Nie P. Prog. Chem., 2019, 31(9):1283.
( 李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. 化学进展, 2019, 31(9):1283.)

doi: 10.7536/PC190219
[7]
Yao S S, Li R, Ye H Q, Han K. Prog. Chem., 2018, 30(7):932.
( 姚送送, 李诺, 叶红齐, 韩凯. 化学进展, 2018, 30(7):932.

doi: 10.7536/PC171114
[8]
Huang K, Li Z J, Lin J, Han G, Huang P. Chem. Soc. Rev., 2018, 47:5109.

doi: 10.1039/c7cs00838d pmid: 29667670
[9]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2):16098.

doi: 10.1038/natrevmats.2016.98
[10]
Verger L, Natu V, Carey M, Barsoum M W. Trends Chem., 2019, 1(7):656.

doi: 10.1016/j.trechm.2019.04.006
[11]
Cao M S, Cai Y Z, He P, Shu J C, Cao W Q, Yuan J. Chem. Eng. J., 2019, 359:1265.

doi: 10.1016/j.cej.2018.11.051
[12]
Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Chem. Mater., 2016, 28(1):349.

doi: 10.1021/acs.chemmater.5b04250
[13]
Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A. Adv. Electron. Mater., 2016, 2(12):1600255.

doi: 10.1002/aelm.v2.12
[14]
Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W. J. Am. Chem. Soc., 2013, 135(43):15966.

doi: 10.1021/ja405735d
[15]
Zhou J, Zha X H, Chen F Y, Ye Q, Eklund P, Du S Y, Huang Q. Angew. Chem. Int. Ed., 2016, 55(16):5008.

doi: 10.1002/anie.v55.16
[16]
Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X. Mater. Des., 2017, 114:161.

doi: 10.1016/j.matdes.2016.10.053
[17]
Urbankowski P, Anasori B, Makaryan T, Er D Q, Kota S, Walsh P L, Zhao M Q, Shenoy V B, Barsoum M W, Gogotsi Y. Nanoscale, 2016, 8(22):11385.

doi: 10.1039/c6nr02253g pmid: 27211286
[18]
Xuan J N, Wang Z Q, Chen Y Y, Liang D J, Cheng L, Yang X J, Liu Z, Ma R Z, Sasaki T, Geng F X. Angew. Chem. Int. Ed., 2016, 55(47):14569.

doi: 10.1002/anie.v55.47
[19]
Yu X H, Cai X K, Cui H D, Lee S W, Yu X F, Liu B L. Nanoscale, 2017, 9(45):17859.

doi: 10.1039/C7NR05997C
[20]
Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed., 2018, 57(21):6115.

doi: 10.1002/anie.v57.21
[21]
Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J. J. Mater. Chem. A, 2017, 5(41):21663.

doi: 10.1039/C7TA05574A
[22]
Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L. Angew. Chem. Int. Ed., 2018, 57(47):15491.

doi: 10.1002/anie.v57.47
[23]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11):4730.

doi: 10.1021/jacs.9b00574
[24]
Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Piñero E, Taberna P L, Simon P, Huang Q. Nat. Mater., 2020, 19(8):894.

doi: 10.1038/s41563-020-0657-0
[25]
Lin H, Gao S S, Dai C, Chen Y, Shi J L. J. Am. Chem. Soc., 2017, 139(45):16235.

doi: 10.1021/jacs.7b07818
[26]
Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Nano Lett., 2017, 17(1):384.

doi: 10.1021/acs.nanolett.6b04339
[27]
Dai C, Chen Y, Jing X X, Xiang L H, Yang D Y, Lin H, Liu Z, Han X X, Wu R. ACS Nano, 2017, 11(12):12696.

doi: 10.1021/acsnano.7b07241 pmid: 29156126
[28]
Liu G Y, Zou J H, Tang Q Y, Yang X Y, Zhang Y W, Zhang Q, Huang W, Chen P, Shao J J, Dong X C. ACS Appl. Mater. Interfaces, 2017, 9(46):40077.

doi: 10.1021/acsami.7b13421
[29]
Han X X, Jing X X, Yang D Y, Lin H, Wang Z G, Ran H T, Li P, Chen Y. Theranostics, 2018, 8(16):4491.

doi: 10.7150/thno.26291
[30]
Steenackers M, Kuüller A, Stoycheva S, Grunze M, Jordan R. Langmuir, 2009, 25(4):2225.

doi: 10.1021/la803386c pmid: 19140707
[31]
Gupta S, Agrawal M, Conrad M, Hutter N A, Olk P, Simon F, Eng L M, Stamm M, Jordan R. Adv. Funct. Mater., 2010, 20(11):1756.

doi: 10.1002/adfm.201000025
[32]
Lehr J, Garrett D J, Paulik M G, Flavel B S, Brooksby P A, Williamson B E, Downard A J. Anal. Chem., 2010, 82(16):7027.

doi: 10.1021/ac101785c
[33]
Wang H B, Zhang J F, Wu Y P, Huang H J, Jiang Q G. J. Phys. Chem. Solids, 2018, 115:172.

doi: 10.1016/j.jpcs.2017.12.039
[34]
Chen J, Chen K, Tong D Y, Huang Y J, Zhang J W, Xue J M, Huang Q, Chen T. Chem. Commun., 2015, 51(2):314.

doi: 10.1039/C4CC07220K
[35]
Rasool K, Helal M, Ali A, Ren C G, Gogotsi Y, Mahmoud K A. ACS Nano, 2016, 10(3):3674.

doi: 10.1021/acsnano.6b00181
[36]
Rasool K, Mahmoud K A, Johnson D J, Helal M, Berdiyorov G R, Gogotsi Y. Sci. Rep., 2017, 7:1598.

doi: 10.1038/s41598-017-01714-3
[37]
Jastrzębska A. Int. J. electrochem. sci., 2016, 12:2159.
[38]
Pandey R P, Rasool K, Madhavan V E, Aïssa B, Gogotsi Y, Mahmoud K A. J. Mater. Chem. A, 2018, 6(8):3522.

doi: 10.1039/C7TA10888E
[39]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.

doi: 10.1038/nature13970
[40]
Wang Z Q, Xuan J N, Zhao Z G, Li Q W, Geng F X. ACS Nano, 2017, 11(11):11559.

doi: 10.1021/acsnano.7b06476
[41]
Xue Q, Zhang H J, Zhu M S, Pei Z X, Li H F, Wang Z F, Huang Y, Huang Y, Deng Q H, Zhou J, Du S Y, Huang Q, Zhi C Y. Adv. Mater., 2017, 29(15):1604847.

doi: 10.1002/adma.201604847
[42]
Zhou L, Wu F M, Yu J H, Deng Q H, Zhang F A, Wang G. Carbon, 2017, 118:50.

doi: 10.1016/j.carbon.2017.03.023
[43]
Xu Q, Ding L, Wen Y Y, Yang W J, Zhou H J, Chen X Z, Street J, Zhou A G, Ong W J, Li N. J. Mater. Chem. C, 2018, 6(24):6360.

doi: 10.1039/C8TC02156B
[44]
Guan Q W, Ma J F, Yang W J, Zhang R, Zhang X J, Dong X X, Fan Y T, Cai L L, Cao Y, Zhang Y L, Li N, Xu Q. Nanoscale, 2019, 11(30):14123.

doi: 10.1039/C9NR04421C
[45]
Yang G H, Zhao J L, Yi S Z, Wan X J, Tang J N. Sensor Actuat. B: Chem., 2020, 309:127735.

doi: 10.1016/j.snb.2020.127735
[46]
Soleymaniha M, Shahbazi M A, Rafieerad A R, Maleki A, Amiri A. Adv. Healthcare Mater., 2019, 8(1):1801137.

doi: 10.1002/adhm.201801137
[47]
Liu Z, Lin H, Zhao M L, Dai C, Zhang S J, Peng W J, Chen Y. Theranostics, 2018, 8(6):1648.

doi: 10.7150/thno.23369
[48]
Xu B Z, Zhu M S, Zhang W C, Zhen X, Pei Z X, Xue Q, Zhi C Y, Shi P. Adv. Mater., 2016, 28(17):3333.

doi: 10.1002/adma.201504657
[49]
Dai C, Lin H, Xu G, Liu Z, Wu R, Chen Y. Chem. Mater., 2017, 29(20):8637.

doi: 10.1021/acs.chemmater.7b02441
[50]
Lin H, Wang Y, Gao S, Chen Y, Shi J. Adv. Mater., 2018,30.
[51]
Szuplewska A, Kulpińska D, Dybko A, Jastrzębska A M, Wojciechowski T, Rozmysłowska A, Chudy M, Grabowska-Jadach I, Ziemkowska W, Brzózka Z, Olszyna A. Mater. Sci. Eng.: C, 2019, 98:874.
[52]
Zada S, Dai W H, Kai Z, Lu H T, Meng X D, Zhang Y Y, Cheng Y R, Yan F, Fu P C, Zhang X J, Dong H F. Angew. Chem. Int. Ed., 2020, 59(16):6601.

doi: 10.1002/anie.v59.16
[53]
Hussein E A, Zagho M M, Rizeq B R, Younes N N, Pintus G, Mahmoud K A, Nasrallah G K, Elzatahry A A. Int. J. Nanomed., 2019, 14:4529.

doi: 10.2147/IJN
[54]
Tang W, Dong Z, Zhang R, Yi X, Yang K, Jin M, Yuan C, Xiao Z, Liu Z, Cheng L. ACS Nano, 2019, 13:284.

doi: 10.1021/acsnano.8b05982
[55]
Shao J D, Zhang J, Jiang C, Lin J, Huang P. Chem. Eng. J., 2020, 400:126009.

doi: 10.1016/j.cej.2020.126009
[56]
Xing C Y, Chen S Y, Liang X, Liu Q, Qu M M, Zou Q S, Li J H, Tan H, Liu L P, Fan D Y, Zhang H. ACS Appl. Mater. Interfaces, 2018, 10(33):27631.

doi: 10.1021/acsami.8b08314
[57]
Han X X, Huang J, Lin H, Wang Z G, Li P, Chen Y. Adv. Healthcare Mater., 2018, 7(9):1701394.

doi: 10.1002/adhm.v7.9
[58]
Sinha A, Dhanjai, Zhao H M, Huang Y J, Lu X B, Chen J P, Jain R,. Trac Trends Anal. Chem., 2018, 105:424.

doi: 10.1016/j.trac.2018.05.021
[59]
Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B. ACS Appl. Mater. Interfaces, 2015, 7(24):13707.

doi: 10.1021/acsami.5b03737
[60]
Xiao B, Li Y C, Yu X F, Cheng J B. Sensor Actuat. B: Chem., 2016, 235:103.

doi: 10.1016/j.snb.2016.05.062
[61]
Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J. ACS Appl. Mater. Interfaces, 2017, 9(42):37184.

doi: 10.1021/acsami.7b11055
[62]
Kim S J, Koh H J, Ren C G, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T. ACS Nano, 2018, 12(2):986.

doi: 10.1021/acsnano.7b07460
[63]
Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud K A, Tkac J. Electrochimica Acta, 2017, 235:471.

doi: 10.1016/j.electacta.2017.03.073 pmid: 29109588
[64]
Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud K A, Tkac J. Sensor. Actuat. B-Chem., 2018, 263:360.

doi: 10.1016/j.snb.2018.02.124
[65]
Yang Y, Zeng Z T, Zeng G M, Huang D L, Xiao R, Zhang C, Zhou C Y, Xiong W P, Wang W J, Cheng M, Xue W J, Guo H, Tang X, He D H. Appl. Catal. B: Environ., 2019, 258:117956.

doi: 10.1016/j.apcatb.2019.117956
[66]
Elumalai S, Mani V, Jeromiyas N, Ponnusamy V K, Yoshimura M. Microchimica Acta, 2020, 187:33.

doi: 10.1007/s00604-019-4018-0
[67]
Gao M. Int. J. Electrochem. Sci., 2020, 15:4619.
[68]
Wang F, Yang C, Duan M, Tang Y, Zhu J. Biosens. Bioelectron., 2015, 74:1022.

doi: 10.1016/j.bios.2015.08.004
[69]
Qing H, Cai S, Xin-Chu W, Ling-Zhi C, Mian L I, Bao-Kai M A. J. Inorg. Mater., 2020, 35(1):131.
[70]
Zheng J S, Diao J L, Jin Y Z, Ding A L, Wang B, Wu L Z, Weng B, Chen J C. J. Electrochem. Soc., 2018, 165(5):B227.

doi: 10.1149/2.0051807jes
[71]
Chia H L, Mayorga-Martinez C C, Antonatos N, Sofer Z, Gonzalez-Julian J J, Webster R D, Pumera M. Anal. Chem., 2020, 92(3):2452.

doi: 10.1021/acs.analchem.9b03634
[72]
Koyappayil A, Chavan S G, Mohammadniaei M, Go A, Hwang S Y, Lee M H. Microchimica Acta, 2020, 187(5):277.

doi: 10.1007/s00604-020-04258-y
[73]
Zhao F N, Yao Y, Jiang C M, Shao Y Z, Barceló D, Ying Y B, Ping J F. J. Hazard. Mater., 2020, 384:121358.

doi: 10.1016/j.jhazmat.2019.121358
[74]
Xu Q, Xu J K, Jia H Y, Tian Q Y, Liu P, Chen S X, Cai Y, Lu X Y, Duan X M, Lu L M. J. Electroanal. Chem., 2020, 860:113869.

doi: 10.1016/j.jelechem.2020.113869
[75]
Wang H, Sun J, Lu L, Yang X, Xia J, Zhang F, Wang Z. Anal. Chim. Acta, 2020, 1094:18.

doi: 10.1016/j.aca.2019.10.003
[76]
Ma X, Tu X L, Gao F, Xie Y, Huang X G, Fernandez C, Qu F L, Liu G B, Lu L M, Yu Y F. Sensor Actuat. B: Chem., 2020, 309:127815.

doi: 10.1016/j.snb.2020.127815
[77]
Mohammadniaei M, Koyappayil A, Sun Y, Min J H, Lee M H. Biosens. Bioelectron., 2020, 159:112208.

doi: S0956-5663(20)30205-0 pmid: 32364932
[78]
Fang Y, Yang X, Chen T, Xu G, Liu M, Liu J, Xu Y. Sensor. Actuat. B-Chem., 2018, 263:400.
[79]
Zhang H, Wang Z, Zhang Q, Wang F, Liu Y. Biosens. Bioelectron., 2019,124-125: 184.
[80]
Zhang H X, Wang Z H, Wang F, Zhang Y M, Wang H Y, Liu Y. Anal. Chem., 2020, 92(7):5546.

doi: 10.1021/acs.analchem.0c00469
[81]
Fang D D, Zhao D D, Zhang S P, Huang Y T, Dai H, Lin Y Y. Sensor Actuat. B: Chem., 2020, 305:127544.

doi: 10.1016/j.snb.2019.127544
[82]
Chen X, Sun X K, Xu W, Pan G C, Zhou D L, Zhu J Y, Wang H, Bai X, Dong B, Song H W. Nanoscale, 2018, 10(3):1111.

doi: 10.1039/c7nr06958h pmid: 29271463
[83]
Liu M W, He Y, Zhou J, Ge Y L, Zhou J G, Song G W. Anal. Chimica Acta, 2020, 1103:134.

doi: 10.1016/j.aca.2019.12.069
[84]
Zhang Q X, Wang F, Zhang H X, Zhang Y Y, Liu M L, Liu Y. Anal. Chem., 2018, 90(21):12737.

doi: 10.1021/acs.analchem.8b03083
[85]
Manzanares-Palenzuela C L, Pourrahimi A M, Gonzalez-Julian J, Sofer Z, Pykal M, Otyepka M, Pumera M. Chem. Sci., 2019, 10(43):10010.

doi: 10.1039/c9sc03049b pmid: 32055358
[86]
Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y. J. Phys. Chem. C, 2017, 121(36):19983.

doi: 10.1021/acs.jpcc.7b08180
[87]
Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C. Sci. China Mater., 2020, 63(5):794.

doi: 10.1007/s40843-020-1283-8
[88]
Satheeshkumar E, Makaryan T, Melikyan A, Minassian H, Gogotsi Y, Yoshimura M. Sci. Rep., 2016, 6:32049.

doi: 10.1038/srep32049
[89]
Soundiraraju B, George B K. ACS Nano, 2017, 11(9):8892.

doi: 10.1021/acsnano.7b03129
[90]
Chen K Y, Yan X Y, Li J K, Jiao T F, Cai C, Zou G D, Wang R, Wang M L, Zhang L X, Peng Q M. Nanomaterials, 2019, 9(2):284.

doi: 10.3390/nano9020284
[91]
Xie X J, Zhu Y M, Li F, Zhou X W, Xue T. Sci. China Technol. Sci., 2019, 62(7):1202.

doi: 10.1007/s11431-018-9359-4
[92]
Elumalai S, Lombardi J R, Yoshimura M. Mater. Adv., 2020, 1(2):146.
[93]
Sarycheva A, Gogotsi Y. Chem. Mater., 2020, 32(8):3480.

doi: 10.1021/acs.chemmater.0c00359
[94]
Lei Y J, Zhao W L, Zhang Y Z, Jiang Q, He J H, Baeumner A J, Wolfbeis O S, Wang Z L, Salama K N, Alshareef H N. Small, 2019, 15(19):1901190.

doi: 10.1002/smll.v15.19
[95]
Guo Y, Zhong M J, Fang Z W, Wan P B, Yu G H. Nano Lett., 2019, 19(2):1143.

doi: 10.1021/acs.nanolett.8b04514
[96]
Cai Y C, Shen J, Ge G, Zhang Y Z, Jin W Q, Huang W, Shao J J, Yang J, Dong X C. ACS Nano, 2018, 12(1):56.

doi: 10.1021/acsnano.7b06251
[97]
Li G L, Wen D. J. Mater. Chem. B, 2020, 8(16):3423.

doi: 10.1039/C9TB02474C
[98]
Seyedin S, Uzun S, Levitt A, Anasori B, Dion G, Gogotsi Y, Razal J M. Adv. Funct. Mater., 2020, 30(12):1910504.

doi: 10.1002/adfm.v30.12
[99]
Huang R, Chen X, Dong Y, Zhang X, Wei Y, Yang Z, Li W, Guo Y, Liu J, Yang Z, Wang H, Jin L. ACS Applied Bio Materials, 2020, 3:2125.

doi: 10.1021/acsabm.0c00007
[100]
Yang Q H, Yin H H, Xu T M, Zhu D Y, Yin J H, Chen Y X, Yu X W, Gao J J, Zhang C Q, Chen Y, Gao Y S. Small, 2020, 16(14):2070073.

doi: 10.1002/smll.v16.14
[101]
Jastrzębska A M, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, Rozmysłowska A, Olszyna A. J. Hazard. Mater., 2017, 339:1.

doi: 10.1016/j.jhazmat.2017.06.004
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[4] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[7] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[8] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[9] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[10] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[11] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[12] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[13] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[14] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[15] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.