中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 1935-1946 DOI: 10.7536/PC201214 Previous Articles   Next Articles

• Review •

Application of Covalent Organic Framework-Based Nanosystems in Biomedicine

Zitao Hu, Yin Ding()   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Yin Ding
  • Supported by:
    National Key Research and Development Program of China(2018YFF0215500); National Natural Science Foundation of China(21105047); National Natural Science Foundation of China(51773089); National Natural Science Foundation of China(51973091)
Richhtml ( 106 ) PDF ( 1005 ) Cited
Export

EndNote

Ris

BibTeX

Covalent organic frameworks(COFs)is a highly ordered crystalline porous polymer synthesized by dynamic covalent chemical method. Low density, large specific surface area, adjustable porosity, simple and diverse synthesis routes, designable functional units and structures, easy functionalization of surface and pore channels, and high physicochemical stability are the main characteristics of COFs. It has received extensive attention in molecular adsorption and separation, energy storage, photoelectricity, sensing, catalysis, chromatography materials, water treatment materials and biomedicine domains. This paper focuses on the recent research progress of COFs-based nanosystems in biomedical fields, such as biological detection and imaging, drug delivery, optical therapy and combination therapy, and finally summarize the current challenges and future development opportunities of COFs in biomedical field.

Contents

1 Introduction

2 COFs for biosensors and imaging

3 COFs for drug delivery

4 COFs for phototherapy

4.1 COFs for photothermal therapy

4.2 COFs for photodynamic therapy

4.3 COFs for synergistic therapy

5 Other application of COFs

6 Conclusion and outlook

Table 1 Synthesis methods and biomedical applications of some COFs in recent three years
Nanosystems Synthetic method Biomedical applications ref
TTA-DFP COF Microwave-assisted method Bioimaging 21
TPI-COF Solvothermal reaction Bioimaging 68
FA-Pd NPs/CMC-COF-LZU1 Room temperature reaction Bioimaging 69
TpASH-NPHS 90 ℃ 12 h Bioimaging 70
UCCOFs Solvothermal reaction Imaging, photodynamic therapy 71
F68@SS-COFs Solvothermal reaction Drug delivery 76
DOX@COF Room temperature reaction Drug delivery 77
PEG-CCM@APTES
COF-1@DOX
75 ℃ 24 h Drug delivery 78
FITC-PEG-COF@Ins-GOx Solvothermal reaction Drug delivery 79
5-FU@COF-HQ Solvothermal reaction Drug delivery 80
Fe-HCOF Room temperature reaction Photothermal therapy 88
CNP Room temperature reaction Photothermal therapy 89
Py-BPy-COF Solvothermal/Room temperature reaction Photothermal therapy 90
PCPP Solvothermal reaction Photodynamic therapy 33
PcS@COF-1 75 ℃ 20 h Photodynamic therapy 96
CONDs-PEG Solvothermal reaction Photodynamic therapy 97
COF-survivin Solvothermal reaction Imaging, photodynamic therapy 98
COF909 Solvothermal reaction Photodynamic therapy 99
COF-CuSe@PEG Room temperature reaction Photodynamic、Photothermal 100
COF-Ag2Se Room temperature reaction Photodynamic, photothermal 101
COF B Room temperature reaction Photodynamic, photothermal therapy 102
COF-366 Solvothermal reaction Photodynamic, photothermal 103
VONc@COF-Por Room temperature reaction Photodynamic, photothermal 104
COF@ICG@OVA Room temperature reaction Photodynamic, photothermal 105
ICG@COF-1@PDA 75 ℃ 20 h Photodynamic, photothermal 106
CaCO3@COF- BODIPY-2I@GAG Room temperature reaction Photodynamic therapy, Ca2+ overload 107
γ-SD/PLL Microwave irradiation MRI probe, chemo-thermotherapy 108
MnO2/ZnCOF@Au&BSA 80~85 ℃ 24 h Photothermal therapy, bioimaging 109
COF@IR783 Solvothermal reaction Chemotherapy, photothermal therapy 110
Fig. 1 Schematic illustrating the synthesis of TPI-COF. Illustration of the long-range order π-conjugated domain and the cooperative enhancement of a transition dipole in TPI-COF leads to a strong two-photon interaction. Reproduced from ref 68 with permission. Copyright 2019, Wiley-VCH
Fig. 2 Synthesis process of 3D porous crystalline PI-COFs and drug release performance of IBU-loaded PI-COF. Reproduced from ref 75 with permission. Copyright 2015, American Chemical Society
Fig. 3 Preparation of DOX-loaded PEG-CCM@APTES-COF-1@DOX and photographs of as-prepared samples in aqueous solution. Reproduced from ref 78 with permission. Copyright 2018, Springer Nature Limited
Fig. 4 (a) Transformation of Py-BPy-COF to cationic Py-BPy2+-COF and cationic radical Py-BPy+·-COF by two-step postmodification;(b) temperature changes upon exposure to 808 nm(left) and 1064 nm(right) lasers. Reproduced from ref 90 with permission. Copyright 2019, American Chemical Society
Fig. 5 (a) New COF-based photosensitizers from ROS-inert molecular motif;(b) the tumor weights and images of mice after pthotodynamics therapy. Reproduced from ref 99 with permission. Copyright 2019, Wiley-VCH.
Fig. 6 Schematic illustrating the fabrication process of ICG@COF-1@PDA nanosheets and its application in suppressing tumor metastasis through immunotherapy. Reproduced from ref 106 with permission. Copyright 2019, Wiley-VCH
Fig. 7 Synthetic procedure of CaCO3@COF-BODIPY-2I@GAG and schematic illustration of synergistic intracellular Ca2+ overload and PDT. Reproduced from ref 107 with permission. Copyright 2020, Wiley-VCH
[1]
Cote A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

doi: 10.1126/science.1120411
[2]
Beuerle F, Gole B. Angew. Chem. Int. Ed., 2018, 57(18): 4850.

doi: 10.1002/anie.201710190
[3]
Chandra S, Kandambeth S, Biswal B P, Lukose B, Kunjir S M, Chaudhary M, Babarao R, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(47): 17853.

doi: 10.1021/ja408121p pmid: 24168521
[4]
Diercks C S, Lin S, Kornienko N, Kapustin E A, Nichols E M, Zhu C H, Zhao Y B, Chang C J, Yaghi O M. J. Am. Chem. Soc., 2018, 140(3): 1116.

doi: 10.1021/jacs.7b11940
[5]
Qiu S, Fang Q, Li H, Guan X, Yusran Y. Natl. Sci. Rev., 2020, 7: 170.

doi: 10.1093/nsr/nwz122
[6]
Zhou T, Gong Y F, Guo J. J. Funct. Polym., 2018, 31(3): 189.
(周婷, 龚祎凡, 郭佳. 功能高分子学报, 2018, 31(3): 189.)
[7]
Guan X Y, Chen F Q, Fang Q R, Qiu S L. Chem. Soc. Rev., 2020, 49(5): 1357.

doi: 10.1039/C9CS00911F
[8]
Meng Y, Luo Y, Shi J L, Ding H M, Lang X J, Chen W, Zheng A M, Sun J L, Wang C. Angew. Chem. Int. Ed., 2020, 59(9): 3624.

doi: 10.1002/anie.v59.9
[9]
Alahakoon S B, Diwakara S D, Thompson C M, Smaldone R A. Chem. Soc. Rev., 2020, 49(5): 1344.

doi: 10.1039/c9cs00884e pmid: 32073066
[10]
Fang Q R, Gu S, Zheng J, Zhuang Z B, Qiu S L, Yan Y S. Angew. Chem. Int. Ed., 2014, 53(11): 2878.

doi: 10.1002/anie.v53.11
[11]
Zhu Y L, Fu C L, Li Z W, Sun Z Y. J. Phys. Chem. Lett., 2020, 11(1): 179.
[12]
Liang R R, Ru-Han A, Xu S Q, Qi Q Y, Zhao X. J. Am. Chem. Soc., 2020, 142(1): 70.

doi: 10.1021/jacs.9b11401
[13]
Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42(2): 548.

doi: 10.1039/C2CS35072F
[14]
Smith B J, Overholts A C, Hwang N, Dichtel W R. Chem. Commun., 2016, 52(18): 3690.

doi: 10.1039/C5CC10221A
[15]
Feng X, Chen L, Dong Y P, Jiang D L. Chem. Commun., 2011, 47(7): 1979.

doi: 10.1039/c0cc04386a
[16]
Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41(18): 6010.

doi: 10.1039/c2cs35157a
[17]
Ding X S, Guo J, Feng X, Honsho Y, Guo J D, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D L. Angew. Chem. Int. Ed., 2011, 50(6): 1289.

doi: 10.1002/anie.v50.6
[18]
Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202.

doi: 10.1002/adma.v22:19
[19]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

doi: 10.1002/(ISSN)1521-3773
[20]
Kuecken S, Schmidt J, Zhi L J, Thomas A. J. Mater. Chem. A, 2015, 3(48): 24422.

doi: 10.1039/C5TA07408H
[21]
Das G, Benyettou F, Sharama S K, Prakasam T, Gándara F, de la Peña-O’Shea V A, Saleh N, Pasricha R, Jagannathan R, Olson M A, Trabolsi A. Chem. Sci., 2018, 9(44): 8382.

doi: 10.1039/C8SC02842G
[22]
Campbell N L, Clowes R, Ritchie L K, Cooper A I. Chem. Mater., 2009, 21(2): 204.

doi: 10.1021/cm802981m
[23]
De la Peña RuigÓmez A, Rodríguez-San-miguel D, Stylianou K C, Cavallini M, Gentili D, Liscio F, Milita S, Roscioni O M, Ruiz-González M L, Carbonell C, Maspoch D, Mas-BallestÉ R, Segura J L, Zamora F. Chem. Eur. J., 2015, 21(30): 10666.

doi: 10.1002/chem.v21.30
[24]
Matsumoto M, Dasari R R, Ji W, Feriante C H, Parker T C, Marder S R, Dichtel W R. J. Am. Chem. Soc., 2017, 139(14): 4999.

doi: 10.1021/jacs.7b01240 pmid: 28345908
[25]
Montoro C, Rodríguez-San-miguel D, Polo E, Escudero-Cid R, Ruiz-González M L, Navarro J A R, OcÓn P, Zamora F. J. Am. Chem. Soc., 2017, 139(29): 10079.

doi: 10.1021/jacs.7b05182 pmid: 28669183
[26]
Ding S Y, Cui X H, Feng J, Lu G X, Wang W. Chem. Commun., 2017, 53(87): 11956.

doi: 10.1039/C7CC05779B
[27]
Das G, Balaji Shinde D, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014, 50(84): 12615.

doi: 10.1039/C4CC03389B
[28]
Karak S, Kandambeth S, Biswal B P, Sasmal H S, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc., 2017, 139(5): 1856.

doi: 10.1021/jacs.6b08815
[29]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.

doi: 10.1021/ja4017842
[30]
Liao Q B, Ke C, Huang X, Wang D N, Han Q W, Zhang Y F, Zhang Y Y, Xi K. Angew. Chem. Int. Ed., 2021, 60(3): 1411.

doi: 10.1002/anie.v60.3
[31]
Guan X Y, Li H, Ma Y C, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. Nat. Chem., 2019, 11(6): 587.

doi: 10.1038/s41557-019-0238-5
[32]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1(10): 16068.

doi: 10.1038/natrevmats.2016.68
[33]
Wang S B, Chen Z X, Gao F, Zhang C, Zou M Z, Ye J J, Zeng X, Zhang X Z. Biomaterials, 2020, 234: 119772.
[34]
Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R S, El-Kaderi H M. Chem. Eur. J., 2013, 19(10): 3324.

doi: 10.1002/chem.v19.10
[35]
Qian H L, Meng F L, Yang C X, Yan X P. Angew. Chem. Int. Ed., 2020, 59(40): 17607.

doi: 10.1002/anie.v59.40
[36]
Liu C H, Ma X L. Chemical Industry and Engineering Progress, 2019, 38: 4978.
(刘春晖, 马晓莉. 化工进展, 2019, 38: 4978.).
[37]
Han S S, Mendoza-CortÉs J L, Goddard W A. Chem. Soc. Rev., 2009, 38(5): 1460.

doi: 10.1039/b802430h
[38]
Mandal A K, Mahmood J, Baek J B. ChemNanoMat, 2017, 3(6): 373.

doi: 10.1002/cnma.201700048
[39]
Keller N, Calik M, Sharapa D, Soni H R, Zehetmaier P M, Rager S, Auras F, Jakowetz A C, Görling A, Clark T, Bein T. J. Am. Chem. Soc., 2018, 140(48): 16544.

doi: 10.1021/jacs.8b08088
[40]
Zhan X J, Chen Z, Zhang Q C. J. Mater. Chem. A, 2017, 5(28): 14463.

doi: 10.1039/C7TA02105D
[41]
Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R. Chem. Sci., 2015, 6(7): 3931.

doi: 10.1039/C5SC00512D
[42]
Ascherl L, Evans E W, Gorman J, Orsborne S, Bessinger D, Bein T, Friend R H, Auras F. J. Am. Chem. Soc., 2019, 141(39): 15693.

doi: 10.1021/jacs.9b08079 pmid: 31550149
[43]
Tu D Y, Chen J X, Liu X G, Shen L. J. Hangzhou Norm. Univ. Nat. Sci. Ed., 2019, 18(4): 343.
(屠丹宇, 陈建香, 刘训高, 沈良. 杭州师范大学学报(自然科学版), 2019, 18(4): 343.)
[44]
Lu S L, Hu Y M, Wan S, McCaffrey R, Jin Y H, Gu H W, Zhang W. J. Am. Chem. Soc., 2017, 139(47): 17082.

doi: 10.1021/jacs.7b07918
[45]
Han X, Xia Q C, Huang J J, Liu Y, Tan C X, Cui Y. J. Am. Chem. Soc., 2017, 139(25): 8693.

doi: 10.1021/jacs.7b04008
[46]
Lin C Y, Zhang D T, Zhao Z H, Xia Z H. Adv. Mater., 2018, 30(5): 1703646.
[47]
Bhunia S, Deo K A, Gaharwar A K. Adv. Funct. Mater., 2020, 30(27): 2002046.
[48]
Guan Q, Wang G B, Zhou L L, Li W Y, Dong Y B. Nanoscale Adv., 2020, 2(9): 3656.

doi: 10.1039/D0NA00537A
[49]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550
[50]
Chedid G, Yassin A. Nanomaterials, 2018, 8(11): 916.

doi: 10.3390/nano8110916
[51]
Sakamaki Y, Ozdemir J, Heidrick Z, Watson O, Shahsavari H R, Fereidoonnezhad M, Khosropour A R, Beyzavi M H. Comments Inorg. Chem., 2019, 38: 238.

doi: 10.1080/02603594.2018.1542597
[52]
Feng L L, Qian C, Zhao Y L. ACS Mater. Lett., 2020, 2(9): 1074.
[53]
Guan Q, Zhou L L, Li W Y, Li Y A, Dong Y B. Chem. Eur. J., 2020, 26(25): 5583.

doi: 10.1002/chem.v26.25
[54]
Chen W J, Guo J. Polym. Bull., 2018(6): 129.
(陈无忌, 郭佳. 高分子通报, 2018(6): 129.)
[55]
Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138(14): 4710.

doi: 10.1021/jacs.6b01244
[56]
Qian C, Qi Q Y, Jiang G F, Cui F Z, Tian Y, Zhao X. J. Am. Chem. Soc., 2017, 139(19): 6736.

doi: 10.1021/jacs.7b02303
[57]
Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136(45): 15885.

doi: 10.1021/ja5092936
[58]
El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Cote A P, Taylor R E, O'Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

pmid: 17431178
[59]
Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 54(10): 2986.

doi: 10.1002/anie.201411262
[60]
Lohse M S, Stassin T, Naudin G, Wuttke S, Ameloot R de Vos D, Medina D D, Bein T. Chem. Mater., 2016, 28(2): 626.

doi: 10.1021/acs.chemmater.5b04388
[61]
Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irle S, Jiang D L. Chem. Commun., 2014, 50(11): 1292.

doi: 10.1039/C3CC48813F
[62]
Nagai A, Guo Z Q, Feng X, Jin S B, Chen X, Ding X S, Jiang D L. Nat. Commun., 2011, 2(1): 536.

doi: 10.1038/ncomms1542
[63]
Nagai A, Chen X, Feng X, Ding X S, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2013, 52(13): 3770.

doi: 10.1002/anie.201300256
[64]
Hunt J R, Doonan C J, LeVangie J D, CôtÉ A P, Yaghi O M. J. Am. Chem. Soc., 2008, 130(36): 11872.

doi: 10.1021/ja805064f
[65]
Dalapati S, Jin S B, Gao J, Xu Y H, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135(46): 17310.

doi: 10.1021/ja4103293 pmid: 24182194
[66]
Wen W, Song Y, Yan X, Zhu C Z, Du D, Wang S F, Asiri A M, Lin Y H. Mater. Today, 2018, 21(2): 164.

doi: 10.1016/j.mattod.2017.09.001
[67]
Wan S, Guo J, Kim J, Ihee H, Jiang D L. Angew. Chem. Int. Ed., 2008, 47(46): 8826.

doi: 10.1002/anie.v47:46
[68]
Zeng J Y, Wang X S, Xie B R, Li M J, Zhang X Z. Angew. Chem. Int. Ed., 2020, 59(25): 10087.

doi: 10.1002/anie.v59.25
[69]
Sun P P, Hai J, Sun S H, Lu S Y, Liu S, Liu H W, Chen F J, Wang B D. Nanoscale, 2020, 12(2): 825.

doi: 10.1039/C9NR08486J
[70]
Wang P, Zhou F, Zhang C, Yin S Y, Teng L L, Chen L L, Hu X X, Liu H W, Yin X, Zhang X B. Chem. Sci., 2018, 9(44): 8402.

doi: 10.1039/C8SC03393E
[71]
Wang P, Zhou F, Guan K S, Wang Y J, Fu X Y, Yang Y, Yin X, Song G S, Zhang X B, Tan W H. Chem. Sci., 2020, 11(5): 1299.

doi: 10.1039/C9SC04875H
[72]
Chen W H, Liao W C, Sohn Y S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Adv. Funct. Mater., 2018, 28(8): 1705137.
[73]
Nichols J W, Bae Y H. J. Control. Release, 2014, 190: 451.

doi: 10.1016/j.jconrel.2014.03.057
[74]
Zhang D W, Wang H, Li Z T. Polym. Bull., 2018(6): 243.
(张丹维, 王辉, 黎占亭. 高分子通报, 2018(6): 243.)
[75]
Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. J. Am. Chem. Soc., 2015, 137(26): 8352.

doi: 10.1021/jacs.5b04147
[76]
Liu S, Yang J M, Guo R W, Deng L D, Dong A J, Zhang J H. Macromol. Rapid Commun., 2020, 41(4): 1900570.
[77]
Liu S N, Hu C L, Liu Y, Zhao X Y, Pang M L, Lin J. Chem. Eur. J., 2019, 25(17): 4315.

doi: 10.1002/chem.v25.17
[78]
Zhang G Y, Li X L, Liao Q B, Liu Y F, Xi K, Huang W, Jia X D. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[79]
Zhang G Y, Ji Y, Li X L, Wang X Y, Song M M, Gou H L, Gao S, Jia X D. Adv. Healthcare Mater., 2020, 9(14): 2000221.
[80]
Jia Y, Zhang L, He B, Lin Y, Wang J, Li M. Mater. Sci. Eng. C Mater. Biol. Appl., 2020, 117: 111243.
[81]
Lyu Y, Fang Y, Miao Q Q, Zhen X, Ding D, Pu K Y. ACS Nano, 2016, 10(4): 4472.

doi: 10.1021/acsnano.6b00168
[82]
Ng K K, Zheng G. Chem. Rev., 2015, 115(19): 11012.

doi: 10.1021/acs.chemrev.5b00140
[83]
Ding X G, Liow C H, Zhang M X, Huang R J, Li C Y, Shen H, Liu M Y, Zou Y, Gao N, Zhang Z J, Li Y G, Wang Q B, Li S Z, Jiang J. J. Am. Chem. Soc., 2014, 136(44): 15684.

doi: 10.1021/ja508641z
[84]
Tam J M, Tam J O, Murthy A, Ingram D R, Ma L L, Travis K, Johnston K P, Sokolov K V. ACS Nano, 2010, 4(4): 2178.

doi: 10.1021/nn9015746
[85]
Yin W Y, Yu J, Lv F, Yan L, Zheng L R, Gu Z J, Zhao Y L. ACS Nano, 2016, 10(12): 11000.

doi: 10.1021/acsnano.6b05810
[86]
Zhu K, Ju Y M, Xu J J, Yang Z Y, Gao S, Hou Y L. Acc. Chem. Res., 2018, 51(2): 404.

doi: 10.1021/acs.accounts.7b00407
[87]
Tan J, Namuangruk S, Kong W F, Kungwan N, Guo J, Wang C C. Angew. Chem. Int. Ed., 2016, 55(45): 13979.

doi: 10.1002/anie.201606155
[88]
Shi Y S, Liu S N, Zhang Z X, Liu Y, Pang M L. Chem. Commun., 2019, 55(95): 14315.

doi: 10.1039/C9CC07809F
[89]
Guan Q, Zhou L L, Zhou L N, Li M D, Qin G X, Li W Y, Li Y A, Dong Y B. Chem. Commun., 2020, 56(56): 7793.

doi: 10.1039/D0CC00861C
[90]
Mi Z, Yang P, Wang R, Unruangsri J, Yang W L, Wang C C, Guo J. J. Am. Chem. Soc., 2019, 141(36): 14433.

doi: 10.1021/jacs.9b07695
[91]
Zhou Z J, Song J B, Nie L M, Chen X Y. Chem. Soc. Rev., 2016, 45(23): 6597.

doi: 10.1039/C6CS00271D
[92]
Ge J C, Lan M H, Zhou B J, Liu W M, Guo L, Wang H, Jia Q Y, Niu G L, Huang X, Zhou H Y, Meng X M, Wang P F, Lee C S, Zhang W J, Han X D. Nat. Commun., 2014, 5(1): 4596.

doi: 10.1038/ncomms5596
[93]
Kessel D. Photochem. Photobiol., 2019, 95(1): 119.

doi: 10.1111/php.12952 pmid: 29882356
[94]
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Biomed. Pharmacother., 2018, 106: 1098.

doi: S0753-3322(18)34161-1 pmid: 30119176
[95]
Celli J P, Spring B Q, Rizvi I, Evans C L, Samkoe K S, Verma S, Pogue B W, Hasan T. Chem. Rev., 2010, 110(5): 2795.

doi: 10.1021/cr900300p
[96]
Tong X N, Gan S J, Wu J H, Hu Y Q, Yuan A H. Nanoscale, 2020, 12(13): 7376.

doi: 10.1039/C9NR10787H
[97]
Zhang Y, Zhang L, Wang Z Z, Wang F M, Kang L H, Cao F F, Dong K, Ren J S, Qu X G. Biomaterials, 2019, 223: 119462.
[98]
Gao P, Wang M Z, Chen Y Y, Pan W, Zhou P, Wan X Y, Li N, Tang B. Chem. Sci., 2020, 11(26): 6882.

doi: 10.1039/D0SC00847H
[99]
Zhang L, Wang S B, Zhou Y, Wang C, Zhang X Z, Deng H X. Angew. Chem. Int. Ed., 2019, 58(40): 14213.

doi: 10.1002/anie.v58.40
[100]
Hu C L, Zhang Z X, Liu S N, Liu X J, Pang M L. ACS Appl. Mater. Interfaces, 2019, 11(26): 23072.

doi: 10.1021/acsami.9b08394
[101]
Hu C L, Cai L H, Liu S N, Pang M L. Chem. Commun., 2019, 55(62): 9164.

doi: 10.1039/C9CC04668B
[102]
Sun T T, Xia R, Zhou J L, Zheng X H, Liu S, Xie Z G. Mater. Chem. Front., 2020, 4(8): 2346.

doi: 10.1039/D0QM00274G
[103]
Wang D W, Zhang Z, Lin L, Liu F, Wang Y B, Guo Z P, Li Y H, Tian H Y, Chen X S. Biomaterials, 2019, 223: 119459.
[104]
Guan Q, Zhou L L, Li Y A, Li W Y, Wang S M, Song C, Dong Y B. ACS Nano, 2019, 13(11): 13304.

doi: 10.1021/acsnano.9b06467 pmid: 31689082
[105]
Zhou Y, Liu S N, Hu C L, Cai L H, Pang M L. J. Mater. Chem. B, 2020, 8(25): 5451.

doi: 10.1039/D0TB00679C
[106]
Gan S J, Tong X N, Zhang Y, Wu J H, Hu Y Q, Yuan A H. Adv. Funct. Mater., 2019, 29(46): 1902757.
[107]
Guan Q, Zhou L L, Lv F H, Li W Y, Li Y A, Dong Y B. Angew. Chem. Int. Ed., 2020, 59(41): 18042.

doi: 10.1002/anie.v59.41
[108]
Benyettou F, Das G, Nair A R, Prakasam T, Shinde D B, Sharma S K, Whelan J, Lalatonne Y, Traboulsi H, Pasricha R, Abdullah O, Jagannathan R, Lai Z P, Motte L, Gándara F, Sadler K C, Trabolsi A. J. Am. Chem. Soc., 2020, 142(44): 18782.

doi: 10.1021/jacs.0c05381 pmid: 33090806
[109]
Liu Y, Zhang Y P, Li X M, Gao X F, Niu X Y, Wang W, Wu Q, Yuan Z. Nanoscale, 2019, 11(21): 10429.

doi: 10.1039/C9NR02140J
[110]
Wang K, Zhang Z, Lin L, Hao K, Chen J, Tian H Y, Chen X S. ACS Appl. Mater. Interfaces, 2019, 11(43): 39503.

doi: 10.1021/acsami.9b13544
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[3] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[4] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[7] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[8] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[9] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[10] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[11] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[12] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[13] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[14] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[15] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.