中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 179-187 DOI: 10.7536/PC200637 Previous Articles   Next Articles

• Review •

Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging

Yafang Sun1,2, Ziping Zhou1,2, Tong Shu1,2,3,*(), Lisheng Qian1,*(), Lei Su1,2, Xueji Zhang1,2,4,*()   

  1. 1 Research Center for Biomedical and Health Science, Anhui Science and Technology University, Fengyang 233100, China
    2 Beijing Key Laboratory of Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    3 Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology,Guangzhou 510640, China
    4 School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Contact: Tong Shu, Lisheng Qian, Xueji Zhang
  • About author:
    * Correspondence: (Tong Shu);
    (Lisheng Qian);
    †These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(21904011); National Natural Science Foundation of China(21890742); Fundamental Research Funds for the Central Universities(FRF-TP-19-010A3); Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(South China University of Technology)(2019B030301003)
Richhtml ( 63 ) PDF ( 945 ) Cited
Export

EndNote

Ris

BibTeX

Gold nanoclusters are a new kind of "Quasi-molecule" nanomaterials with luminescent properties. By controlling the number of gold atoms and the composition of ligands, gold nanoclusters can realize the emission of different bands under the same excitation, thus showing the "colorful" luminescence characteristics, which make them widely used in many fields such as photocatalysis, optical devices, sensing, and imaging. Therefore, the development and optimization of the synthesis method of gold nanoclusters with good fluorescence performance have been a research hotspot in the field of chemical biomaterials. In this paper, based on the luminescent color of gold nanoclusters, the synthesis principles and methods of corresponding gold nanoclusters are summarized according to different colors, and the factors affecting the luminescent properties of gold nanoclusters are explored. At the same time, the applications of these "colorful" gold nanoclusters in biosensing and bioimaging in recent years are summarized, and the challenges and development trends of gold nanoclusters are discussed and prospected respectively.

Contents

1 Introduction

2 Blue and green luminescent gold nanoclusters

2.1 Synthesis

2.2 Application

3 Yellow, orange and red luminescent gold nanoclusters

3.1 Synthesis

3.2 Application

4 Near-infrared gold nanoclusters

4.1 Synthesis

4.2 Application

5 Conclusion and outlook

Fig. 1 Adjusting the fluorescence performance of blue-green fluorescent gold nanoclusters by the number of gold atoms and the properties of ligands.(a) Adjusting the number of gold atoms with pH to influence the fluorescence color of gold nanoclusters[27].(b) Adjusting the properties of ligands with small molecule L-arginine to influence the green fluorescence intensity of gold nanoclusters[29]
Fig. 2 Schematic diagram of fluorescence intensity change of green fluorescent gold nanoclusters in the detection of arginase[31]
Fig. 3 (a) Schematic diagram of the influence of etching time on the fluorescent color of gold nanoclusters by adjusting the number of gold atoms in the synthesis of yellow orange red fluorescent gold nanoclusters by etching and (b) their corresponding emission spectra[37]
Fig. 4 Schematic diagram of cell imaging and fluorescence performance comparison between red fluorescent gold nanoclusters and SYTO9 nucleic acid dyes[45]
Fig. 5 Emission spectra of AuNCs@GSH in the molar ratios of [GSH]/[HAuCl4] from 0.85∶1 to 1.1∶1.[62]
Fig. 6 Schematic diagram of near infrared gold nanoclusters for in vivo imaging[65]
[1]
Li G, Jin R C. Acc. Chem. Res., 2013, 46:1749.

pmid: 23534692
[2]
Zhou M, Zeng C J, Chen Y X, Zhao S, Sfeir M Y, Zhu M Z, Jin R C. Nat. Commun., 2016, 7:13240.

pmid: 27775036
[3]
Li J M, Wang X D, Li F B, Yuan G Q. Journal of Molecular Catalysis China, 2008, 22(5):439.
李冀闽, 汪晓东, 李峰波, 袁国卿. 分子 催化, 2008, 22(5):439.
[4]
Wen X M, Yu P, Toh Y R, Tang J. J. Phys. Chem. C, 2013, 117:3621.
[5]
Ke C Y, Wu Y T, Tseng W L. Biosens. Bioelectron., 2015, 69:46.
[6]
Yu M Q, Wang H, Fu F, Li L Y, Li J, Li G, Song Y, Swihart M T, Song E Q. Anal. Chem., 2017, 89:4085.

doi: 10.1021/acs.analchem.6b04958 pmid: 28287715
[7]
Hwang G B, Huang H, Wu G W, Shin J, Kafizas A, Karu K, Toit H D, Alotaibi A M, Mohammad-Hadi L, Allan E, MacRobert A J, Gavriilidis A, Parkin I P. Nat. Commun., 2020, 11:1207.
[8]
Yang X C, Qian J Z, Wan Q L, Mo Z H. Prog. Chem., 2007, 19:689.
杨小超, 钱俊臻, 万巧玲, 莫志宏. 化学进展, 2007, 19:689.
[9]
Shen J J, Chen W T, Ding Y. Acta Pharmaceutica Sinica, 2018, 53(9):1484.
沈佳佳, 陈婉婷, 丁娅. 药学学报, 2018, 53(9):1484.
[10]
Han X S, Luan X Q, Su H F, Li J J, Yuan S F, Lei Z, Pei Y, Wang Q M. Angew. Chem. Int. Ed., 2020, 59:2309.
[11]
Qu X C, Li Y C, Li L, Wang Y R, Liang J N, Liang J M. J. Nanomater., 2015, 2015:1.
[12]
Yang W T, Guo W S, Zhang B B, Chang J. Acta Chimica Sinica, 2014, 72(12):1209.
杨维涛, 郭伟圣, 张兵波, 常津. 化学学报, 2014, 72(12):1209.
[13]
Qian H F, Zhu Y, Jin R C. ACS Nano, 2009, 3:3795.
[14]
Zhou Y, Li Z, Zheng K, Li G. Acta. Phys.-Chimi. Sin., 2018, 34(7):786.
[15]
Liu Z, Jin S S, Zhu M Z. Progress in Chemistry, 2011, 23(10):2055.
刘钊, 金申申, 朱满洲. 化学进展, 2011, 23(10):2055.
[16]
Wu Z K, Jin R C. Nano Lett., 2010, 10:2568.
[17]
Nie H, Li M J, Hao Y J, Wang X D, Zhang S X A. Chem. Sci., 2013, 4:1852.
[18]
Uehara N, Sonoda N, Haneishi C. Colloids Surfaces A: Physicochem. Eng. Aspects, 2018, 538:14.
[19]
Zhang Y, Zhang C Y, Xu C, Wang X L, Liu C, Waterhouse G I N, Wang Y L, Yin H Z. Talanta, 2019, 200:432.

pmid: 31036206
[20]
Cui M L, Zhao Y, Song Q J. Trac Trends Anal. Chem., 2014, 57:73.
[21]
Wu X, He X X, Wang K M, Xie C, Zhou B, Qing Z H. Nanoscale, 2010, 2:2244.
[22]
Yu X J, Han L L, Kun X. Chemical Journal of Chinese Universities, 2017, 38:2169.
于锡娟, 韩璐璐, 混旭. 高等学校化学学报, 2017, 38:2169.
[23]
Zheng J, Petty J T, Dickson R M. J. Am. Chem. Soc., 2003, 125:7780.
[24]
Li Y, Wen Q L, Liu A Y, Long Y F, Liu P, Ling J, Ding Z T, Cao Q E. Microchimica Acta, 2020, 187:106.

pmid: 31916054
[25]
Zhou R J, Shi M M, Chen X Q, Wang M, Chen H Z. Chem. Eur. J., 2009, 15:4944.

doi: 10.1002/chem.200802743 pmid: 19301340
[26]
Lu F N, Yang H W, Yuan Z Q, Nakanishi T, Lu C, He Y. Sensor Actuat. B: Chem., 2019, 291:170.
[27]
Kawasaki H, Hamaguchi K, Osaka I, Arakawa R. Adv. Funct. Mater., 2011, 21:3508.
[28]
Kennedy T A C, MacLean J L, Liu J W. Chem. Commun., 2012, 48:6845.
[29]
Deng H H, Shi X Q, Wang F F, Peng H P, Liu A L, Xia X H, Chen W. Chem. Mater., 2017, 29:1362.
[30]
Luo J J, Rasooly A, Wang L Q, Zeng K, Shen C C, Qian P, Yang M H, Qu F L. Microchimica Acta, 2016, 183:605.
[31]
Deng H H, Shi X Q, Peng H P, Zhuang Q Q, Yang Y, Liu A L, Xia X H, Chen W. ACS Appl. Mater. Interfaces, 2018, 10:5358.

doi: 10.1021/acsami.7b19513 pmid: 29373021
[32]
Wei M, Tian Y, Wang L J, Hong Y K, Sha Y L. J. Nanoparticle Res., 2017, 19:248.
[33]
Deng H H, Zhang L N, He S B, Liu A L, Li G W, Lin X H, Xia X H, Chen W. Biosen. Bioelectron., 2015,65:.
[34]
Xu S M, Yang H, Zhao K, Li J G, Mei L Y, Xie Y, Deng A P. RSC Adv., 2015, 5:11343.
[35]
Xie J P, Zheng Y G, Ying J Y. J. Am. Chem. Soc., 2009, 131:888.
[36]
Yan L, Cai Y Q, Zheng B Z, Yuan H Y, Guo Y, Xiao D, Choi M M F. J. Mater. Chem., 2012, 22:1000.
[37]
Bain D, Maity S, Paramanik B, Patra A. ACS Sustainable Chem. Eng., 2018, 6:2334.
[38]
Desai M L, Basu H, Saha S, Singhal R K, Kailasa S K. J. Mol. Liq., 2020, 304:112697.
[39]
Sun H H, Qing T P, He X X, Shangguan J F, Jia R C, Bu H C, Huang J, Wang K M. Anal. Chimica Acta, 2019, 1070:88.
[40]
Jia Y X, Sun T X, Jiang Y N, Sun W Y, Zhao Y, Xin J W, Hou Y T, Yang W S. Anal., 2018, 143:5145.
[41]
Wei Y F, Luan W L, Gao F, Hou X Y. Part. Part. Syst. Charact., 2019, 36:1900314.
[42]
Luo Z T, Yuan X, Yu Y, Zhang Q B, Leong D T, Lee J Y, Xie J P. J. Am. Chem. Soc., 2012, 134:16662.
[43]
Pan Y T, Li Q Z, Zhou Q, Zhang W, Yue P, Xu C Z, Qin X M, Yu H Z, Zhu M Z. Talanta, 2018, 188:259.
[44]
Ding C Q, Tian Y. Biosens. Bioelectron., 2015, 65:183.
[45]
Wang Y N, Wang X J, Ma X Q, Chen Q, He H, Nau W M, Huang F. Part. Part. Syst. Charact., 2019, 36:1900281.
[46]
Tian L, Zhao W J, Li L, Tong Y L, Peng G L, Li Y Q. Sensor Actuat. B: Chem., 2017, 240:114.
[47]
Yuan Y, He X X, Shi H, Wang K M, Wu X, Huo X Q. Chemical Journal of Chinese Universities, 2010, 31(11):2167.
袁媛, 何晓晓, 石慧, 王柯敏, 伍旭霍希琴 . 高等学校化学学报, 2010, 31(11):2167.
[48]
Katla S K, Zhang J, Castro E, Bernal R A, Li X J. ACS Appl. Mater. Interfaces, 2018, 10:75.
[49]
Zhu S X, Wang X Y, Liu L, Li L D. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 597:124764.
[50]
Khlebtsov B, Tuchina E, Tuchin V, Khlebtsov N. RSC Adv., 2015, 5:61639.
[51]
Poderys V, Jarockyte G, Bagdonas S, Karabanovas V, Rotomskis R. J. Photochem. Photobiol. B: Biol., 2020, 204:111802.
[52]
Peng T, Wang J Y, Xie S L, Yao K, Sun S J, Zeng Y Y, Jiang H Y. Chinese Journal of Analytical Chemistry, 2018, 46(3):373.
彭涛, 王见一, 谢三磊, 姚凯, 孙淑娟, 曾于洋, 江海洋. 分析化学, 2018, 46(3):373.
[53]
Cai Y L, Zhang J M. Chin. J. Anal. Chem., 2018, 46:952.
蔡宇玲, 张纪梅. 分析化学, 2018, 46:952.
[54]
Sha Q Y, Sun B Y, Yi C, Guan R X, Fei J, Hu Z Y, Liu B F, Liu X. Sensor Actuat. B: Chem., 2019, 294:177.
[55]
Govindaraju S, Reddy A S, Kim J, Yun K. Appl. Surf. Sci., 2019, 498:143837.
[56]
Tian D H, Qian Z S, Xia Y S, Zhu C Q. Langmuir, 2012, 28:3945.
[57]
Wu X L, Wu P L, Gu M Y, Xue J. Anal. Chimica Acta, 2020, 1104:140.
[58]
Sun Y Q, Wu J P, Wang C X, Zhao Y Q, Lin Q. New J. Chem., 2017, 41:5412.
[59]
Zhao P, He K Y, Han Y T, Zhang Z, Yu M Z, Wang H H, Huang Y, Nie Z, Yao S Z. Anal. Chem., 2015, 87:9998.
[60]
Jin R C, Zeng C J, Zhou M, Chen Y X. Chem. Rev., 2016, 116:10346.
[61]
Wan X K, Xu W W, Yuan S F, Gao Y, Zeng X C, Wang Q M. Angew. Chem. Int. Ed., 2015, 54:9683.
[62]
Qin L, He X W, Chen L X, Zhang Y K. ACS Appl. Mater. Interfaces, 2015, 7:5965.
[63]
Luo Z T, Nachammai V, Zhang B, Yan N, Leong D T, Jiang D E, Xie J P. J. Am. Chem. Soc., 2014, 136:10577.

pmid: 25014336
[64]
Liu H L, Hong G S, Luo Z T, Chen J C, Chang J L, Gong M, He H, Yang J, Yuan X, Li L L, Mu X Y, Wang J Y, Mi W B, Luo J, Xie J P, Zhang X D. Adv. Mater., 2019, 31:1901015.
[65]
Chen Y, Montana D M, Wei H, Cordero J M, Schneider M, Le Guével X, Chen O, Bruns O T, Bawendi M G. Nano Lett., 2017, 17:6330.

pmid: 28952734
[66]
Yoo S W, Mun H, Oh G, Ryu Y, Kim M G, Chung E. SPIE BiOS. Proc SPIE 9328, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII, San Francisco, California, USA. 2015. 9328:93280C.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[4] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[7] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[8] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[9] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[10] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[11] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[12] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[13] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[14] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[15] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.