中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2188-2202 DOI: 10.7536/PC201119 Previous Articles   Next Articles

• Review •

Metal Coordination Polyurethanes

Jinke Wu1, Jianjun Wang1(), Lixing Dai1, Donghao Sun1, Jiajia Chen2()   

  1. 1 College of Chemistry, Chemical Engineering and Materials Science, Soochow University,Suzhou 215123, China
    2 College of Chemistry and Chemical Engineering, Xiamen University,Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Contact: Jianjun Wang, Jiajia Chen
  • Supported by:
    the National Natural Science Foundation of China(21975211); the Fundamental Research Funds for the Central Universities(20720190035); and the Nanqiang Young Top-notch Talent Fellowship from Xiamen University.
Richhtml ( 78 ) PDF ( 654 ) Cited

Metal coordination polyurethanes (MCP) are the aggregates of metal-polyurethane complexes that form between a zero-dimensional metal ion or ionic cluster center with the surrounding array of one-dimension ligand polyurethanes (PU). Those metal-polyurethane complexes exhibit interesting physical characteristics, including thermoplasticity, elasticity, electrical conductivity, fluorescence, etc. The coordination interactions between metal ions and PU lead to formation of supramolecular aggregates, which endow the PU with advanced functionalities at high structural hierarchies across disciplinary boundaries such as self-repair, memory, antibacterial, luminescent, and so on. The orthogonal metal-polymer self-assembly is an ongoing theme in coordination chemistry, and thus brings MCP widely attention from various research areas in recent years. However, there has been not yet a review on this related topic of MCP. Herein, this review summarizes the ways and methods of the interaction between PU and metals from the molecular compositions and structures, and provides a comprehensive discussion on the coordination structures, as well as the related properties and applications. Finally, the prospective on the future development and application of MCP is presented.

Contents

1 Introduction

2 Alkali earth metal coordination polyurethanes

3 Transition metal coordination polyurethanes

4 Rare earth metal coordination polyurethanes

5 Other metal coordination polyurethanes

6 Conclusion and outlook

Fig.1 Three typical preparation methods and six general structures of MCP
Table 1 Diols and diamines of metals chelated by carboxylates
Fig.2 Schematic representation of ionic aggregates in PU ionomers
Fig.3 Schematic of PU with pendant pyridine group[41]
Fig.4 Schematic shows the Ca2+ coordinated by coordination groups on the surface of polyurethane membranes[42]. Copyright 2015, Wiley
Fig.5 Preparation of Ca2+ coordination polyurethanes by coordination of Ca2+ with terminal catechol groups[44]. Copyright 2019, Wiley
Fig.6 Structures of (a) hard segment of the sulfonated PU[48⇓~50], and (b) coordination between carboxylate in PU and Ni2+, Cu2+, Zn2+ [51]
Fig.7 Coordination structures of (a) Fe3+, (b) Zn2+ and (c) Tb3+ with diamidopyridine. (d~f) Healing properties of PU containing Fe3+-diamidopyridine coordination structure[65]. Copyright 2019, Wiley
Fig.8 Chemical structures of PU with (a) terpyridine ligand[68] and (b) 2,6-bis(1,2,3-trizol-4-yl)pyridine ligand[70,71] in main chain
Table 2 Transition metal coordinated Schiff base diol or diamine
Fig.9 Constructing self-healing and stretchable electronics with Cu2+ coordination dimethylglyoxime-extended PU (Cu-DOU-PU)[83]. Copyright 2019, Wiley
Fig.10 The number of pendant catechol groups coordinated with Fe3+ is regulated by pH[85]
Fig.11 Structures of pyrazole-based coordination polyurethanes[87]
Fig.12 Possible coordination junction points of PU[104,105]
Fig.13 Schematic for the synthesis of MCP through the coordination of hydroxyl and carbonyl in PU with Mn2+、Zn2+、Ni2+ [106, 107]
Table 3 The rare earth chelates of carboxylate for preparing rare earth metal coordination polyurethanes
Fig.14 (a) Schematics of the coordination structure of Ln3+ with terpyridine, and (b) luminescent behavior of rare earth coordination polyurethanes with different molar ratio of Eu3+ and Tb3+ under ultraviolet radiation[116]. Copyright 2020, American Chemical Society
Fig.15 Coordination structure of β-diketone with Eu3+ [118]
[1]
KrÓl P. Prog. Mater. Sci., 2007, 52(6): 915.

doi: 10.1016/j.pmatsci.2006.11.001
[2]
Senthilkumar N, Luqman M. Materials Science Forum (Eds. Ai-Ahmed H). Switzerland: Trans Tech Publications, 2010, 1.
[3]
Jayakumar R, Nanjundan S, Prabaharan M. J. Macromol. Sci. C: Polym. Rev., 2005, 45(3): 231.

doi: 10.1081/MC-200067721
[4]
Jayakumar R, Nanjundan S, Prabaharan M. React. Funct. Polym., 2006, 66(3): 299.

doi: 10.1016/j.reactfunctpolym.2004.12.008
[5]
Wang L F. Eur. Polym. J., 2010, 46(12): 2372.

doi: 10.1016/j.eurpolymj.2010.09.013
[6]
Liu X H, Zhao Y, Liu Z, Wang D J, Wu J G, Xu D F. J. Mol. Struct., 2008, 892(1/3): 200.

doi: 10.1016/j.molstruc.2008.05.025
[7]
Tolstov A L, Zinchenko O V, Matyushov V F. Theor. Exp. Chem., 2015, 51(5): 333.

doi: 10.1007/s11237-015-9434-6
[8]
Leung A C W, MacLachlan M J. J. Inorg. Organomet. Polym. Mater., 2007, 17(1): 57.

doi: 10.1007/s10904-006-9092-1
[9]
Li C H, Zuo J L. Adv. Mater., 2019: 1903762.
[10]
Wang Z H, Lu X L, Sun S J, Yu C J, Xia H S. J. Mater. Chem. B, 2019, 7(32): 4876.

doi: 10.1039/C9TB00831D
[11]
Gohy J F. Coord. Chem. Rev., 2009, 253(17/18): 2214.

doi: 10.1016/j.ccr.2008.11.017
[12]
Matsuda H. J. Polym. Sci. Polym. Chem. Ed., 1974, 12(2): 455.

doi: 10.1002/pol.1974.170120216
[13]
Matsuda H. J. Polym. Sci. Polym. Chem. Ed., 1974, 12(2): 469.

doi: 10.1002/pol.1974.170120217
[14]
Matsuda H, Takechi S. J. Polym. Sci. A Polym. Chem., 1991, 29(1): 83.

doi: 10.1002/pola.1991.080290110
[15]
Nair P A, Parameswaran R. Adv. Polym. Technol., 2016, 35(3): 326.

doi: 10.1002/adv.21559
[16]
Nair P A, Ramesh P. Polym. J., 2012, 44(10): 1009.

doi: 10.1038/pj.2012.51
[17]
Nair P A, Ramesh P. J. Appl. Polym. Sci., 2011, 122(3): 1946.

doi: 10.1002/app.33906
[18]
Jayakumar R, Lee Y S, Nanjundan S. J. Appl. Polym. Sci., 2004, 92(2): 710.

doi: 10.1002/(ISSN)1097-4628
[19]
Jayakumar R, Lee Y S, Nanjundan S. J. Polym. Sci. A Polym. Chem., 2003, 41(18): 2865.

doi: 10.1002/(ISSN)1099-0518
[20]
Prasath R A, Nanjundan S, Pakula T, Klapper M. Eur. Polym. J., 2004, 40(8): 1767.

doi: 10.1016/j.eurpolymj.2004.03.007
[21]
Arun Prasath R, Nanjundan S, Pakula T, Klapper M. Polym. Degrad. Stab., 2004, 85(2): 911.

doi: 10.1016/j.polymdegradstab.2004.04.010
[22]
Jayakumar R, Lee Y S, Nanjundan S. J. Appl. Polym. Sci., 2003, 90(13): 3488.

doi: 10.1002/(ISSN)1097-4628
[23]
Jayakumar R, Nanjundan S. J. Polym. Sci. A Polym. Chem., 2004, 42(8): 1809.

doi: 10.1002/pola.20016
[24]
Jayakumar R, Rajkumar M, Nagendran R, Nanjundan S. J. Appl. Polym. Sci., 2002, 85(6): 1194.

doi: 10.1002/(ISSN)1097-4628
[25]
Jayakumar R, Lee Y S, Nanjundan S. React. Funct. Polym., 2003, 55(3): 267.

doi: 10.1016/S1381-5148(03)00017-8
[26]
Jayakumar R, Lee Y S, Rajkumar M, Nanjundan S. J. Appl. Polym. Sci., 2004, 91(1): 288.

doi: 10.1002/(ISSN)1097-4628
[27]
Arun Prasath R, Nanjundan S. Eur. Polym. J., 1999, 35(11): 1939.

doi: 10.1016/S0014-3057(99)00009-9
[28]
Jayakumar R, Nanjundan S. J. Macromol. Sci. Part A-Pure Appl. Chem., 2006, 43(6): 945.

doi: 10.1080/10601320600653822
[29]
Arun Prasath R, Vijayanand P, Nanjundan S. Polym. Int., 2000, 49(11): 1464.

doi: 10.1002/(ISSN)1097-0126
[30]
Prasath R A, Nanjundan S. J. Macromol. Sci. Part A-Pure Appl. Chem., 1998, 35(5): 821.

doi: 10.1080/10601329808002014
[31]
Jayakumar R, Nanjundan S, Rajkumar M, Nagendran R. J. Macromol. Sci. A, 2001, 38(9): 869.

doi: 10.1081/MA-100104941
[32]
Jayakumar R, Nanjundan S. Polym. J., 2003, 35(9): 734.
[33]
Jayakumar R, Prasath R A, Radhakrishnan S, Nanjundan S. J. Macromol. Sci. A, 2002, 39(8): 853.

doi: 10.1081/MA-120005805
[34]
Jayakumar R, Radhakrishnan S, Nanjundan S. React. Funct. Polym., 2003, 57(1): 23.

doi: 10.1016/j.reactfunctpolym.2003.07.001
[35]
Prasath R A, Jayakumar R, Nanjundan S. J. Macromol. Sci. A, 2000, 37(5): 469.

doi: 10.1081/MA-100101105
[36]
Jayakumar R, Nanjundan S. Eur. Polym. J., 2005, 41(7): 1623.

doi: 10.1016/j.eurpolymj.2005.02.007
[37]
Kothandaraman H, Venkatarao K, Raghavan A, Chandrasekaran V. Polym. Bull., 1985, 13(4): 353.
[38]
Rajalingam P, Radhakrishnan G. Polymer, 1992, 33(10): 2214.

doi: 10.1016/0032-3861(92)90891-Y
[39]
Rajalingam P, Radhakrishnan G, Devanathan S B, Selvy K T, Rao K V. Acta Polym., 1990, 41(11): 560.

doi: 10.1002/actp.1990.010411102
[40]
Durairaj B, Venkata Rao K. Eur. Polym. J., 1980, 16(10): 941.

doi: 10.1016/0014-3057(80)90174-3
[41]
O’Connell E M, Yang C Z, Root T W, Cooper S L. Macromolecules, 1996, 29(18): 6002.

doi: 10.1021/ma951441j
[42]
Hung K C, Hsu S H. Adv. Healthcare Mater., 2015, 4(15): 2186.

doi: 10.1002/adhm.201500374
[43]
Harrington M J, Masic A, Holten-Andersen N, Waite J H, Fratzl P. Science, 2010, 328(5975): 216.

doi: 10.1126/science.1181044 pmid: 20203014
[44]
Xu S B, Sheng D K, Liu X D, Ji F C, Zhou Y, Dong L, Wu H H, Yang Y M. Polym. Int., 2019, 68(6): 1084.

doi: 10.1002/pi.2019.68.issue-6
[45]
Zafar F, Ashraf S M, Ahmad S. J. Appl. Polym. Sci., 2008, 110(1): 584.

doi: 10.1002/app.v110:1
[46]
Song X, Li D, Li X, Gong J, Zhao Y. Advanced Materials Research (Eds. Ren N, Che L K, Jin B, Dong R, Su H). Switzerland: Trans Tech Publlications, 2012. 2015.
[47]
Wang R, Xiao Y, Lei J X. Chem. Eng. J., 2020, 390: 124586.

doi: 10.1016/j.cej.2020.124586
[48]
Ding Y S, Register R A, Yang C Z, Cooper S L. Polymer, 1989, 30(7): 1204.

doi: 10.1016/0032-3861(89)90037-2
[49]
Ding Y S, Register R A, Yang C Z, Cooper S L. Polymer, 1989, 30(7): 1213.

doi: 10.1016/0032-3861(89)90038-4
[50]
Ding Y S, Register R A, Yang C Z, Cooper S L. Polymer, 1989, 30(7): 1221.

doi: 10.1016/0032-3861(89)90039-6
[51]
Kozak N V, Kosyanchuk L F, Lipatov Y S, Nizel’skii Y N, Antonenko O I. Theor. Exp. Chem., 2000, 36(2): 82.

doi: 10.1007/BF02529023
[52]
Diaconu I, Buruiană T, Buruiană E C, Coman P. Die Angewandte Makromolekulare Chemie, 1993, 207(1): 195.

doi: 10.1002/apmc.1993.052070118
[53]
Diaconu I, Coman P, Buruiană T, Buruiană E C. Angew. Makromol. Chemie, 1993, 213(1): 73.

doi: 10.1002/apmc.1993.052130109
[54]
Diaconu I, Coman P, Buruiană T. Angew. Makromol. Chemie, 1994, 221(1): 61.

doi: 10.1002/apmc.1994.052210106
[55]
Francolini I, Ruggeri V, Martinelli A, D’Ilario L, Piozzi A. Macromol. Rapid Commun., 2006, 27(4): 233.

doi: 10.1002/(ISSN)1521-3927
[56]
Li X, Li W, Wang X L, Guo H L, Wang R J, Guo X H, Li C H, Jia X. J. Appl. Polym. Sci., 2018, 135(17): 46069.

doi: 10.1002/app.v135.17
[57]
Wang Y J, Liu Z M, Zhou C L, Yuan Y, Jiang L, Wu B, Lei J X. J. Mater. Chem. A, 2019, 7(8): 3577.

doi: 10.1039/C8TA11866C
[58]
Yang C Z, Zhang X M, O’Connell E M, Goddard R J, Cooper S L. J. Appl. Polym. Sci., 1994, 51(2): 365.

doi: 10.1002/app.1994.070510219
[59]
Shen Q D, Yang C Z. J. Polym. Sci. B Polym. Phys., 1998, 36(9): 1539.

doi: 10.1002/(ISSN)1099-0488
[60]
Zou F X, Chen H, Chen S J, Zhuo H T. J. Mater. Sci., 2019, 54(6): 5136.

doi: 10.1007/s10853-018-3179-2
[61]
Lee H T, Tsou C H, Jou C H, Huang F C, Wang M L, Suen M C. Polym. Bull., 2014, 71(11): 2749.

doi: 10.1007/s00289-014-1222-2
[62]
Tsou C H, Lee H T, Hung W S, Guzman M, Chen S T, Suen M C, Wicaksono S T. Polym. Bull., 2017, 74(4): 1121.

doi: 10.1007/s00289-016-1767-3
[63]
Wu C L, Tsou C Y, Chiu S H, Suen M C, Kao C H. Eur. J. Mater. Sci. Eng., 2016, 1(1): 39.
[64]
Tsou C H, Lee H T, Hung W S, Wang C C, Shu C C, Suen M C, De Guzman M. Polymer, 2016, 85: 96.

doi: 10.1016/j.polymer.2016.01.042
[65]
Wang Z H, Xie C, Yu C J, Fei G X, Wang Z H, Xia H S. Macromol. Rapid Commun., 2018, 39(6): 1700678.

doi: 10.1002/marc.v39.6
[66]
Sun Guo, Zhang Li, Liu Zhu, Li Wei. Polymers, 2019, 11(8): 1320.

doi: 10.3390/polym11081320
[67]
Lin C H, Sheng D K, Liu X D, Xu S B, Ji F C, Dong L, Zhou Y, Yang Y M. J. Polym. Sci. A: Polym. Chem., 2019, 57(22): 2228.

doi: 10.1002/pola.v57.22
[68]
Koohmareh G A, Sharifi M. Des. Monomers Polym., 2010, 13(2): 123.

doi: 10.1163/138577210X12634696333235
[69]
Zheng Q F, Ma Z Q, Gong S Q. J. Mater. Chem. A, 2016, 4(9): 3324.

doi: 10.1039/C5TA10694J
[70]
Yuan J C, Fang X L, Zhang L X, Hong G N, Lin Y J, Zheng Q F, Xu Y Z, Ruan Y H, Weng W G, Xia H P, Chen G H. J. Mater. Chem., 2012, 22(23): 11515.

doi: 10.1039/c2jm31347b
[71]
Hong G N, Zhang H, Lin Y J, Chen Y J, Xu Y Z, Weng W G, Xia H P. Macromolecules, 2013, 46(21): 8649.

doi: 10.1021/ma4017532
[72]
Chen L, Xu H, Zhu Y P, Yang C Z, Shen G. Polym. J., 1996, 28(6): 481.

doi: 10.1295/polymj.28.481
[73]
Chen L, Xu H, Yang C Z, Hu T D, Xue Y N. Polym. Adv. Technol., 1997, 8(6): 335.
[74]
Chen L, Xu H, Yu X H, Zhu Y P, Yang C Z. J. Polym. Sci. A Polym. Chem., 1996, 34(5): 721.

doi: 10.1002/(ISSN)1099-0518
[75]
Senthilkumar N, Narasimhaswamy T, Kim I J. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 2012, 32(8): 2258.

doi: 10.1016/j.msec.2012.06.008
[76]
Kamacı M, Kaya I ˙. J. Inorg. Organomet. Polym. Mater., 2013, 23(5): 1159.

doi: 10.1007/s10904-013-9908-8
[77]
Senthilkumar N, Raghavan A, Nasar A S. Macromol. Chem. Phys., 2005, 206(24): 2490.

doi: 10.1002/(ISSN)1521-3935
[78]
Hasnain S, Zulfequar M, Nishat N. J. Coord. Chem., 2011, 64(6): 952.

doi: 10.1080/00958972.2011.559230
[79]
Hasnain S, Nishat N. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2012, 95: 452.

doi: 10.1016/j.saa.2012.04.018
[80]
Tong W Y, Archer R D. Inorg. Chem., 1992, 31(15): 3332.

doi: 10.1021/ic00041a033
[81]
Chantarasiri N, Damrongkosit T, Jangwong W, Sridaeng D, Suebphan S. Eur. Polym. J., 2004, 40(8): 1867.

doi: 10.1016/j.eurpolymj.2004.04.009
[82]
Khamma N, Krisiri D, Tachaprasertporn P, Chantarasiri N. J. Appl. Polym. Sci., 2008, 108(1): 245.

doi: 10.1002/(ISSN)1097-4628
[83]
Zhang L Z, Liu Z H, Wu X L, Guan Q B, Chen S, Sun L J, Guo Y F, Wang S L, Song J C, Jeffries E M, He C L, Qing F L, Bao X G, You Z W. Adv. Mater., 2019, 31(23): 1901402.

doi: 10.1002/adma.v31.23
[84]
Liu Z H, Zhang L Z, Guan Q B, Guo Y F, Lou J M, Lei D, Wang S L, Chen S, Sun L J, Xuan H X, Jeffries E M, He C L, Qing F L, You Z W. Adv. Funct. Mater., 2019, 29(28): 1901058.

doi: 10.1002/adfm.v29.28
[85]
Sun P Y, Wang J, Yao X, Peng Y, Tu X X, Du P F, Zheng Z, Wang X L. ACS Appl. Mater. Interfaces, 2014, 6(15): 12495.

doi: 10.1021/am502106e
[86]
Xia N N, Xiong X M, Wang J H, Rong M Z, Zhang M Q. Chem. Sci., 2016, 7(4): 2736.

doi: 10.1039/C5SC03483C
[87]
HollÓ B B, Ristić I, Budinski-Simendić J, Cakić S, Szilágyi I M, SzÉcsÉnyi K M. J. Therm. Anal. Calorim., 2018, 132(1): 215.

doi: 10.1007/s10973-017-6904-1
[88]
Acharya V, Ratna Prabha C, Narayanamurthy C. Biomaterials, 2004, 25(19): 4555.

pmid: 15120500
[89]
Georgoussis G, Kanapitsas A, Pissis P, Savelyev Y V, Veselov V Y, Privalko E G. Eur. Polym. J., 2000, 36(6): 1113.

doi: 10.1016/S0014-3057(99)00177-9
[90]
Kalogeras I M, Roussos M, Vassilikou-Dova A, Spanoudaki A, Pissis P, Savelyev Y V, Shtompel V I, Robota L P. Eur. Phys. J. E, 2005, 18(4): 467.

pmid: 16331340
[91]
Ochiai B, Kamiya M, Endo T. J. Polym. Sci. A Polym. Chem., 2012, 50(17): 3493.

doi: 10.1002/pola.v50.17
[92]
Kositsyna O. Technol. Transf.: Fundam. Princ. Innov. Tech. Solut., 2019, 3: 64.
[93]
Moroi G, Ciobanu C. J. Anal. Appl. Pyrolysis, 2003, 70(1): 87.

doi: 10.1016/S0165-2370(02)00097-9
[94]
Moroi G. J. Anal. Appl. Pyrolysis, 2004, 71(2): 485.

doi: 10.1016/S0165-2370(03)00133-5
[95]
Moroi G N. J. Polym. Res., 2012, 19(12): 1.

doi: 10.1007/s10965-012-0001-8
[96]
Moroi G N. Macromol. Symp., 2009, 279(1): 29.

doi: 10.1002/masy.v279:1
[97]
Moroi G, Ciobanu C. Polym. Degrad. Stab., 2002, 78(2): 287.

doi: 10.1016/S0141-3910(02)00173-8
[98]
Moroi G N. Polym. Degrad. Stab., 2010, 95(3): 289.

doi: 10.1016/j.polymdegradstab.2009.11.027
[99]
Moroi G. React. Funct. Polym., 2008, 68(1): 268.

doi: 10.1016/j.reactfunctpolym.2007.09.007
[100]
Moroi G, Ciobanu C. Thermochimica Acta, 2002, 3851-2: 153.
[101]
Lu H B, Lu C R, Huang W M, Leng J S. Smart Mater. Struct., 2015, 24(3): 035018.

doi: 10.1088/0964-1726/24/3/035018
[102]
Lu H B, Lu C R, Huang W M, Leng J S. Smart Mater. Struct., 2016, 25(10): 105003.

doi: 10.1088/0964-1726/25/10/105003
[103]
Wang Z H, Yang Y, Burtovyy R, Luzinov I, Urban M W. J. Mater. Chem. A, 2014, 2(37): 15527.

doi: 10.1039/C4TA02417F
[104]
Kozak N, Nizelskii Y, Mnikh N, Shtompel V, Grischuk O. Macromol. Symp., 2006, 243(1): 247.

doi: 10.1002/(ISSN)1521-3900
[105]
Nizelskii Y, Kozak N. J. Macromol. Sci. B, 2007, 46(1): 97.

doi: 10.1080/00222340601044219
[106]
Khan S, Laxmi L, Zafar F, Nishat N. RSC Adv., 2016, 6(55): 50070.

doi: 10.1039/C6RA00849F
[107]
Laxmi, Khan S, Kareem A, Zafar F, Nishat N. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2018, 188: 400.

doi: 10.1016/j.saa.2017.07.032
[108]
Kanazawa Y, Kamitani M. J. Alloys Compd., 2006, 408-412: 1339.
[109]
Xu G X,. Rare Earths. 2nd ed. Beijing:Metallurgical Industry Press, 1995. 29.(徐光宪. 稀土. 第二版. 北京: 冶金工业出版社, 1995. 29.).
[110]
Fang S M, Wang C, Hu M, Wang P Y, Zhou L M, Gao L J, Liu C S. J. Appl. Polym. Sci., 2012, 125(5): 3404.

doi: 10.1002/app.v125.5
[111]
Gao L J, Li C, Wang C Z, Cui J, Zhou L M, Fang S M. J. Lumin., 2019, 212: 328.

doi: 10.1016/j.jlumin.2019.02.055
[112]
Fiedler T, Hilder M, Junk P C, Kynast U H, Lezhnina M M, Warzala M. Eur. J. Inorg. Chem., 2007, 2007(2): 291.

doi: 10.1002/ejic.v2007:2
[113]
Luo Y T, Zhao A H, Wu C P. Chinese Rare Earth, 2001, 22(1): 9.
( 罗云婷, 赵爱华, 吴承佩. 稀土, 2001, 22(1): 9.)
[114]
Zhou S X, Yin Y J, You B, Wu L M, Chen M. Macromol. Chem. Phys., 2007, 208(24): 2677.

doi: 10.1002/(ISSN)1521-3935
[115]
Zhou L M, Gao L J, Fang S M, Sun G H, Hu M, Guo L Q, Han C, Zhang L C. J. Appl. Polym. Sci., 2012, 125(1): 690.

doi: 10.1002/app.v125.1
[116]
Yang J, Zhang Z H, Yan Y Q, Liu S, Li Z Q, Wang Y G, Li H R. ACS Appl. Mater. Interfaces, 2020, 12(11): 13239.

doi: 10.1021/acsami.9b20582
[117]
Sheng K, Wang J, Li Y, Wang Y, Xu M, Liu A. Advanced Materials Research (Eds. Sung W P, Chen R). Switzerland: Trans Tech Publlications, 2014. 247.
[118]
Zhang Q H, Niu S M, Wang L, Lopez J, Chen S C, Cai Y F, Du R C, Liu Y X, Lai J C, Liu L, Li C H, Yan X Z, Liu C G, Tok J B H, Jia X D, Bao Z N. Adv. Mater., 2018, 30(33): 1801435.

doi: 10.1002/adma.v30.33
[119]
Shi C L, Chen L Q, Qiu F X, Yang D Y. Sci. Technol. Chem. Ind., 2008, 16(5): 9.
( 史成亮, 陈丽琴, 邱凤仙, 杨冬亚. 化工科技, 2008, 16(5): 9.)
[120]
Qiu F X, Shi C L, Chen L Q, Yang D Y. New Chemical Materials, 2008, 36(3): 34.
( 邱凤仙, 史成亮, 陈丽琴, 杨冬亚, 化工新型材料, 2008, 36(3): 34.)
[121]
Liu L, Zhang X J, Zhang L Q. China Synthetic Rubber Industry, 2002, 25(2): 112.
( 刘力, 张秀娟, 张立群. 合成橡胶工业, 2002, 25(2): 112.)
[122]
Liu X H, Zhao Y, Liu Z, Wang D J, Wu J G, Xu D F. Chem. J. Chin. Univ., 2008, 29(10): 2096. (in Chinese)
( 刘新海, 赵莹, 刘智, 王笃金, 吴瑾光, 徐端夫. 高等学校化学学报, 2008, 29(10): 2096.)
[123]
Ciobanu C, Stoica E, Cascaval C N, Rosu D, Rosu L, State M, Emandi A, Nemes I, Petrescu F. J. Appl. Polym. Sci., 2007, 103(2): 659.

doi: 10.1002/(ISSN)1097-4628
[1] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[2] Xuebing Tao, Jipan Yu, Lei Mei, Changming Nie, Zhifang Chai, Weiqun Shi. Dinitrogen Activation by Uranium Complex [J]. Progress in Chemistry, 2021, 33(6): 907-913.
[3] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[4] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[5] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[6] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[7] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[8] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[9] Yanan Zheng, Dan Wang. Structures, Properties, and Applications of Metalloregulatory Proteins [J]. Progress in Chemistry, 2019, 31(10): 1372-1383.
[10] Na Li, Ze Chang, Qiang Chen, Jiacheng Yin, Xian-He Bu. Construction and Modulation of Dynamic Coordination Space [J]. Progress in Chemistry, 2019, 31(1): 10-20.
[11] Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water [J]. Progress in Chemistry, 2018, 30(8): 1242-1256.
[12] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[13] Bo Yan, Hongwei Zhou*, Pu Xie, Xilang Jin, Aijie Ma*, Weixing Chen. Dynamic and Reversible Intelligent Systems Regulated by Chemical Oscillating Reactions [J]. Progress in Chemistry, 2017, 29(7): 740-749.
[14] Mei Pan, Zhangwen Wei, Yaowei Xu, Cheng-Yong Su. Coordination Assembly of Metal-Organic Materials [J]. Progress in Chemistry, 2017, 29(1): 47-74.
[15] Jia Yingying, Li Yang, Zhou Ruisha, Song Jiangfeng. The Advance of Imidazoledicarboxylate Derivatives-Based Coordination Polymers [J]. Progress in Chemistry, 2016, 28(4): 482-496.
Viewed
Full text


Abstract