中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 10-20 DOI: 10.7536/PC181203 Previous Articles   Next Articles

• Review •

Construction and Modulation of Dynamic Coordination Space

Na Li1,3, Ze Chang1,3, Qiang Chen1,3, Jiacheng Yin1,3, Xian-He Bu1,2,3,**()   

  1. 1. School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
    2. State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
    3. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Contact: Xian-He Bu
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21421001); The work was supported by the National Natural Science Foundation of China(21531005); The Programme of Introducing Talents of Discipline to Universities(B18030)
Richhtml ( 44 ) PDF ( 938 ) Cited
Export

EndNote

Ris

BibTeX

“Coordination space” is the space with specific structure and functions, which is defined by the coordination bonded structural elements of inorganic-organic hybrid system. This concept provides a new perspective for the research on the targeted construction and modulation of coordinative hybrid materials. As typical inorganic-organic hybrid materials, Metal-Organic Framework (MOF) and Metal-Organic Cage (MOC) have attracted widespread attention in recent years. The key point of targeted construction and regulation of could be regarded as the design of their coordination space. The stimuli-responsive MOFs possess dynamic coordination space, which promote their potential applications in adsorption/separation, sensing, drug delivery, and related fields. Based on the well-developed research of dynamic of metal-organic framework, herein we briefly introduce the recent progress in dynamic coordinate space, including the structure foundation and stimulating factors for the achievement of dynamic behaviors, the relationship between the structure and properties of this kind of material, which could be instructive useful references for related research investigation.

Fig.1 Structural changes of MOFs via the configuration flexibility of ligand[43, 44]
Fig.2 (a)Representations of the channels displaying the decrease of interlayer distance due to the rotation of C—C single bond of bpa pillar, (b) front view of the channels showing reversible contraction and expansion of the pore[45]
Fig.3 Representations of the dramatic structural flexibility induced by flexible ligand as pillar[46]
Fig.4 Schematic representation of the reversible transition of MIL-53 and the corresponding metal centers[59, 60]
Fig.5 Schematic representation of the different phase transition in MOFs based on different metal ions[62]
Fig.6 The achievement of dynamic displacement of interpenetrated frameworks through anion modulation[65]
Fig.7 The dynamic behaviors of MOFs induced by guest molecule[66]
Fig.8 Anion induced structural transformation (a) and visual colorimetric anion sensing (b) in a cationic framework[40]
Fig.9 The selective anion exchange in MOF and the corresponding dynamic structure change[67]
Fig.10 Simulated crystal structures of the MIL-88 framework in its contracted and open forms[69]
Fig.11 Structure transformation of [Ni(L)2(NO3)2·4(o-xylene)][70]
Fig.12 Temperature induced structural transformation between Dy2-DMF and Dy2-CH3CN and their magnetic variation[71]
Fig.13 Schematic illustration of selective guest-responsive framework flexibility[72]
Fig.14 SC-SC transformation upon lost/recovery of coordinative guests[39]
Fig.15 Schematic representation of the breathing behavior of MUV-2 upon solvent adsorption and the corresponding solid-state cyclic voltammetry (CV) of MUV-2[74]
Fig.16 The achievement of high performances CO2/C2H2 separation based on the structure transformation of dynamic MOF[17]
Fig.17 Guest induced continuous breathing behavior of MOF[79]
Fig.18 Structural changes of NU-1400 in different solvents[80]
Fig.19 The dynamic structure transformation of MOF in response to temperature[81]
Fig.20 Structural transformations of the porous framework induced by the temperature variation[82]
Fig.21 The structure of the dynamic MOF based on temperature responsive supramolecular interactions between the anion guest and host framework, and the scheme of the mechanism[41]
Fig.22 Scheme presentation of the strategy for the construction of azo based photo-responsive dynamic MOF[83]
Fig.23 The dynamic structure transformation of MOF based on photo-responsive guest molecules[86]
Fig.24 The controllable capture and release of CO2 based on photo-responsive dynamic MOF[87]
Fig.25 The achievement of highly efficiency C2H2/C2H4 separation based on photo-responsive dynamic MOF[89]
Fig.26 (a) Photochromic reaction of the diarylethene derivative under UV and visible light and (b) the photo-controlled tunable luminescence performance of the corresponding dynamic MOF[88]
Fig.27 A reversible phase transition in Co/Fe(bdp) in response to CH4 pressures and high-pressure gas adsorption isotherms of flexible Co(bdp) derivatives[93, 94]
Fig.28 Pressure changes the color of a new type of dynamic MOF[95]
Fig.29 Pressure induced dynamic MOF with changing colour and its hypochromic effect[96]
Fig.30 (a, c) Rietveld refinement of the neutron powder diffraction ELM-12·2.5C2D2 at 298 K, (b, d) the two preferential binding sites for C2D2 adsorption (sites Ⅰ and Ⅱ) in ELM-12[106]
Fig.31 In situ monitoring of structural transformation of dynamic MOF characterised by high-pressure129Xe NMR spectroscopy[111]
Fig.32 The characterization of the coordination bonding in the structure transformation process of dynamic MOF according to in-situ Raman spectra[61]
Fig.33 Raman spectra of DUT-8(Ni)[112]
Fig.34 The transformation process of dynamic MOF characterized by in-situ IR and Raman spectra[114]
Fig.35 In situ ETEM images and diffraction patterns of MIL-53(Cr) nanocrystal at different conditions[118]
[1]
Kitagawa S, Matsuda R Coord. Chem. Rev., 2007,251:2490.
[2]
Uemura T, Horike S, Kitagawa S . Chem. Asian J., 2006,1:36.
[3]
Moghadam P Z, Li A, Wiggin S B, Tao A, Maloney A G P, Wood P A, Ward S C, Fairen-Jimenez D . Chem. Mater., 2017,29:2618.
[4]
Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K . Chem. Soc. Rev., 2017,46:3242.
[5]
Burtch N C, Jasuja H, Walton K S . Chem. Rev., 2014,114:10575.
[6]
He Y, Krishna R, Chen B . Energy Environ Sci., 2012,5:9107.
[7]
Zhang J, Wu T, Chen S, Feng P Bu X, . Angew. Chem. Int.Ed, 2009,48:3486.
[8]
Wang B, Cote A P, Furukawa H, O'Keeffe M, Yaghi O M . Nature, 2008,453:207.
[9]
Seki K . Phys. Chem. Chem.Phys., 2002,4:1968.
[10]
Suh M P, Ko J W, Choi H J . J.Am. Chem. Soc., 2002,124:10976.
[11]
Kitaura R, Seki K, Akiyama G, Kitagawa S . Angew. Chem.Int Ed., 2003,115:444.
[12]
Dybtsev D N, Chun H, Kim K . Angew. Chem. Int.Ed., 2004,43:5033.
[13]
Uemura K, Matsuda R, Kitagawa S . J.Solid State Chem., 2005,178:2420.
[14]
Kitagawa S, Kitaura R, Noro S . Angew. Chem. Int. Ed., 2004,43:2334.
[15]
Horike S, Shimomura S, Kitagawa S . Nat.Chem, 2009,1:695.
[16]
Seo J, Matsuda R, Sakamoto H, Bonneau C, Kitagawa S . J. Am. Chem. Soc., 2009,131:12792.
[17]
Foo M L, Matsuda R, Hijikata Y, Krishna R, Sato H, Horike S, Hori A, Duan J, Sato Y, Kubota Y, Takata M, Kitagawa S . J.Am. Chem. Soc., 2016,138:3022.
[18]
Chen C L, Goforth A M, Smith M D, Su C Y, zur Loye H C . Angew. Chem. Int. Ed., 2005,44:6673.
[19]
Ghosh S K, Kaneko W, Kiriya D, Ohba M, Kitagawa S . Angew. Chem. Int. Ed., 2008,47:8843.
[20]
Zhang J P, Zhou H L, Zhou D D, Liao P Q, Chen X M . Nat. Sci. Rev., 2018,5:907.
[21]
Bu X H, Chen W, Lu S L, Zhang R H, Liao D Z, Bu W M, Shionoya M, Brisse F, Ribas J . Angew. Chem. Int. Ed., 2001,40:3201.
[22]
Sasa M, Tanaka K, Bu X H, Shiro M, Shionoya M . J. Am. Chem. Soc., 2001,123:10750.
[23]
Bu X H, Tong M L, Chang H C, Kitagawa S, Batten S R . Angew. Chem. Int. Ed., 2004,43:192.
[24]
Li J R, Yu Q, Sanudo E C, Tao Y, Bu X H . Chem. Commun., 2007,25:2602.
[25]
Li J R, Yu Q, Tao Y, Bu X H, Ribas J, Batten S R . Chem.Commun., 2007,0:2290
[26]
Zeng Y F, Hu X, Liu F C, Bu X H . Chem. Soc. Rev., 2009,38:469.
[27]
杜淼 (Du M), 卜显和 (Bu X H). 化学进展( Prog. Chem.), 2009,21:2458.
[28]
Canadillas Delgado L, Fabelo O Alberto Rodriguez Velamazan J, Lemee Cailleau M H, Mason S A, Pardo E, Lloret F, Zhao J P, Bu X H, Simonet V, Colin C V, Rodriguez Carvajal J . J. Am. Chem. Soc., 2012,134:19772.
[29]
Han S D, Zhao J P, Liu S J, Bu X H . Coord. Chem. Rev., 2015,289/290:32.
[30]
Li J R, Tao Y, Yu Q, Bu X H, Sakamoto H, Kitagawa S . Chem. Eur. J., 2008,14:2771.
[31]
Zhang D S, Chang Z, Li Y F, Jiang Z Y, Xuan Z H, Zhang Y H, Li J R, Chen Q, Hu T L, Bu X H . Sci.Rep., 2013,3:3312.
[32]
Wang H, Xu J, Zhang D S, Chen Q, Wen R M, Chang Z Bu X H, . Angew. Chem. Int.Ed., 2015,54:5966.
[33]
Tian D, Xu J, Xie Z J, Yao Z Q, Fu D L, Zhou Z, Bu X H. . Adv.Sci, 2016,3:1500283.
[34]
Zhao J P, Xu J, Han S D, Wang Q L Bu X H. , . Adv. Mater., 2017,29:1606966.
[35]
Li A L, Gao Q, Xu J, Bu X H. . Coord. Chem. Rev., 2017,344:54.
[36]
Zhang D S, Gao Q, Chang Z, Liu X T, Zhao B, Xuan Z H, Hu T L, Zhang Y H, Zhu J, Bu X H . Adv.Mater, 2018,30:1804715.
[37]
Li N, Feng R, Zhu J, Chang Z, Bu X H . Coord. Chem. Rev., 2018,375:558.
[38]
Gao Q, Xu J, Bu X H . Coord. Chem. Rev., 2019,378:17.
[39]
Chen Q, Chang Z, Song W C, Song H, Song H B, Hu T L, Bu X H . Angew. Chem. Int.Ed., 2013,52:11550.
[40]
Chen Y Q, Li G R, Chang Z, Qu Y K, Zhang Y H, Bu X H . Chem. Sci., 2013,4:3678.
[41]
Gao Q, Xu J, Cao D, Chang Z, Bu X H . Angew. Chem. Int. Ed., 2016,55:15027.
[42]
Chang Z, Yang D H, Xu J, Hu T L, Bu X H . Adv. Mater., 2015,27:5432.
[43]
Alberti G, Murcia Mascarós S, Vivani R . J. Am. Chem. Soc., 1998,120:9291.
[44]
Férey G, Serre C . Chem. Soc. Rev., 2009,38:1380.
[45]
Li X L, Liu G Z, Xin L Y, Wang L Y . CrystEngComm, 2012,14:5757.
[46]
Bloch W M, Burgun A, Coghlan C J, Lee R, Coote M L, Doonan C J, Sumby C J . Nat. Chem., 2014,6:906.
[47]
Henke S, Schneemann S, Siskos M G . Chem. Commun., 2011,47:7140.
[48]
Michaelides A, Skoulika S, Siskos M G . Chem. Commun., 2011,47:7140.
[49]
Ou Y C, Zhi D S, Liu W T, Ni Z P, Tong M L . Chem.Eur. J., 2012,18:7357.
[50]
Morris R E, Brammer L . Chem. Soc. Rev., 2017,46:5444.
[51]
Ghoufi A, Benhamed K, Boukli Hacene L, Maurin G . ACS Cent Sci., 2017,3:394.
[52]
Millange F, Guillou N, Medina M E, Férey G, Carlin Sinclair A, Golden K M, Walton R I . Chem. Mater., 2010,22:4237.
[53]
Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G . Chem. Eur. J., 2004,10:1373.
[54]
Couck S, Gobechiya E Kirschhock C E A, Serra Crespo P, Juan Alcaniz J, Martinez Joaristi A, Stavitski E, Gascon J, Kapteijn F, Baron G V, Denayer J F M , ChemSusChem, 2012,5:740.
[55]
Isaeva V I, Chernyshev V V, Tarasov A L, Lobova A A, Kapustin G I, Davshan N A . Russ. J. Phys. Chem. 2018,92:2386.
[56]
Bourrelly S, Moulin B, Rivera A, Maurin G, Devautour Vinot S, Serre C, Devic T, Horcajada P, Vimont A, Clet G, Daturi M, Lavalley J C, Loera Serna S, Denoyel R, Llewellyn P L, Férey G . J.Am. Chem. Soc., 2010,132:9488.
[57]
Llewellyn P L, Horcajada P, Maurin G, Devic T, Rosenbach N, Bourrelly S, Serre C, Vincent D, Loera Serna S, Filinchuk Y, Férey G . J. Am. Chem. Soc., 2009,131:13002.
[58]
Llewellyn P L, Maurin G, Devic T, Loera Serna S, Rosenbach N, Serre C, Bourrelly S, Horcajada P, Filinchuk Y, Férey G . J. Am. Chem. Soc., 2008,130:12808.
[59]
Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, Férey G . J. Am. Chem. Soc., 2002,124:13519.
[60]
Murdock C R, Hughes B C, Lu Z, Jenkins D M . Coord. Chem. Rev., 2014,258:119.
[61]
Seo J, Bonneau C, Matsuda R, Takata M, Kitagawa S . J. Am. Chem. Soc., 2011,133:9005.
[62]
Schneemann A, Vervoorts P, Hante I, Tu M, Wannapaiboon S, Sternemann C, Paulus M Wieland D C F, Henke S, Fischer R A . Chem. Mater., 2018,30:1667.
[63]
Takashima Y, Martínez V M, Furukawa S, Kondo M, Shimomura S, Uehara H, Nakahama M, Sugimoto K, Kitagawa S . Nat.Commun, 2011,2:168.
[64]
Mulfort K L, Hupp J T . J. Am. Chem. Soc., 2007,129:9604.
[65]
Maji T K, Matsuda R, Kitagawa S. Nat. Mater ., 2007,6:142.
[66]
Kitagawa S, Uemura K . Chem. Soc. Rev., 2005,34:109.
[67]
Karmakar A, Manna B, Desai A V, Joarder B Ghosh S K, . Inorg. Chem., 2014,53:12225.
[68]
Ke S Y, Wang C C . CrystEngComm, 2015,17:8776.
[69]
Mellot Draznieks C, Serre C, Surblé S, Audebrand N, Férey G . J. Am. Chem. Soc., 2005,127:16273.
[70]
Biradha K, Hongo Y Fujita M, . Angew. Chem. Int.Ed., 2002,41:3395.
[71]
Zhang X, Vieru V, Feng X, Liu J L, Zhang Z, Na B, Shi W, Wang B W, Powell A K, Chibotaru L F, Gao S, Cheng P Long J R, . Angew. Chem. Int. Ed., 2015,54:9861.
[72]
Mukherjee S, Joarder B, Manna B, Desai A V, Chaudhari A K Ghosh S K, . Sci. Rep., 2014,4:5761.
[73]
Chen Q, Feng R, Xu J, Jia Y Y, Wang T T, Chang Z Bu X H, . ACS Appl.Mater Interfaces, 2017,9:35141.
[74]
Souto M, Romero J, Calbo J, Vitórica Yrezábal I J, Zafra J L, Casado J, Ortí E, Walsh A, Mínguez Espallargas G . J. Am. Chem. Soc., 2018,140:10562.
[75]
Hyun S M, Lee J H, Jung G Y, Kim Y K, Kim T K, Jeoung S, Kwak S K, Moon D Moon H R, . Inorg. Chem., 2016,55:1920.
[76]
Li L, Krishna R, Wang Y, Yang J, Wang X, Li J . J. Mater. Chem.A, 2016,4:751.
[77]
Li X, Chen X, Jiang F, Chen L, Lu S, Chen Q, Wu M, Yuan D, Hong M . Chem.Commun, 2016,52:2277.
[78]
Zhao Y P, Li Y, Cui C Y, Xiao Y, Li R, Wang S H, Zheng F K Guo G C, . Inorg. Chem., 2016,55:7335.
[79]
Carrington E J, McAnally C A, Fletcher A J, Thompson S P, Warren M, Brammer L . Nat. Chem., 2017,9:882.
[80]
Zhang Y, Zhang X, Lyu J, Otake K I, Wang X, Redfern L R, Malliakas C D, Li Z, Islamoglu T, Wang B, Farha O K . J. Am. Chem. Soc., 2018,140:11179.
[81]
Henke S, Schneemann A, Fischer R A . Adv. Funct. Mater., 2013,23:5990.
[82]
Zhu M, Song X Z, Song S Y, Zhao S N, Meng X, Wu L L, Wang C, Zhang H J . Adv. Sci., 2015,2:1500012.
[83]
Modrow A, Zargarani D, Herges R, Stock N . Dalton Trans, 2011,40:4217.
[84]
Park J, Yuan D, Pham K T, Li J R, Yakovenko A, Zhou H C . J. Am. Chem. Soc., 2012,134:99.
[85]
Brown J W, Henderson B L, Kiesz M D, Whalley A C, Morris W, Grunder S, Deng H, Furukawa H, Zink J I, Stoddart J F, Yaghi O M . Chem. Sci., 2013,4:2858.
[86]
Yanai N, Uemura T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S, Kitagawa S . J. Am. Chem. Soc., 2012,134:4501.
[87]
Lyndon R, Konstas K, Ladewig B P, Southon P D, Kepert P C J, Hill M R . Angew. Chem. Int. Ed., 2013,52:3695.
[88]
Luo F, Fan C B, Luo M B, Wu X L, Zhu Y, Pu S Z, Xu W Y, Guo G C . Angew. Chem. Int. Ed., 2014,53:9298.
[89]
Fan C B, Le Gong L, Huang L, Luo F, Krishna R, Yi X F, Zheng A M, Zhang L, Pu S Z, Feng X F, Luo M B Guo G C, . Angew. Chem. Int. Ed., 2017,56:7900.
[90]
Wharmby M T, Henke S, Bennett T D, Bajpe S R, Schwedler I, Thompson S P, Gozzo F, Simoncic P, Mellot Draznieks C, Tao H, Yue Y, Cheetham A K . Angew. Chem. Int. Ed., 2015,54:6447.
[91]
Cao S, Bennett T D, Keen D A, Goodwin A L, Cheetham A K . Chem. Commun., 2012,48:7805.
[92]
Spencer E C, Kiran M S R N, Li W, Ramamurty U, Ross N L, Cheetham A K . Angew. Chem. Int. Ed., 2014,53:5583.
[93]
Mason J A, Oktawiec J, Taylor M K, Hudson M R, Rodriguez J, Bachman J E, Gonzalez M I, Cervellino A, Guagliardi A, Brown C M, Llewellyn P L, Masciocchi N, Long J R . Nature, 2015,527:357.
[94]
Taylor M K, Runcevski T, Oktawiec J, Gonzalez M I, Siegelman R L, Mason J A, Ye J, Brown C M, Long J R . J. Am. Chem. Soc., 2016,138:15019.
[95]
Andrzejewski M, Katrusiak A . J. Phys. Chem. Lett., 2017,8:279.
[96]
Andrzejewski M, Casati N, Katrusiak A . Dalton Trans, 2017,46:14795.
[97]
Allan P K, Xiao B, Teat S J, Knight J W, Morris R E . J. Am. Chem. Soc., 2010,132:3605.
[98]
Miller S R, Wright P A, Devic T, Serre C, Férey G, Llewellyn P L, Denoyel R, Gaberova L, Filinchuk Y . Langmuir, 2009,25:3618.
[99]
Bhatt P M, Batisai E, Smith V J Barbour L J, . Chem. Commun., 2016,52:11374.
[100]
Kondo M, Furukawa S, Hirai K, Tsuruoka T, Reboul J, Uehara H, Diring S, Sakata Y, Sakata O, Kitagawa S . J. Am. Chem. Soc., 2014,136:4938.
[101]
Zhang J P, Liao P Q, Zhou H L, Lin R B, M . Chem. Soc. Rev., 2014,43:5789.
[102]
Kubota Y, Takata M, Matsuda R, Kitaura R, Kitagawa S, Kobayashi T C . Angew.Chem Int. Ed, 2006,45:4932.
[103]
Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker J E, Tang C C, Allan D R, Rizkallah P J, Hubberstey P, Champness N R, Mark Thomas K, Blake A J, Schröder M . Nat.Mater, 2012,11:710.
[104]
Hamon L, Llewellyn P L, Devic T, Ghoufi A, Clet G, Guillerm V, Pirngruber G D, Maurin G, Serre C Driver G, van Beek W, Jolimaître E, Vimont A, Daturi M, Férey G . J. Am. Chem. Soc., 2009,131:17490.
[105]
Mulder F M, Assfour B, Huot J, Dingemans T J, Wagemaker M, Ramirez-Cuesta A J . J. Phys. Chem C, 2010,114:10648.
[106]
Li L, Lin R B, Krishna R, Wang X, Li B, Wu H, Li J, Zhou W, Chen B . J. Mater. Chem.A, 2017,5:18984.
[107]
Walton R I, Munn A S, Guillou N, Millange F . Chem.Eur.J, 2011,17:7069.
[108]
Chen L, Mowat J P S, Fairen-Jimenez D, Morrison C A, Thompson S P, Wright P A, Düren T . J.Am. Chem. Soc., 2013,135:15763.
[109]
Hoffmann H C, Assfour B, Epperlein F, Klein N, Paasch S, Senkovska I, Kaskel S, Seifert G, Brunner E . J. Am. Chem. Soc., 2011,133:8681.
[110]
Springuel-Huet M A, Nossov A, Guenneau F, Gédéon A . Chem. Commun., 2013,49:7403.
[111]
Schaber J, Krause S, Paasch S, Senkovska I, Bon V, Toebbens D M, Wallacher D, Kaskel S, Brunner E . J. Phys. Chem. C, 2017,121:5195.
[112]
Krylov A, Vtyurin A, Petkov P, Senkovska I, Maliuta M, Bon V, Heine T, Kaskel S, Slyusareva E . Phys. Chem. Chem.Phys., 2017,19:32099.
[113]
Yang S, Liu L, Sun J, Thomas K M, Davies A J, George M W, Blake A J, Hill A H, Fitch A N, Tang C C, Schröder M . J. Am. Chem. Soc., 2013,135:4954.
[114]
Hoffman A E J, Vanduyfhuys L, Nevjestic I, Wieme J, Rogge S M J, Depauw H, Van Der Voort P, Vrielinck H, Van Speybroeck V . J. Phys. Chem.C, 2018,122:2734.
[115]
Bordiga S, Bonino F, Lillerud K P , Lamberti C. Chem. Soc. Rev., 2010,39:4885.
[116]
Chen Y, Zhang J, Li J, Lockard J V . J. Phys. Chem.C, 2013,117:20068.
[117]
Grünker R, Senkovska I, Biedermann R, Klein N, Lohe M R, Müller P, Kaskel S . Chem.Commun, 2011,47:490.
[118]
Parent L R, Pham C H, Patterson J P, Denny M S, Cohen S M, Gianneschi N C, Paesani F . J. Am. Chem. Soc., 2017,139:13973.
[119]
Ortiz A U, Boutin A, Fuchs A H, Coudert F X . Phys. Rev. Lett., 2012,109:195502.
[120]
Bousquet D, Coudert F X, Fossati A G J, Neimark A V, Fuchs A H, Boutin A . J.Chem. Phys., 2013,138:174706.
[121]
Neimark A V, Coudert F X, Boutin A, Fuchs A H . J. Phys. Chem. Lett., 2010,1:445.
[122]
Triguero C, Coudert F X, Boutin A, Fuchs A H, Neimark A V . J. Chem. Phys., 2012,137:184702.
[123]
Triguero C, Coudert F X, Boutin A, Fuchs A H, Neimark A V . J. Phys. Chem. Lett., 2011,2:2033.
[124]
Coudert F X, Mellot-Draznieks C, Fuchs A H, Boutin A . J. Am. Chem. Soc., 2009,131:11329.
[125]
Ortiz A U, Springuel-Huet M A, Coudert F X, Fuchs A H, Boutin A . Langmuir, 2012,28:494.
[126]
Coudert F X . Phys. Chem. Chem. Phys., 2010,12:10904.
[127]
Hamon L, Leclerc H, Ghoufi A, Oliviero L, Travert A, Lavalley J C, Devic T, Serre C, Férey G, De Weireld G, Vimont A, Maurin G . J. Phys. Chem.C, 2011,115:2047.
[128]
Salles F, Bourrelly S, Jobic H, Devic T, Guillerm V, Llewellyn P, Serre C, Férey G, Maurin G . J. Phys. Chem.C, 2011,115:10764.
[129]
Rives S, Jobic H, Kolokolov D I, Gabrienko A A, Stepanov A G, Ke Y, Frick B, Devic T, Férey G, Maurin G . J. Phys. Chem.C, 2013,117:6293.
[130]
Salles F, Jobic H, Devic T, Guillerm V, Serre C, Koza M M, Férey G, Maurin G . J. Phys. Chem.C, 2013,117:11275.
[131]
Rosenbach N, Jr,Jobic H, Ghoufi A, Devic T, Koza M M, Ramsahye N, Mota C J, Serre C, Maurin G . J. Phys. Chem. C, 2014,118:14471.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[6] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[7] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[12] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[13] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[14] Yifeng Chen, Cong Wang, Kefeng Ren, Jian Ji. Droplet Microarrays in Biomedical High-Throughput Research [J]. Progress in Chemistry, 2021, 33(4): 543-554.
[15] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.