Perspective: Structures and Properties of Liquid Water

Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun

Progress in Chemistry ›› 2018, Vol. 30 ›› Issue (8) : 1242-1256.

PDF(8304 KB)
中文
PDF(8304 KB)
Progress in Chemistry ›› 2018, Vol. 30 ›› Issue (8) : 1242-1256. DOI: 10.7536/PC171013
Review

Perspective: Structures and Properties of Liquid Water

  • Chuang Yao1, Xi Zhang2*, Yongli Huang3, Lei Li1, Zengsheng Ma3, Changqing Sun1,4*
Author information +
History +

Abstract

The structure of liquid water particularly the number of bonds per water molecule has been a debating issue during 1933~1935 when Bernal, Fowler, and Pauling firstly proposed the scenario of proton "transitional quantum tunneling" in THz frequency at asymmetrical sites between two oxygen ions. Although conventions of the rigid or flexible dipole-dipole interaction, nanophase mixed amorphous structure or homogeneous fluctuating phase models, solute diffusion dynamics or hydration length scale premises have been becoming dominant, mysteries such as floating of ice, regelation of ice (compression melting), slipperiness of ice, fast cooling of warm water, etc. have yet to be resolved. The definition of hydrogen bond needs yet to be certain. In this perspective, we emphasize that it would be more efficient to transit the conventional "dipole-dipole" interaction to "hydrogen bond (O:H-O) asymmetrical, short-range, correlative" interaction, from the "proton translational tunneling" to "hydrogen bond cooperative relaxation". Progress also revealed that the O:H-O bond configuration and the numbers of protons and nonbonding electron lone pairs conserve and that water forms the tetrahedrally-coordinated, strongly correlated, fluctuating single liquid crystal. The O:H nonbond and the H-O bond segmental specific heat disparity derives a quasisolid phase between the liquid and the solid. With tunable boundaries, the quasisolid phase possesses the negative thermal expansion coefficient. Remarkably, molecular undercoordination results in a supersolid phase that is highly polarized, thermally stable, viscoelastic, and lesser dense. Extending hydrogen-bond knowledge to the energy storage-explosion reaction mechanics of energetic materials may further verify the comprehensiveness and universality of the current notion of hydrogen bond cooperativity-nonbonding interaction is ubiquitously important.
Contents
1 Introduction:challenges and opportunities
2 Strategies:manner of thinking
3 Principles:rules of conservation and prohibition
3.1 N number and O:H-O bond configuration conservation
3.2 Molecular orientation and proton tunneling prohibition
3.3 Water single crystal and O:H-O bond potential Path
3.4 O:H-O bond coorpertivity and ice water anomalies
4 Method:spectrometrics and analysis
5 Progress:mysteries resolution
5.1 Quasisolid cooling expansion:ice floating and density oscillation
5.2 Undercoordination supersolidity:slipperiness and skin hydorphobicity
5.3 O:H-O symmetrization:quasisolid phase boundary dispersion and regelation
5.4 Hot water cools faster:O:H-O bond memory and skin supersolidity
6 Conclusion:insight and perspective

Key words

hydrogen bond / temperature / coordination / pressure / phonon spectroscopy

Cite this article

Download Citations
Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water[J]. Progress in Chemistry, 2018, 30(8): 1242-1256 https://doi.org/10.7536/PC171013

References

[1] Sun C Q, Sun Y, The Attribute of Water:Single Notion, Multiple Myths. Springer-Verlag:Heidelberg, 2016.
[2] Ball P. Nature, 2008, 452:291.
[3] Editorial. Science, 2005, 309:78.
[4] Agmon N, Bakker H J, Campen R K, Henchman R H, Pohl P, Roke S, Thämer M, Hassanali A. Chem. Rev., 2016, 116:7642.
[5] Amann-Winkel K, Bellissent-Funel M C, Bove L E, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L. Chem. Rev., 2016, 116:7570.
[6] Björneholm O, Hansen M H, Hodgson A, Liu L M, Limmer D T, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz M, Werner J, Bluhm H. Chem. Rev., 2016, 116:7698.
[7] Ceriotti M, Fang W, Kusalik P G, McKenzie R H, Michaelides A, Morales M A, Markland T E. Chem. Rev., 2016, 116:7529.
[8] Cisneros G A, Wikfeldt K T, Ojamäe L, Lu J B, Xu Y, Torabifard H, Bartók A P, Csányi G, Molinero V, Paesani F. Chem. Rev., 2016, 116:7501.
[9] Fransson T, Harada Y, Kosugi N, Besley N A, Winter B, Rehr J J, Pettersson L G M, Nilsson A. Chem. Rev., 2016, 116:7551.
[10] Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L, Pettersson L G M. Chem. Rev., 2016, 116:7463.
[11] Perakis F, Marco L D, Shalit A, Tang F, Kann Z R, Kühne T D, Torre R, Bonn M, Nagata Y. Chem. Rev., 2016, 116:7590.
[12] Pettersson L G M, Henchman R H, Nilsson A. Chem. Rev., 2016, 116:7459.
[13] Amann-Winkel K, Böhmer R, Fujara F, Gainaru C, Geil B, Loerting T. Rev. Mod. Phys., 2016, 88:011002.
[14] Ball P. H2O:A Biography of Water. Hachette UK, 2015.
[15] Huang Y L, Zhang X, Ma Z S, Zhou Y C, Zheng W T, Zhou J, Sun C Q. Coord. Chem. Rev., 2015, 285:109.
[16] Zhang X, Sun P, Huang Y L, Ma Z S, Liu X J, Zhou J, Zheng W T, Sun C Q. J. Phys. Chem. B, 2015, 119:5265.
[17] Zhang X, Sun P, Huang Y L, Yan T T, Ma Z S, Liu X J, Zou B, Zhou J, Zheng W T, Sun C Q. Prog. Solid State Chem., 2015, 43:71.
[18] Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A. Science, 2004, 304:995.
[19] Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J. Science, 2004, 306:851.
[20] Head-Gordon T, Johnson M E. Proc. Natl. Acad. Sci. U.S.A., 2006, 103:7973.
[21] Hermann A, Schmidt W G, Schwerdtfeger P. Phys. Rev. Lett., 2008, 100:207403.
[22] Guo J, Bian K, Lin Z R, Jiang Y. J. Chem. Phys., 2016, 145:160901.
[23] Guo J, Lü J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y. Science, 2016, 352:321.
[24] Ball P, Ben-Jacob E. The European Physical Journal Special Topics, 2014, 223:849.
[25] Pauling L. The Nature of the Chemical Bond. 3 ed. Cornell University press:Ithaca, NY, 1960.
[26] Bernal J D, Fowler R H. J. Chem. Phys., 1933, 1:515.
[27] Pauling L. J. Am. Chem. Soc., 1935, 57:2680.
[28] de Grotthuss C. Galvanique. Ann. Chim., 1806.
[29] Hassanali A, Giberti F, Cuny J, Kuhne T D, Parrinello M. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:13723.
[30] Harich S A, Hwang D W H, Yang X, Lin J J, Yang X, Dixon R N. J. Chem. Phys., 2000, 113:10073.
[31] Alduchov O A, Eskridge R E. Improved Magnus' Form Approximation of Saturation Vapor Pressure. 1997.
[32] Jones G, Dole M. J. Am. Chem. Soc., 1929, 51:2950.
[33] Wynne K. J. Phys. Chem. Lett., 2017, 8:6189.
[34] Araque J C, Yadav S K, Shadeck M, Maroncelli M, Margulis C J. J. Phys. Chem. B, 2015, 119:7015.
[35] Thämer M, de Marco L, Ramasesha K, Mandal A, Tokmakoff A. Science, 2015, 350:78.
[36] Branca C, Magazu S, Maisano G, Migliardo P, Tettamanti E. Physica B, 2000, 291:180.
[37] Sellberg J A, Huang C, McQueen T A, Loh N D, Laksmono H, Schlesinger D, Sierra R G, Nordlund D, Hampton C Y, Starodub D, DePonte D P, Beye M, Chen C, Martin A V, Barty A, Wikfeldt K T, Weiss T M, Caronna C, Feldkamp J, Skinner L B, Seibert M M, Messerschmidt M, Williams G J, Boutet S, Pettersson L G, Bogan M J, Nilsson A. Nature, 2014, 510:381.
[38] Ren Z, Ivanova A S, Couchot-Vore D, Garrett-Roe S. J. Phys. Chem. Lett., 2014, 5:1541.
[39] Park S, Odelius M, Gaffney K J. J. Phys. Chem. B, 2009, 113:7825.
[40] Guo J, Li X Z, Peng J B, Wang E G, Jiang Y. Prog. Surf. Sci., 2017, 92:203.
[41] Peng J B, Guo J, Ma R Z, Meng X Z, Jiang Y. J. Phys.:Condens. Matter., 2017, 29:104001.
[42] Peng J B, Guo J, Hapala P, Cao D Y, Ma R Z, Cheng B W, Xu L M, Ondrá Dcek M, Jelínek P, Wang E G, Jiang Y. Nat. Commun., 2018, 9:122.
[43] Huang Y L, Ma Z S, Zhang X, Zhou G H, Zhou Y, Sun C Q. J. Phys. Chem. B, 2013, 117:13639.
[44] Huang Y L, Zhang X, Ma Z S, Zhou G H, Gong Y Y, Sun C Q. J. Phys. Chem. C, 2015, 119:16962.
[45] Sun C Q. Relaxation of the Chemical Bond. Springer-Verlag:Heidelberg, 2014.
[46] Sun C Q. Progress in Materials Science, 2003, 48:521.
[47] Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y. Nat. Mater., 2014, 13:184.
[48] Meng X Z, Guo J, Peng J B, Chen J, Wang Z C, Shi J R, Li X Z, Wang E G, Jiang Y. Nature Physics, 2015, 11:235.
[49] Wang Y C, Liu H Y, Lv J, Zhu L, Wang H, Ma Y M. Nat. Commun., 2011, 2:563.
[50] Benoit M, Marx D, Parrinello M. Nature, 1998, 392:258.
[51] Sun C Q, Zhang X, Zheng W T. Chem. Sci., 2012, 3:1455.
[52] Sun C Q, Zhang X, Zhou J, Huang Y, Zhou Y, Zheng W T. J. Phys. Chem. Lett., 2013, 4:2565.
[53] Sun C Q, Zhang X, Fu X J, Zheng W T, Kuo J L, Zhou Y C, Shen Z X, Zhou J. J. Phys. Chem. Lett., 2013, 4:3238.
[54] Sun C Q, Chen J S, Gong Y Y, Zhang X, Huang Y L. J. Phys. Chem. B, 2018, 122:1228.
[55] Zhang X, Zhou Y, Gong Y Y, Huang Y L, Sun C Q. Chem. Phys. Lett., 2017, 678:233.
[56] Zeng Q X, Yan T T, Wang K, Gong Y Y, Zhou Y, Huang Y L, Sun C Q, Zou B. Phys.Chem.Chem.Phys., 2016, 18:14046.
[57] Gong Y Y, Zhou Y, Wu H C, Wu D P, Huang Y L, Sun C Q. J. Raman Spectrosc., 2016, 47:1351.
[58] Kumagai T. Prog. Surf. Sci., 2015, 90:239.
[59] Li J C, Kolesnikov A I. J. Mol. Liq., 2002, 100:1.
[60] Everts S. Chemical Engineering News, 2013, 91:28.
[61] Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y, Chen S H. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:18387.
[62] Zhang X, Huang Y L, Sun P, Liu X J, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Sun C Q. Sci. Rep., 2015, 5:13655.
[63] Faraday M. Proc. R. Soc. London, 1859, 10:440.
[64] Thomson J. Proc. R. Soc. London, 1859, 10:151.
[65] Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wan R Z, Hu J, Fang H P. Phys. Rev. Lett., 2009, 103:137801.
[66] Zhang X, Liu X J, Zhong Y, Zhou Z F, Huang Y L, Sun C Q. Langmuir, 2016, 32:11321.
[67] Tyndall J. Philos. Trans. R. Soc. London, 1858, 211.
[68] Faraday M. Experimental Researches in Chemical and Physics. Tayler and Francis London, 1859.
[69] Zhang X, Yan T T, Huang Y L, Ma Z S, Liu X J, Zou B, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:24666.
[70] 王彦超(Wang Y C), 孙长庆(Sun C Q), 吴光恒(Wu G H). 科学通报(Chinese Science Bulletin), 2017, 62:1111.
[71] Sun C Q, Sun Y, Ni Y G, Zhang X, Pan J S, Wang X H, Zhou J, Li L T, Zheng W T, Yu S S, Pan L K, Sun Z. J. Phys. Chem. C, 2009, 113:20009.
[72] Zhang X, Huang Y L, Ma Z S, Zhou Y C, Zheng W T, Zhou J, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:22987.
[73] Wilson K R, Schaller R D, Co D T, Saykally R J, Rude B S, Catalano T, Bozek J D. J. Chem. Phys., 2002, 117:7738.
[74] Winter B, Aziz E F, Hergenhahn U, Faubel M, Hertel I V. J. Chem. Phys., 2007, 126:124504.
[75] James T B. Nature, 1872, 5:185.
[76] Forbes J D. Philos. T. R. Soc. B, 1846, 136:157.
[77] Forbes J D. Philos. T. R. Soc. B, 1846, 136:143.
[78] Yoshimura Y, Stewart S T, Somayazulu M, Mao H K, Hemley R J. J. Chem. Phys., 2006, 124:964.
[79] Goncharov A F, Struzhkin V V, Mao H K, Hemley R J. Phys. Rev. Lett., 1999, 83:1998.
[80] Holzapfel W. J. Chem. Phys., 1972, 56:712.
[81] Loubeyre P, LeToullec R, Wolanin E, Hanfland M, Husermann D. Nature, 1999, 397:503.
[82] Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K. Science, 1996, 273:218.
[83] Teixeira J. Nature, 1998, 392:232.
[84] Ryzhkin I A. J. Exp. Theor. Phys., 1999, 88:1208.
[85] Stillinger F H, Schweizer K S. J. Phys. Chem., 1983, 87:4281.
[86] Tian L N, Kolesnikov A I, Li J C. J. Chem. Phys., 2012, 137:204507.
[87] Zheng W T, Sun C Q. Energ. Environ. Sci., 2011, 4:627.
[88] Gu M X, Zhou Y C, Pan L K, Sun Z, Wang S Z, Sun C Q. J. Appl. Phys., 2007, 102:083524.
[89] Gu M X, Pan L K, Yeung T C A, Tay B K, Sun C Q. J. Phys. Chem. C, 2007, 111:13606.
[90] Yang C, Zhou Z F, Li J W, Yang X X, Qin W, Jiang R, Guo N G, Wang Y, Sun C Q. Nanoscale, 2012, 4:1304.
[91] Liu K, Cruzan J D, Saykally R J. Science, 1996, 271:929.
[92] Ludwig R. Angew. Chem. Int. Ed., 2001, 40:1808.
[93] Kang D D, Dai J Y, Hou Y, Yuan J M. J. Chem. Phys., 2010, 133:014302.
[94] Green J L, Durben D J, Wolf G H, Angell C A. Science, 1990, 249:649.
[95] Malenkov G. J. Phys. Condens. Matter, 2009, 21:283101.
[96] Sun C Q, Bai H L, Tay B K, Li S, Jiang E Y. J. Phys. Chem. B, 2003, 107:7544.
[97] 孙长庆(Sun C Q), 黄勇力(Huang Y L), 张希(Zhang X). 水规则六十条(60 Rules of Water). 北京:高等教育出版社(Beijing:Higher Education Press), 2018.
[98] Aristotle, Meteorology.http://classics.mit.edu/Aristotle/meteorology.1.i.html:350 B.C.E.
[99] Brownridge J D. Am. J. Phys., 2011, 79:78.
[100] Zhang X, Huang Y L, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Jiang Q, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:22995.
[101] Huang Y L, Zhang X, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Sun C Q. Sci. Rep., 2013, 3:3005.
[102] Zhou Y, Zhong Y, Gong Y Y, Zhang X, Ma Z S, Huang Y L, Sun C Q. J. Mol. Liq., 2016, 220:865.
[103] Zhou Y, Huang Y L, Ma Z S, Gong Y Y, Zhang X, Sun Y, Sun C Q. J. Mol. Liq., 2016, 221:788.

Funding

The work was supported by the Science Challenge Project(No.TZ2016001), the National Natural Science Foundation of China(No. 11502223), the Hunan Natural Science Foundation of China(No. 2016JJ3119), and the Shenzhen Municipal Human Resources Fund(No. 827000131).
PDF(8304 KB)

4086

Accesses

0

Citation

3

Altmetric

Detail

Sections
Recommended

/