中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (6): 667-682 DOI: 10.7536/PC170301 Previous Articles   Next Articles

• Review •

Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe

Yaoyao Li1, Jingmin Liu1,2,3, Guozhen Fang1, Dongdong Zhang1, Qinghua Wang1, Shuo Wang1,2,3*   

  1. 1. Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China;
    2. School of Medicine, Nankai University, Tianjin 300071, China;
    3. Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC170301 E-mail:s.wang@tust.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31430068).
PDF ( 3661 ) Cited
Export

EndNote

Ris

BibTeX

Owing to the unique luminescence phenomenon and the super long afterglow life, the persistent luminescence nanomaterials (PLNPs) can achieve in vitro excitation and the spectral emission regions can be regulated into the “biological transparent window”, which were widely used in optics sensor detection and bioimaging field of disease targeted diagnosis and treatment. In recent years, the syntheses and applications of PLNPs nanoprobe have attracted great attention in the areas of spectroscopy, photonics, photochemistry and materials science. This paper reviews the synthesis methods and surface modification of PLNPs molecular nanoprobe as well as their application in detection and bioimaging in vivo and in vitro. This paper focused on Mn2+ and Cr3+ doped nanostructures, particularly gallogermanates which are able to give intense red-near infrared persistent emission with a longer afterglow lifetime for more than two weeks and therefore are suitable for bioimaging application. The functionalized red-near infrared persistent luminescence nanomaterials provide a promising technology platform for long-term real-time detection of physiological processes and disease diagnosis in vivo. Finally, the challenges of PLNPs are described.

Contents
1 Introduction
2 Synthesis methods of PLNPs
2.1 Solid-State reaction
2.2 Sol-Gel method
2.3 Hydrothermal method
2.4 Co-Precipitation
2.5 Template method
2.6 Combustion method
2.7 Other methods
3 Application of PLNPs Nanoprobes in biomedicine
3.1 PLNPs based Biosensing and detection
3.2 PLNPs based Bioimaging
3.3 Multimodal Imaging of PLNPs
4 Conclusion and outlook

CLC Number: 

[1] Luker G D, Luker K E. J. Nucl. Med., 2008, 49:1.
[2] Ntziachristos V, Yoo J S, van Dam G M. J. Biomed. Opt., 2010, 15:066024.
[3] Kunjachan S, Gremse F, Theek B, Koczera P, Pola R, Pechar M, Etrych T, Ulbrich K, Storm G, Kiessling F, Lammers T. ACS Nano, 2013, 7:252.
[4] Alford R, Ogawa M, Choyke P L, Kobayashi H. Mol. BioSyst., 2009, 5:1279.
[5] Koo H, Huh M S, Ryu J H, Lee D E, Sun I C, Choi K, Kim K, Kwon I C. Nano Today, 2011, 6:204.
[6] Geoghegan K F, Rosner P J, Hoth L R. Bioconjugate Chem., 2000, 11:71.
[7] Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Chem. Soc. Rev., 2014, 43:4243.
[8] Liu X, Swihart M T. Chem. Soc. Rev., 2014, 43:3908.
[9] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307:538.
[10] Gammon D. Nat. Nano, 2012, 7:621.
[11] Smith A M, Nie S M. Nat. Biotechnol., 2009, 27:732.
[12] Pinaud F, Clarke S, Sittner A, Dahan M. Nat. Meth., 2010, 7:275.
[13] Hong H, Yang K, Zhang Y, Engle J W, Feng L Z, Yang Y N, Nayak T R, Goel S, Bean J, Theuer C P, Barnhart T E, Liu Z, Cai W B. ACS Nano, 2012, 6:2361.
[14] Qian J, Wang D, Cai F H, Xi W, Peng L, Zhu Z F, He H, Hu M L, He S. Angew. Chem. Int. Ed., 2012, 51:10570.
[15] Sreejith S, Ma X, Zhao Y L. J. Am. Chem. Soc., 2012, 134:17346.
[16] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52:3953..
[17] Nienhaus K, Ulrich Nienhaus G, Chem. Soc. Rev., 2014, 43:1088.
[18] Day R N, Davidson M W. Chem. Soc. Rev., 2009, 38:2887.
[19] Liu C L, Wu H T, Hsiao Y H, Lai C W, Shih C W, Peng Y K, Tang K C, Chang H W, Chien Y C, Hsiao J K, Cheng J T, Chou P T. Angew. Chem. Int. Ed., 2011, 50:7056.
[20] Lourdu Xavier P, Chaudhari K, Baksi A, Pradeep T. Nano. Reviews & Experiments, 2012, 3.
[21] Chen H Y, Li S L, Li B W, Ren X Y, Li S N, Mahounga D M, Cui S S, Gu Y Q, Achilefu S. Nanoscale, 2012, 4:6050.
[22] Shang L, Dong S J, Nienhaus G U. Nano. Today, 2011, 6:401.
[23] Cheng Z, Levi J, Xiong Z M, Gheysens O, Keren S, Chen X Y, Gambhir S S. Bioconjugate Chem., 2006, 17:662.
[24] Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C. Nat. Biotech., 2001, 19:327.
[25] Wagnieres G A, Star W M, Wilson B C. Photochem. Photobiol., 1998, 68, 603.
[26] Baumes J M, Gassensmith J J, Giblin J, Lee J J, White A G, Culligan W J, Leevy W M, Kuno M, Smith B D. Nat. Chem., 2010, 2:1025.
[27] Weissleder R. Nat. Biotech., 2001, 19:316.
[28] Bashkatov A N, Genina E A, Kochubey V I, Tuchin V V. J. Phys. D Appl. Phys., 2005, 38:2543.
[29] Welsher K, Sherlock S P, Dai H J. Proc. Natl. Acad. Sci., 2011, 108:8943.
[30] He X X, Wang K M, Cheng Z. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2010, 2:349.
[31] Alt?noglu E I, Adair J H. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2010, 2:461.
[32] Singh S K, RSC Adv., 2014, 4:58674.
[33] Mader H S, Kele P, Saleh S M, Wolfbeis O S. Curr. Opin. Chem. Biol., 2010, 14:582.
[34] Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Ågren H, Prasad P N, Han G. ACS Nano., 2012, 6:8280.
[35] Chen G Y, Qiu H L, Prasad P N, Chen X Y. Chem. Rev., 2014, 114:5161.
[36] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G. Analyst, 2010, 135:1839.
[37] Yadav R, Singh S K, Verma R K, Rai S B. Chem. Phys. Lett., 2014, 599:122.
[38] Singh S K, Singh A K, Rai S B. Nanotechnology, 2011, 22:275703.
[39] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463:1061.
[40] Wang F, Liu X G. Chem. Soc. Rev., 2009, 38:976
[41] Heer S, K mpe K, Güdel H U, Haase M. Adv. Mater., 2004, 16:2102.
[42] Maldiney T, Bessière A, Seguin J, Teston E, Sharma S K, Viana B, Bos A J J, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat. Mater., 2014, 13:418.
[43] Pan Z, Lu Y Y, Liu F. Nat. Mater., 2012, 11:58.
[44] Li Y, Gecevicius M, Qiu J R. Chem. Soc. Rev., 2016, 45:2090.
[45] Van den Eeckhout K, Poelman D, Smet P. Materials, 2013, 6:2789.
[46] Xu J, Tanabe S, Sontakke A D, Ueda J. Appl. Phys. Lett. 2015, 107:1.
[47] Kanno H, Noda K, Matsui K. Chem. Phys. Lett., 2013, 580:103.
[48] Lim J H, Kim B N, KimY, Kang S, Xie R J, Chong I S, Morita K, Yoshida H, Hiraga K. Appl. Phys. Lett., 2013, 102:031104.
[49] Jin L, Zhang H Y, Pan R Q, Xu P, Han J C, Zhang X H, Yuan Q, Zhang Z H, Wang X J, Wang Y, Song B. Nano. Lett., 2015, 15:6575.
[50] Mackenzie J D, Bescher E P. Acc. Chem. Res., 2007, 40:810.
[51] Gluchowski P, Strek W, Lastusaari M, Holsa J. Phys. Chem. Chem. Phys., 2015, 17:17246.
[52] Basavaraju N, Priolkar K R, Gourier D, Bessiere A, Viana B. Phys. Chem. Chem. Phys., 2015, 17:10993.
[53] Abdukayum A, Chen J T, Zhao Q, Yan X P. J. Am. Chem. Soc., 2013, 135:14125.
[54] le Masne de Chermont Q, Chanéac C, Seguin J, Pellé F, Maîtrejean S, Jolivet J P, Gourier D, Bessodes M, Scherman D. P. Natl. Acad. Sci. USA, 2007, 104:9266.
[55] Milde M, Dembski S, Osvet A, Batentschuk M, Winnacker A, Sextl G. Mater. Chem. Phys., 2014, 148:1055.
[56] Bessiere A, Lecointre A, Priolkar K R, Gourier D. J. Mater. Chem., 2012, 22:19039.
[57] Lu Y Y, Liu F, Gu Z, Pan Z. J. Lumin., 2011, 131:2784.
[58] Wei D L, Qin L, Huang Y L, Seo H J. Ceram. Int., 2013, 39:2383.
[59] Fu X Y, Liu C L, Shi J P, Man H Z, Xu J, Zhang H W. Opt. Mater., 2014, 36:1792.
[60] Huang P, Zhang Q C, Cui C E, Li J. Opt. Mater., 2011, 33:1252.
[61] Tian Y M, Zhang P, Zheng Z T, Chai Y S. Mater. Lett., 2012, 73:157.
[62] Kong J T, Zheng W, Liu Y S, Li R F, Ma E, Zhu H M, Chen X Y. Nanoscale, 2015, 7:11048.
[63] Rodríguez Burbano D C, Sharma S K, Dorenbos P, Viana B, Capobianco J A. Adv. Opt. Mater., 2015, 3:551.
[64] Xu Y F, Ma D K, Guan M L, Chen X A, Pan Q Q, Huang S M. J. Alloy. Compd., 2010, 502:38.
[65] Liu D, Cui C E, Huang P, Wang L, Jiang G W. J. Alloy. Compd., 2014, 583:530.
[66] Li Z J, Zhang Y W, Wu X, Huang L, Li D S, Fan W, Han G. J. Am. Chem. Soc., 2015, 137:5304.
[67] Cheng B C, Liu H J, Fang M, Xiao Y H, Lei S J, Zhang L D. Chem. Commun., 2009, 8:944.
[68] Liu Y D, Goebl J, Yin Y D. Chem. Soc. Rev., 2013, 42:2610.
[69] Li Z J, Zhang Y W, Wu X, Wu X Q, Maudgal R, Zhang H W, Han G. Advanced Science, 2015, 2:1500001. DOI:10.1002/advs.201500001.
[70] Li Z J, Shi J P, Zhang H W, Sun M. Opt. Express, 2014, 22:10509.
[71] Li Z J, Zhang Y J, Zhang H W, Fu H X. Microporous Mesoporous Mater., 2013, 176:48.
[72] Xu Z K, Duan G T, Zhang H W, Wang Y Y, Xu L, Cai W P. Nanoscale, 2015, 7:14264.
[73] Mukasyan A S, Epstein P, Dinka P. P. Combust.Inst., 2007, 31:1789.
[74] Cheng B C, Zhang Z D, Han Z H, Xiao Y H, Lei S J. CrystEngComm, 2011, 13:3545.
[75] Xin S Y, Wang Y H, Dong P Y, Zeng W, Zhang J. J. Mater. Chem. C, 2013, 1:8156.
[76] Yan S C, Wang J J, Gao H L, Wang N Y, Yu H, Li Z S, Zhou Y, Zou Z G. Adv. Funct. Mater., 2013, 23:1839.
[77] Li H H, Yin S, Sato T. Res. Chem. Intermediat, 2013, 39:1501.
[78] Elsagh M, Rajabi M, Amini E. J. Mater. Sci-Mater El., 2014, 25:1612.
[79] Dong G P, Xiao X D, Zhang L L, Ma Z J, Bao X, Peng M Y, Zhang Q Y, Qiu J R. J. Mater. Chem., 2011, 21:2194.
[80] Li N, Diao W, Han Y, Pan W, Zhang T, Tang B. Chem. -Eur. J., 2014, 20:16488
[81] Tang Y R, Song H J, Su Y Y, Lv Y. Anal. Chem., 2013, 85:11876.
[82] Wu B Y, Wang H F, Chen J T, Yan X P. J. Am. Chem. Soc., 2011, 133:686.
[83] Li N, Li Y H, Han Y Y, Pan W, Zhang T T, Tang B. Anal. Chem., 2014, 86:3924.
[84] Niu J Y, Wang X, Lv J Z, Li Y, Tang B. Trac-Trends Anal. Chem., 2014, 58:112.
[85] Zhang L, Lei J P, Liu J T, Ma F J, Ju H X. Biomaterials, 2015, 67:323.
[86] Paterson A S, Raja B, Garvey G, Kolhatkar A, Hagstr m A E V, Kourentzi K, Lee T R, Willson R C. Anal. Chem., 2014, 86:9481.
[87] Naczynski D J, Tan M C, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C M., Riman R E, Moghe P V. Nature Communications, 2013, 4:2199.
[88] Wang R, Zhang F. J. Mater. Chem. B, 2014, 2, 2422.
[89] Bünzli J C G, Eliseeva S V. J. Rare Earth., 2010, 28:824.
[90] Ueda J, Shinoda T, Tanabe S. Opt. Mater. Express, 2013, 3:787.
[91] Yu N Y, Liu F, Li X F, Pan Z W. Appl. Phys. Lett. 2009, 95:231110.
[92] Wang X J, Jia D, Yen W M. J. Lumin., 2003, 102:34.
[93] Maldiney T, Richard C, Seguin J, Wattier N, Bessodes M, Scherman D. ACS Nano, 2011, 5:854.
[94] Maldiney T, Kaikkonen M U, Seguin J, le Masne de Chermont Q, Bessodes M, Airenne K J, Ylä-Herttuala S, Scherman D, Richard C. Bioconjugate Chem., 2012, 23:472.
[95] Maldiney T, Byk G, Wattier N, Seguin J, Khandadash R, Bessodes M, Richard C, Scherman D. Int. J. Pharm., 2012, 423:102.
[96] Maldiney T, Lecointre A, Viana B, Bessière A, Bessodes M, Gourier D, Richard C, Scherman D. J. Am. Chem. Soc., 2011, 133:11810.
[97] Li Y, Li Y Y, Sharafudeen K, Dong G P, Zhou S F, Ma Z, Peng M Y, Qiu J R. J. Mater. Chem. C, 2014, 2:2019.
[98] Bessière A, Jacquart S, Priolkar K, Lecointre A, Viana B, Gourier D. Opt. Express, 2011, 19:10131.
[99] Bessière A, Sharma S K, Basavaraju N, Priolkar K R, Binet L, Viana B, Bos A J J, Maldiney T, Richard C, Scherman D, Gourier D. Chem. Mater., 2014, 26:1365.
[100] Sharma S K, Bessière A, Basavaraju N, Priolkar K R, Binet L, Viana B, Gourier D. J. Lumin., 2014, 155:251.
[101] Zhuang Y X, Ueda J, Tanabe S, Dorenbos P. J. Mater. Chem. C, 2014, 2:5502.
[102] Li Y, Zhou S F, Dong G P, Peng M Y, Wondraczek L, Qiu J. Sci. Rep., 2014, 4:4059.
[103] Li Y, Zhou S F, Li Y Y, Sharafudeen K, Ma Z J, Dong G P, Peng M Y, Qiu J R. J. Mater. Chem. C, 2014, 2:2657.
[104] Allix M, Chenu S, Véron E, Poumeyrol T, Kouadri-Boudjelthia E A, Alahraché S, Porcher F, Massiot D, Fayon F. Chem. Mater., 2013, 25:1600.
[105] Li Y J, Yan X P. Nanoscale, 2016, 8:14965.
[106] Abdurahman R, Yang C X, Yan X P. Chem. Commun., 2016, 52:13303.
[107] Chen L J, Sun S K, Wang Y, Yang C X, Wu S Q, Yan X P. ACS Appl. Mater. Inter., 2016, 8:32667.
[108] Wu S Q, Chi C W, Yang C X, Yan X P. Anal. Chem., 2016, 88, 4114.
[109] Wu S Q, Yang C X, Yan X P. Adv. Funct. Mater., 2017, 27.
[110] Wang X S, Wan M H, Wang Y, Zhao H, Hu Z F, Li H L. Spectrosc. Spectral Anal., 2013, 33:2921.
[111] Basavaraju N, Sharma S, Bessière A, Viana B, Gourier D, Priolkar K R. J. Phys. D-Appl. Phys., 2013, 46:375401
[112] Xu J, Chen D, Yu Y, Zhu W, Zhou J, Wang Y. Chem-Asian. J., 2014, 9:1020.
[113] Yan W Z, Liu F, Lu Y Y, Wang X J, Yin M, Pan Z W. Opt. Express, 2010, 18:20215.
[114] Jia D, Lewis A L, Wang X J. Electrochem. Solid.State. ST., 2010, 13:J32.
[115] Luitel H N, Watari T, Torikai T, Yada M. Opt. Mater., 2009, 31:1200.
[116] Abdukayum A, Yang C X, Zhao Q, Chen J T, Dong L X, Yan X P. Anal. Chem., 2014, 86:4096.
[117] Reddy L H, Arias J L, Nicolas J, Couvreur P. Chem. Rev., 2012, 112:5818.
[118] Liu J M, Liu Y Y, Zhang D D, Fang G Z, Wang S, ACS Appl. Mater. Inter., 2016, 8:29939.
[119] Maldiney T, Ballet B, Bessodes M, Scherman D, Richard C. Nanoscale, 2014, 6:13970.
[120] Li J L, Shi J P, Shen J S, Man H Z, Wang M X, Zhang H W. Nano-Micro Lett., 2015, 7:138.
[121] Wu B Y, Yan X P. Chem. Commun., 2015, 51:3903.
[122] Chen D Q, Chen Y, Lu H W, Ji Z G. Inorg. Chem., 2014, 53:8638.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[6] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[7] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[8] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[9] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[10] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[11] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[12] Yang Wang, Chusen Huang, Nengqin Jia. Molecular Fluorescent Probe for Monitoring Cellular Microenvironment and Active Molecules [J]. Progress in Chemistry, 2020, 32(2/3): 204-218.
[13] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[14] Hongxi Wang, Yuting Xiong, Guangyan Qing*, Taolei Sun*. Biomolecular Responsive Polymer Materials [J]. Progress in Chemistry, 2017, 29(4): 348-358.
[15] Chibao Huang*, Shaoying Chen. Two-Photon Fluorescence Probe [J]. Progress in Chemistry, 2017, 29(10): 1215-1227.