中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (5): 699-708 DOI: 10.7536/PC220933 Previous Articles   Next Articles

• Review •

Nanocarbon Molecules — the Fascination of Synthetic Chemistry

Jianfeng Yan1, Jindong Xu1, Ruiying Zhang1, Pin Zhou2, Yaofeng Yuan1(), Yuanming Li1()   

  1. 1 College of Chemistry, Fuzhou University, Fuzhou 350108, China
    2 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: Yaofeng_yuan@fzu.edu.cn(Yaofeng Yuan);Yuanming.li@fzu.edu.cn(Yuanming Li)
  • Supported by:
    National Natural Science Foundation of China(22071025)
Richhtml ( 30 ) PDF ( 364 ) Cited
Export

EndNote

Ris

BibTeX

The discovery and creation of new carbon materials have motivated the evolution of technology. Carbon is one of the central elements, due to the characteristics of carbon atoms and varying electron configurations, diverse molecules will be discovered and formed. The structures and arrangements of carbon atoms in molecules have a significant impact on their properties. Nanocarbon molecules, as novel carbon materials with excellent properties, have found promising applications in nanotechnology, electronics, optics, and biomedical fields. In the past four decades, the discovery and creation of new variety of nanocarbon materials have opened up a new path to advanced science and technology. This paper focuses on the study of the structural characteristics of nanocarbon molecules with novel topological structures, and the way to achieve full synthetic control over these structures that are reported in recent years.

Contents

1 Introduction

2 Graphene nanoribbons

3 Negatively Curved Nanocarbons

4 Carbon nanorings and carbon nanobelts

4.1 Synthesis of carbon nanorings

4.2 Synthesis of carbon nanobelts

5 Other structures

6 Conclusion and perspectives

Fig. 1 The recent development of the carbon materials
Fig. 2 Different types of graphene nanoribbons
Fig. 3 The bottom-up synthesis of GNR by solution-phase polymerization via Suzuki-Miyaura coupling[18]
Fig. 4 The synthesis of a chiral-type GNR via Yamamoto coupling[19]
Fig. 5 The cellular structure of a Mackey crystal or a carbon Schwarz body, Copyright 2020, Progress in Chemistry[20]
Fig. 6 Strategies for the synthesis of nanographene with negative curvature[22,23,31]
Fig. 7 The synthesis of GNTs by “growth-from-template” approach[7]. Copyright 2021, American Chemical Society
Fig. 8 The representative synthesis of CPPs[36?~38]
Fig. 9 Some representative nanocarbon molecules based on benzene rings[40?????~46]
Fig. 10 The synthesis of CNBs[48???~52]
Fig. 11 The CNBs with other topological structures[53,54,56,57]
Fig.12 Other nanocarbon molecules with novel topological structures[58??~61]
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

doi: 10.1126/science.1102896
[2]
Xu X J, Qin J G, Li Z. Prog. Chem., 2009, 21(12): 2559.
(徐秀娟, 秦金贵, 李振. 化学进展, 2009, 21(12): 2559.).
[3]
Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem. Rev., 2018, 118(16): 7744.

doi: 10.1021/acs.chemrev.8b00288
[4]
Shang H, Gu Y, Wang Y B. University Chemistry, 2020, 35: 201.
(商虹, 顾宇, 王英滨. 大学化学, 2020, 35: 201. ).
[5]
Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115(11): 4744.

doi: 10.1021/cr500304f
[6]
Li P, Zhang J. Progress in Chemistry, 2013, 25: 167.
(李盼, 张锦. 化学进展, 2013, 25: 167. ).

doi: 10.7536/PC120758
[7]
Li Y M, Kono H, Maekawa T, Segawa Y, Yagi A, Itami K. Acc. Mater. Res., 2021, 2(8): 681.

doi: 10.1021/accountsmr.1c00105
[8]
Majewski M A, Stępień M. Angew. Chem. Int. Ed., 2019, 58(1): 86.

doi: 10.1002/anie.201807004 pmid: 30006951
[9]
Itami K, Maekawa T. Nano Lett., 2020, 20(7): 4718.

doi: 10.1021/acs.nanolett.0c02143
[10]
Jolly A, Miao D D, Daigle M, Morin J F. Angew. Chem. Int. Ed., 2020, 59(12): 4624.

doi: 10.1002/anie.v59.12
[11]
Zheng X Q, Feng M, Zhan H B. Progress in Chemistry, 2012, 24: 2320.
(郑小青, 冯苗, 詹红兵. 化学进展, 2012, 24: 2320. ).
[12]
Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P, Amsharov K. Science, 2020, 369(6503): 571.

doi: 10.1126/science.abb8880 pmid: 32586951
[13]
Rizzo D J, Veber G, Jiang J W, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F. Science, 2020, 369(6511): 1597.

doi: 10.1126/science.aay3588
[14]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.

doi: 10.1038/nature09211
[15]
Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S. Science, 2009, 323(5922): 1701.

doi: 10.1126/science.1166862
[16]
Jia X T, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Nanoscale, 2011, 3(1): 86.

doi: 10.1039/C0NR00600A
[17]
Chen L, Hernandez Y, Feng X L, Müllen K. Angew. Chem. Int. Ed., 2012, 51(31): 7640.

doi: 10.1002/anie.201201084
[18]
Yang X Y, Dou X, Rouhanipour A, Zhi L J, Räder H J, Müllen K. J. Am. Chem. Soc., 2008, 130(13): 4216.

doi: 10.1021/ja710234t
[19]
Schwab M G, Narita A, Hernandez Y, Balandina T, Mali K S, De Feyter S, Feng X L, Müllen K. J. Am. Chem. Soc., 2012, 134(44): 18169.

doi: 10.1021/ja307697j
[20]
Miao Q, Yang D Y. Progress in Chemistry, 2020, 32: 1835.

doi: 10.7536/PC200633
(缪谦, 杨代月. 化学进展, 2020, 32: 1835.).
[21]
Kim K, Lee T, Kwon Y, Seo Y, Song J, Park J K, Lee H, Park J Y, Ihee H, Cho S J, Ryoo R. Nature, 2016, 535(7610): 131.

doi: 10.1038/nature18284
[22]
Pun S H, Wang Y J, Chu M, Chan C K, Li Y K, Liu Z F, Miao Q. J. Am. Chem. Soc., 2019, 141(24): 9680.

doi: 10.1021/jacs.9b03910
[23]
Pun S H, Chan C K, Luo J Y, Liu Z F, Miao Q. Angew. Chem. Int. Ed., 2018, 57(6): 1581.

doi: 10.1002/anie.v57.6
[24]
Zhang Y Q, Zhu Y K, Lan D N, Pun S H, Zhou Z, Wei Z, Wang Y, Lee H K, Lin C, Wang J P, Petrukhina M A, Li Q, Miao Q. J. Am. Chem. Soc., 2021, 143(13): 5231.

doi: 10.1021/jacs.1c01642
[25]
Chaolumen, Stepek I A, Yamada K E, Ito H, Itami K. Angew. Chem. Int. Ed., 2021, 60(44): 23508.

doi: 10.1002/anie.202100260 pmid: 33547701
[26]
Kato K, Takaba K, Maki-Yonekura S, Mitoma N, Nakanishi Y, Nishihara T, Hatakeyama T, Kawada T, Hijikata Y, Pirillo J, Scott L T, Yonekura K, Segawa Y, Itami K. J. Am. Chem. Soc., 2021, 143(14): 5465.

doi: 10.1021/jacs.1c00863
[27]
Feng C N, Kuo M Y, Wu Y T. Angew. Chem. Int. Ed., 2013, 52(30): 7791.

doi: 10.1002/anie.v52.30
[28]
Márquez I R, Fuentes N, Cruz C M, Puente-Muñoz V, Sotorrios L, Marcos M L, Choquesillo-Lazarte D, Biel B, Crovetto L, GÓmez-Bengoa E, Teresa González M, Martin R, Cuerva J M, Campaña A G. Chem. Sci., 2017, 8(2): 1068.

doi: 10.1039/c6sc02895k pmid: 28451246
[29]
Qiu Z L, Chen X W, Huang Y D, Wei R J, Chu K S, Zhao X J, Tan Y Z. Angewandte Chemie Int. Ed., 2022, 61(18): e202116955.
[30]
Pun S H, Miao Q. Acc. Chem. Res., 2018, 51(7): 1630.

doi: 10.1021/acs.accounts.8b00140
[31]
Cheung K Y, Chan C K, Liu Z F, Miao Q. Angew. Chem. Int. Ed., 2017, 56(31): 9003.

doi: 10.1002/anie.201703754 pmid: 28471075
[32]
González Miera G, Matsubara S, Kono H, Murakami K, Itami K. Chem. Sci., 2022, 13(7): 1848.

doi: 10.1039/d1sc05586k pmid: 35308842
[33]
Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Nat. Chem., 2013, 5(7): 572.

doi: 10.1038/nchem.1655
[34]
Zhou Q F, Jiang B, Yang H B. Progress in Chemistry, 2018, 30: 628.
(周启峰, 江波, 杨海波. 化学进展, 2018, 30: 628.).

doi: 10.7536/PC170909
[35]
Parekh V, Guha P. J. Indian Chem. Soc. 1934, 11: 95.
[36]
Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R. J. Am. Chem. Soc., 2008, 130(52): 17646.

doi: 10.1021/ja807126u
[37]
Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed., 2009, 48(33): 6112.

doi: 10.1002/anie.v48:33
[38]
Zhang F, Götz G, Winkler H D, Schalley C, Bäuerle P. Angew. Chem. Int. Ed., 2009, 48(36): 6632.

doi: 10.1002/anie.200900101 pmid: 19562806
[39]
Yamago S, Watanabe Y, Iwamoto T. Angewandte Chemie Int. Ed., 2010, 49(4): 644.

doi: 10.1002/anie.200906851
[40]
Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Mitoma N, Kuwabara T, Yagi A, Segawa Y, Itami K. Nat. Commun., 2022, 13: 3713.

doi: 10.1038/s41467-022-31530-x
[41]
Lu D P, Zhuang G L, Wu H T, Wang S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2017, 56(1): 158.

doi: 10.1002/anie.201608963
[42]
Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N, Matsuyama N, Seki S, Yamago S. Nat. Commun., 2013, 4: 2694.

doi: 10.1038/ncomms3694 pmid: 24165515
[43]
Sun Z, Ikemoto K, Fukunaga T M, Koretsune T, Arita R, Sato S, Isobe H. Science, 2019, 363(6423): 151.

doi: 10.1126/science.aau5441
[44]
Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science, 2019, 365(6450): 272.

doi: 10.1126/science.aav5021
[45]
Huang Z A, Chen C, Yang X D, Fan X B, Zhou W, Tung C H, Wu L Z, Cong H. J. Am. Chem. Soc., 2016, 138(35): 11144.

doi: 10.1021/jacs.6b07673
[46]
Li K, Xu Z Q, Deng H, Zhou Z N, Dang Y F, Sun Z. Angew. Chem. Int. Ed., 2021, 60(14): 7649.

doi: 10.1002/anie.v60.14
[47]
Huang Q, Zhuang G L, Jia H X, Qian M M, Cui S S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2019, 58(19): 6244.

doi: 10.1002/anie.v58.19
[48]
Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356(6334): 172.

doi: 10.1126/science.aam8158
[49]
Cheung K Y, Gui S J, Deng C F, Liang H F, Xia Z M, Liu Z F, Chi L F, Miao Q. Chem, 2019, 5(4): 838.

doi: 10.1016/j.chempr.2019.01.004
[50]
Cheung K Y, Watanabe K, Segawa Y, Itami K. Nat. Chem., 2021, 13(3): 255.

doi: 10.1038/s41557-020-00627-5 pmid: 33495606
[51]
Han Y, Dong S Q, Shao J W, Fan W, Chi C Y. Angew. Chem. Int. Ed., 2021, 60(5): 2658.

doi: 10.1002/anie.202012651 pmid: 33047813
[52]
Zhang Q, Zhang Y E, Tong S, Wang M X. J. Am. Chem. Soc., 2020, 142(3): 1196.

doi: 10.1021/jacs.9b12181 pmid: 31903753
[53]
Shi T H, Guo Q H, Tong S, Wang M X. J. Am. Chem. Soc., 2020, 142(10): 4576.

doi: 10.1021/jacs.0c00112
[54]
Li Y M, Segawa Y, Yagi A, Itami K. J. Am. Chem. Soc., 2020, 142(29): 12850.

doi: 10.1021/jacs.0c06007
[55]
Xue B C, Cai W S, Shao X G. Progress in Chemistry, 2008, 20: 1501.
(薛冰纯, 蔡文生, 邵学广. 化学进展, 2008, 20: 1501. ).
[56]
Fan W, Matsuno T, Han Y, Wang X H, Zhou Q F, Isobe H, Wu J S. J. Am. Chem. Soc., 2021, 143(39): 15924.

doi: 10.1021/jacs.1c08468
[57]
Segawa Y, Watanabe T, Yamanoue K, Kuwayama M, Watanabe K, Pirillo J, Hijikata Y, Itami K. Nat. Synth, 2022, 1(7): 535.

doi: 10.1038/s44160-022-00075-8
[58]
Zhu Y P, Xia Z M, Cai Z Y, Yuan Z Y, Jiang N Q, Li T, Wang Y G, Guo X Y, Li Z H, Ma S, Zhong D Y, Li Y, Wang J B. J. Am. Chem. Soc., 2018, 140(12): 4222.

doi: 10.1021/jacs.8b01447
[59]
Hou H, Zhao X J, Tang C, Ju Y Y, Deng Z Y, Wang X R, Feng L B, Lin D H, Hou X, Narita A, Mu¨llen K, Tan Y Z. Nat. Commun., 2020, 11: 3976.

doi: 10.1038/s41467-020-17691-7
[60]
Zhu Z Z, Chen Z C, Yao Y R, Cui C H, Li S H, Zhao X J, Zhang Q Y, Tian H R, Xu P Y, Xie F F, Xie X M, Tan Y Z, Deng S L, Quimby J M, Scott L T, Xie S Y, Huang R B, Zheng L S. Sci. Adv., 2019, 5(8): eaaw0982.

doi: 10.1126/sciadv.aaw0982
[61]
Wang S H, Yuan J, Xie J L, Lu Z H, Jiang L, Mu Y X, Huo Y P, Tsuchido Y, Zhu K L. Angew. Chem. Int. Ed., 2021, 60(34): 18443.

doi: 10.1002/anie.v60.34
[62]
Leonhardt E J, Jasti R. Nat. Rev. Chem., 2019, 3(12): 672.

doi: 10.1038/s41570-019-0140-0
[1] Yunhua Ma, Han Shao, Tenglong Lin, Qinyue Deng. Design, Synthesis and Application of Magnetic Nanoparticle Catalytic Materials Based on Multientate Palladium Compounds [J]. Progress in Chemistry, 2023, 35(9): 1369-1388.
[2] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Nana Wang, Guanwu Wang. Investigation into Condensed-Matter Organic Synthesis under Mechanical Milling Conditions [J]. Progress in Chemistry, 2020, 32(8): 1076-1085.
[6] Miao Qian, Yang Daiyue. From Polycyclic Arenes Containing Eight-Membered Rings to Negatively Curved Nanocarbons: Progress and Outlook [J]. Progress in Chemistry, 2020, 32(11): 1835-1845.
[7] Rugang Fu, Zheng Li, Lei Gao. Direct Synthesis of Organic Compounds Using Calcium Carbide as the Acetylene Source [J]. Progress in Chemistry, 2019, 31(9): 1303-1313.
[8] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[9] Hong-lin Zhu, Wen-ying Li, Ting-ting Li, Michael Baitinger, Juri Grin, Yue-qing Zheng. N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction [J]. Progress in Chemistry, 2019, 31(7): 939-953.
[10] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[11] Yanan Zheng, Dan Wang. Structures, Properties, and Applications of Metalloregulatory Proteins [J]. Progress in Chemistry, 2019, 31(10): 1372-1383.
[12] Ying Shi, Lei Wen, Minjie Wu, Feng Li. Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries [J]. Progress in Chemistry, 2017, 29(1): 149-161.
[13] Zhou Hongwei, Ding Xiaobin. Smart Polymer Materials Driven by the Belousov-Zhabotinsky Reaction:Topological Structures and Biomimetic Functions [J]. Progress in Chemistry, 2016, 28(1): 111-120.
[14] Zou Huaibo, Wang Huahua, Mei Guangquan, Liu Haiyang, Chang Chi-Kwong. Catalytic Application of Iron Corrole Complexes in Organic Synthesis [J]. Progress in Chemistry, 2015, 27(6): 666-674.
[15] Xu Yisong, Zhang Fengxiang, Li Jiayun, Bai Ying, Xiao Wenjun, Peng Jiajian. Preparation and Applications in Organic Reactions of Polyethylene Glycol Functionalized Ionic Liquids [J]. Progress in Chemistry, 2015, 27(10): 1400-1412.