中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 445-457 DOI: 10.7536/PC220905 Previous Articles   Next Articles

• Review •

Porous Electromagnetic Wave Absorbing Materials

Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang(), Zhang Haijun()   

  1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,Wuhan 430081, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: lfliang@wust.edu.cn (Faliang Li); zhanghaijun@wust.edu.cn (Haijun Zhang)
  • Supported by:
    National Natural Science Foundation of China(52072274); National Natural Science Foundation of China(52272021)
Richhtml ( 34 ) PDF ( 869 ) Cited
Export

EndNote

Ris

BibTeX

Recently, structure modification has been used more and more widely in enhancing the performance of electromagnetic wave absorbing materials. Porous structure is not only conducive for the incidence of electromagnetic waves into the interior of the material, but also can effectively improve the impedance matching between electromagnetic wave and materials, resulting in enhanced absorption of electromagnetic waves. Additionally, multiple scattering and reflection endowed by the different scale pores in materials extend the propagation path of electromagnetic wave, and further increase its loss. Meanwhile, the lightweight nature of porous material provides a feasible way for the application of some absorbing materials with high performance but unduly density. In this paper, the research status and problem of zero- and three-dimensional porous electromagnetic wave absorbing materials (PEMAM) are summarized and the possible research hotspots and development directions of porous electromagnetic wave absorbing materials in the future are also proposed.

Contents

1 Introduction

2 Zero-dimensional PEMAM

2.1 Magnetic loss type PEMAM

2.2 Dielectric loss type PEMAM

2.3 Magnetoelectric composite type PEMAM

3 Three-dimensional PEMAM

3.1 Graphene/carbon nanosheet and carbon nanotubes-based PEMAM

3.2 Green carbon material-based PEMAM

3.3 Other three-dimensional PEMAM

4 Conclusion and outlook

Fig. 1 Schematic diagram of interactions between electromagnetic wave and electromagnetic wave absorbing material[32]
Table 1 Preparation and properties of zero-dimensional porous absorbing materials
Fig. 2 Schematic illustrating electromagnetic wave absorption mechanism of PC@PANI-2 composite powders.[41]
Fig. 3 Schematic illustrating fabrication process of hierarchically porous Fe-Co/NC/rGO composite powders[43]
Fig. 4 Schematic diagram of electromagnetic wave absorption mechanism of Fe-Co/NC/rGO composite powders[43]
Table 2 Preparation and properties of three-dimensional porous absorbing materials
Materials Synthesis method Structure Frequency
(GHz)
Reflection loss
(dB)
Thickness
(mm)
Effective bandwidth
(GHz)
ref
NiO/NiFe2O4/Ni Leaven dough route Foam 16.9 -50 2.1 14.24 35
Graphene Freeze drying and solvothermal Foam 34.4 -33.2 1 60.5 38
rGO/α-Fe2O3 Hydrothermal method Foam 7.12 -33.5 5 6.4 64
Fe3O4/C Solvothermal approach and carbon reduction Flower and porous sheet 5.7 -54.6 4.27 6 65
MWCNT/graphene Solvothermal Foam 11.6 -39.5 12 66
MWCNT/WPU Freeze-drying Foam -50.5 2.3 4 67
CNT/graphene Chemical vapor deposition Foam -47.5 1.6 4 68
Carbon Hydrothermal and
pyrolysis process
Foam 15.8 -52.6 2.6 8.6 69
Graphene/carbon fibers Dip-coating Aerogel 14.6 -30.53 1.5 4.1 70
Carbon/Ni Alkaline activation process Hierarchically porous 4.3 -47 1.75 13.5 71
rGO/Ti3C2Tx Self-assembly Hollow core-shell/foam 8.8 -22 3.6 4 72
Al2O3/SiC 3D printing and chemical vapor infiltration Oblique honeycomb 9.8 -63.65 3.5 4.2 73
3D printing Gradient porous structure 2.5 -33 20 14.06 74
CNT/Fe3O4 Freeze drying and low-temperature annealing Aerogel 16.4 -59.85 1.5 3 75
rGO/ZnO Freeze-drying and hydrothermal Foam 9.57 -27.8 4.8 4.2 76
Si—O—C 3D printing Superstructure 11.25 -56.11 2.7 3.76 77
Carbon/MnO2 Carbonization and etching Hollow 14.9 -48.87 2.5 7.8 78
Carbon/MoS2 Carbonization and hydrothermal Honeycomb-like 16.2 -75.94 1.68 4.2 79
Carbon/ZnFe2O4 Pyrolysis carbonization Honeycomb 14.1 -54.1 1.8 5.8 80
Carbon/CuS Carbonization and hydrothermal method Porous/Hollow 8.1 -61.5 2.84 7.8 81
Carbon/Fe/Fe2O3 Hydrothermal and thermal treatment Foam 17.28 -54.7 1.4 6.4 82
Carbon Hydrothermal Nanosheets/Foam 13.5 -56.5 2.3 6.4 83
Carbon/Co Hydrothermal and pyrolysis Mesoporous /Macroporous 15.9 -66.9 5.6 84
rGO-Mo-WO3 Solvothermal Aerogel 16.6 -61.8 1.54 3.6 85
Carbon/CoFe2O4 Lyophilization/Pyrolysis Aerogel 15.58 -52.29 2 5.36 86
Co3O4/N-Carbon Dipping growth Foam 10.72 -46.58 3.3 5.4 87
SiC 3D printing and carbothermal reduction 3D crosslinked
biomimetic porous
9.8 -49.01 2.8 5.1 88
Carbon Low-temperature pre-carbonization/chemical
activation
Hierarchically porous 9.68 -57.75 3.5 7.6 89
Carbon/MnS Electrospinning and high-temperature
processing
Porous fibers 11.1 -68.9 3.6 7.2 90
Carbon Electrostatic spinning and heat treatment Cross-linked fibers 15 -44.44 1.17 5.44 91
CoNi@C Hydrothermal and carbonization Cylindrical pore 11.12 -75.19 2.66 4.56 92
Fig. 5 A schematic illustration of the electromagnetic wave absorption mechanism of the fish skin-derived carbon foams[69]
Fig. 6 Schematic diagrams of electromagnetic wave absorption mechanisms for bulk metal, bare Ni foam, metal doped Ni foam, and NiFe2O4/NiO/Ni foam composites.[35]
[1]
Li W, Zhang Y Z, Wu T L, Cao J, Chen Z H, Guan J G. Results Phys., 2019, 12: 1964.

doi: 10.1016/j.rinp.2019.01.080
[2]
Qiao J, Zhang X, Xu D M, Kong L X, Lv L F, Yang F, Wang F L, Liu W, Liu J R. Chem. Eng. J., 2020, 380: 122591.
[3]
Wang W, Deng X J, Liu D Q, Luo F, Cheng H F, Cao T S, Li Y L, Deng Y J, Xie W. Adv. Compos. Hybrid Mater., 2022, 5(1): 525.

doi: 10.1007/s42114-021-00376-0
[4]
Xie P T, Liu Y, Feng M, Niu M, Liu C Z, Wu N N, Sui K Y, Patil R R, Pan D, Guo Z H, Fan R H. Adv. Compos. Hybrid Mater., 2021, 4(1): 173.

doi: 10.1007/s42114-020-00202-z
[5]
Huang Z Y, Chen H H, Huang Y, Ge Z, Zhou Y, Yang Y, Xiao P S, Liang J J, Zhang T F, Shi Q, Li G H, Chen Y S. Adv. Funct. Mater., 2018, 28(2): 1704363.
[6]
Li Z J, Lin H, Ding S Q, Ling H L, Wang T, Miao Z Q, Zhang M, Meng A L, Li Q D. Carbon, 2020, 167: 148.

doi: 10.1016/j.carbon.2020.05.070
[7]
Qiao J, Zhang X, Liu C, Lyu L F, Yang Y F, Wang Z, Wu L L, Liu W, Wang F L, Liu J R. Nano Micro Lett., 2021, 13(1): 75.

doi: 10.1007/s40820-021-00606-6
[8]
Wen B, Yang H B, Lin Y, Qiu Y cheng Y, Jin L X. J. Colloid Interface Sci., 2022, 605: 657.

doi: 10.1016/j.jcis.2021.07.118
[9]
Lan D, Zhao Z H, Gao Z G, Kou K C, Wu G L, Wu H J. J. Magn. Magn. Mater., 2020, 512: 167065.
[10]
He Y Y, Xie P Y, Li S, Wang Y N, Liao D G, Liu H X, Zhou L, Chen Y H. J. Mater. Chem. A, 2021, 9(46): 25982.

doi: 10.1039/D1TA07527F
[11]
Zhao Y H, Lou Z C, Wang Q Y, Wang Y H, Sun W, Li Y J. J. Mater. Sci. Mater. Electron., 2021, 32(21): 26007.

doi: 10.1007/s10854-021-05864-z
[12]
Fan X A, Guan J G, Li Z Z, Mou F Z, Tong G X, Wang W. J. Mater. Chem., 2010, 20(9): 1676.
[13]
Liu P B, Gao S, Wang Y, Huang Y, He W J, Huang W H, Luo J H. Chem. Eng. J., 2020, 381: 122653.
[14]
Di X C, Wang Y, Lu Z, Cheng R R, Yang L Q, Wu X M. Carbon, 2021, 179: 566.

doi: 10.1016/j.carbon.2021.04.050
[15]
Yao Y L, Zhang C F, Fan Y Q, Zhan J. Adv. Powder Technol., 2016, 27(5): 2285.

doi: 10.1016/j.apt.2016.08.022
[16]
Wang Y L, Wang G S, Zhang X J, Gao C. J. Mater. Sci. Technol., 2022, 103: 34.

doi: 10.1016/j.jmst.2021.06.021
[17]
Feng J T, Hou Y H, Wang Y C, Li L C. ACS Appl. Mater. Interfaces, 2017, 9(16): 14103.

doi: 10.1021/acsami.7b03330
[18]
Wu M Z, Zhang H J, Yao X, Zhang L Y. J. Phys. D: Appl. Phys., 2001, 34(6): 889.

doi: 10.1088/0022-3727/34/6/310
[19]
Zhang H J, Yao X, Zhang L Y. Mater. Sci. Eng. B, 2001, 84(3): 252.

doi: 10.1016/S0921-5107(01)00629-8
[20]
Zhang H J, Yao X, Zhang L Y. J. Eur. Ceram. Soc., 2002, 22(6): 835.

doi: 10.1016/S0955-2219(01)00400-9
[21]
Zhang H J, Liu Z C, Ma C L, Yao X, Zhang L Y, Wu M Z. Mater. Chem. Phys., 2003, 80(1): 129.

doi: 10.1016/S0254-0584(02)00457-1
[22]
Zhang H J, Liu Z C, Yao X, Zhang L Y, Wu M Z. Mater. Sci. Eng. B, 2003, 97(2): 160.

doi: 10.1016/S0921-5107(02)00571-8
[23]
Pei X Y, Zhao M Y, Li R X, Lu H, Yu R R, Xu Z W, Li D S, Tang Y H, Xing W J. Compos. A Appl. Sci. Manuf., 2021, 145: 106363.
[24]
Wang C Z, Li J, Guo S Y. Compos. A Appl. Sci. Manuf., 2019, 125: 105522.
[25]
Wu C, Chen Z F, Wang M L, Cao X, Zhang Y, Song P, Zhang T Y, Ye X L, Yang Y, Gu W H, Zhou J D, Huang Y Z. Small, 2020, 16(30): 2070168.
[26]
Xiang Z, Song Y M, Xiong J, Pan Z B, Wang X, Liu L, Liu R, Yang H W, Lu W. Carbon, 2019, 142: 20.

doi: 10.1016/j.carbon.2018.10.014
[27]
Wang Y L, Yang S H, Wang H Y, Wang G S, Sun X B, Yin P G. Carbon, 2020, 167: 485.

doi: 10.1016/j.carbon.2020.06.014
[28]
Feng W, Wang Y M, Zou Y C, Chen J C, Jia D C, Zhou Y. Chem. Eng. J., 2018, 342: 364.

doi: 10.1016/j.cej.2018.02.078
[29]
Wu N N, Xu D M, Wang Z, Wang F L, Liu J R, Liu W, Shao Q, Liu H, Gao Q, Guo Z H. Carbon, 2019, 145: 433.

doi: 10.1016/j.carbon.2019.01.028
[30]
Abdalla I, Elhassan A, Yu J Y, Li Z L, Ding B. Carbon, 2020, 157: 703.

doi: 10.1016/j.carbon.2019.11.004
[31]
Yang W, Li R, Jiang B, Wang T H, Hou L Q, Li Z X, Liu Z C, Yang F, Li Y F. Carbon, 2020, 166: 218.

doi: 10.1016/j.carbon.2020.05.043
[32]
Wang H. Master’s Dissertation of Harbin Institute of Technology, 2016.
[33]
Cao M S, Song W L, Hou Z L, Wen B, Yuan J. Carbon, 2010, 48(3): 788.

doi: 10.1016/j.carbon.2009.10.028
[34]
Zhao B, Guo X Q, Zhao W Y, Deng J S, Fan B B, Shao G, Bai Z Y, Zhang R. Nano Res., 2017, 10(1): 331.

doi: 10.1007/s12274-016-1295-3
[35]
Qin M, Zhang L M, Zhao X R, Wu H J. Adv. Funct. Mater., 2021, 31(30): 2103436.
[36]
Zhao B, Ma C, Liang L Y, Guo W H, Fan B B, Guo X Q, Zhang R. CrystEngComm, 2017, 19(26): 3640.

doi: 10.1039/C7CE00883J
[37]
Zhao B, Fan B B, Xu Y W, Shao G, Wang X D, Zhao W Y, Zhang R. ACS Appl. Mater. Interfaces, 2015, 7(47): 26217.

doi: 10.1021/acsami.5b08383
[38]
Zhang Y, Huang Y, Zhang T F, Chang H C, Xiao P S, Chen H H, Huang Z Y, Chen Y S. Adv. Mater., 2015, 27(12): 2049.

doi: 10.1002/adma.v27.12
[39]
Xu J, Zhang X, Zhao Z B, Hu H, Li B, Zhu C L, Zhang X T, Chen Y J. Small, 2021, 17(33): 2102032.
[40]
Lin Y, Wang Q, Gao S Y, Yang H B, Wang L. J. Alloys Compd., 2018, 745: 761.

doi: 10.1016/j.jallcom.2018.02.237
[41]
Zhang F, Cui W, Wang B B, Xu B H, Liu X H, Liu X H, Jia Z R, Wu G L. Compos. B Eng., 2021, 204: 108491.

doi: 10.1016/j.compositesb.2020.108491
[42]
Qiu S, Lyu H L, Liu J R, Liu Y Z, Wu N N, Liu W. ACS Appl. Mater. Interfaces, 2016, 8(31): 20258.

doi: 10.1021/acsami.6b03159
[43]
Wang S S, Xu Y C, Fu R R, Zhu H H, Jiao Q Z, Feng T Y, Feng C H, Shi D X, Li H S, Zhao Y. Nano Micro Lett., 2019, 11(1): 76.

doi: 10.1007/s40820-019-0307-8
[44]
Du Y C, Liu W W, Qiang R, Wang Y, Han X J, Ma J, Xu P. ACS Appl. Mater. Interfaces, 2014, 6(15): 12997.

doi: 10.1021/am502910d
[45]
Wang S S, Zhao Y, Gao M M, Xue H L, Xu Y C, Feng C H, Shi D X, Liu K H, Jiao Q Z. ACS Appl. Mater. Interfaces, 2018, 10(49): 42865.

doi: 10.1021/acsami.8b15416
[46]
Cui Y H, Yang K, Wang J Q, Shah T, Zhang Q Y, Zhang B L. Carbon, 2021, 172: 1.

doi: 10.1016/j.carbon.2020.09.093
[47]
Zhang X, Tian X L, Liu C, Qiao J, Liu W, Liu J R, Zeng Z H. Carbon, 2022, 194: 257.

doi: 10.1016/j.carbon.2022.04.001
[48]
Kong L, Luo S H, Zhang G Q, Xu H L, Wang T, Huang J F, Fan X M. Carbon, 2022, 193: 216.

doi: 10.1016/j.carbon.2022.03.016
[49]
Liang J, Chen J, Shen H Q, Hu K T, Zhao B N, Kong J. Chem. Mater., 2021, 33(5): 1789.

doi: 10.1021/acs.chemmater.0c04734
[50]
Guan X M, Yang Z H, Zhu Y T, Yang L J, Zhou M, Wu Y, Yang L, Deng T W, Ji G B. Carbon, 2022, 188: 1.

doi: 10.1016/j.carbon.2021.11.045
[51]
Wang L, Huang M Q, Qian X, Liu L L, You W B, Zhang J, Wang M, Che R C. Small, 2021, 17(30): 2100970.
[52]
Zhang X, Qiao J, Jiang Y Y, Wang F L, Tian X L, Wang Z, Wu L L, Liu W, Liu J R. Nano Micro Lett., 2021, 13(1): 135.
[53]
Chen J B, Zheng J, Wang F, Huang Q Q, Ji G B. Carbon, 2021, 174: 509.

doi: 10.1016/j.carbon.2020.12.077
[54]
Ren Y J, Wang X, Ma J X, Zheng Q, Wang L J, Jiang W. J. Mater. Sci. Technol., 2023, 132: 223.

doi: 10.1016/j.jmst.2022.06.013
[55]
Huang X G, Wei J W, Zhang Y K, Qian B B, Jia Q, Liu J, Zhao X J, Shao G F. Nano Micro Lett., 2022, 14(1): 107.
[56]
Jung K W, Kim J H, Choi J W. Compos. B Eng., 2020, 187: 107867.
[57]
Gao S, Zhang G Z, Wang Y, Han X P, Huang Y, Liu P B. J. Mater. Sci. Technol., 2021, 88: 56.

doi: 10.1016/j.jmst.2021.02.011
[58]
Zhang C L, Li H, Zhang Q, Cao F H, Xie Y, Lu B R, Zhang W D, Cong H P, Li H,. Chem. Eng. J., 2021, 420: 127705.
[59]
Wu Y, Zhao Y, Zhou M, Tan S J, Peymanfar R, Aslibeiki B, Ji G B. Nano Micro Lett., 2022, 14(1): 171.

doi: 10.1007/s40820-022-00906-5
[60]
Guan X M, Yang Z H, Zhou M, Yang L, Peymanfar R, Aslibeiki B, Ji G B. Small Struct., 2022, 3(10): 2200102.
[61]
Shu R W, Zhang G Y, Zhang C, Wu Y, Zhang J B. Adv. Electron. Mater., 2021, 7(2): 2001001.
[62]
Kwak B S, Choi W H, Noh Y H, Jeong G W, Yook J G, Kweon J H, Nam Y W. Compos. B Eng., 2020, 191: 107952.

doi: 10.1016/j.compositesb.2020.107952
[63]
Wu X Y, Tu T X, Dai Y, Tang P P, Zhang Y, Deng Z M, Li L L, Zhang H B, Yu Z Z. Nano Micro Lett., 2021, 13(1): 148.

doi: 10.1007/s40820-021-00665-9
[64]
Zhang H, Xie A J, Wang C P, Wang H S, Shen Y H, Tian X Y. J. Mater. Chem. A, 2013, 1(30): 8547.

doi: 10.1039/c3ta11278k
[65]
Wu N N, Liu C, Xu D M, Liu J R, Liu W, Shao Q, Guo Z H. ACS Sustainable Chem. Eng., 2018, 6(9): 12471.

doi: 10.1021/acssuschemeng.8b03097
[66]
Chen H H, Huang Z Y, Huang Y, Zhang Y, Ge Z, Qin B, Liu Z F, Shi Q, Xiao P S, Yang Y, Zhang T F, Chen Y S. Carbon, 2017, 124: 506.

doi: 10.1016/j.carbon.2017.09.007
[67]
Zeng Z H, Jin H, Chen M J, Li W W, Zhou L C, Zhang Z. Adv. Funct. Mater., 2016, 26(2): 303.

doi: 10.1002/adfm.v26.2
[68]
Song Q, Ye F, Yin X W, Li W, Li H J, Liu Y S, Li K Z, Xie K Y, Li X H, Fu Q G, Cheng L F, Zhang L T, Wei B Q. Adv. Mater., 2017, 29(31): 1701583.
[69]
Zhou X F, Jia Z R, Feng A L, Wang X X, Liu J J, Zhang M, Cao H J, Wu G L. Carbon, 2019, 152: 827.

doi: 10.1016/j.carbon.2019.06.080
[70]
Wang C H, Ding Y J, Yuan Y, He X D, Wu S T, Hu S, Zou M C, Zhao W Q, Yang L S, Cao A Y, Li Y B. J. Mater. Chem. C, 2015, 3(45): 11893.

doi: 10.1039/C5TC03127C
[71]
Liu C Y, Lin Z, Chen C, Kirk D W, Xu Y J. Chem. Eng. J., 2019, 366: 415.

doi: 10.1016/j.cej.2019.02.082
[72]
Li X L, Yin X W, Song C Q, Han M K, Xu H L, Duan W Y, Cheng L F, Zhang L T. Adv. Funct. Mater., 2018, 28(41): 1803938.
[73]
Mei H, Zhao X, Zhou S X, Han D Y, Xiao S S, Cheng L F. Chem. Eng. J., 2019, 372: 940.

doi: 10.1016/j.cej.2019.05.011
[74]
Luo F, Liu D Q, Cao T S, Cheng H F, Kuang J C, Deng Y J, Xie W. Adv. Compos. Hybrid Mater., 2021, 4(3): 591.

doi: 10.1007/s42114-021-00275-4
[75]
Li Y, Liu X F, Nie X Y, Yang W W, Wang Y D, Yu R H, Shui J L. Adv. Funct. Mater., 2019, 29(10): 1970059.
[76]
Song C Q, Yin X W, Han M K, Li X L, Hou Z X, Zhang L T, Cheng L F. Carbon, 2017, 116: 50.

doi: 10.1016/j.carbon.2017.01.077
[77]
Zhou R, Wang Y S, Liu Z Y, Pang Y Q, Chen J X, Kong J. Nano Micro Lett., 2022, 14(1): 122.

doi: 10.1007/s40820-022-00865-x
[78]
Cui Y H, Yang K, Lyu Y T, Liu P, Zhang Q Y, Zhang B L. Carbon, 2022, 196: 49.

doi: 10.1016/j.carbon.2022.04.044
[79]
Cheng J, Cai L, Shi Y Y, Pan F, Dong Y Y, Zhu X J, Jiang H J, Zhang X, Xiang Z, Lu W. Chem. Eng. J., 2022, 431: 134284.

doi: 10.1016/j.cej.2021.134284
[80]
Di X C, Wang Y, Fu Y Q, Wu X M, Wang P. Carbon, 2021, 173: 174.

doi: 10.1016/j.carbon.2020.11.006
[81]
Zhang X, Cai L, Xiang Z, Lu W. Carbon, 2021, 184: 514.

doi: 10.1016/j.carbon.2021.08.026
[82]
Zhu X J, Dong Y Y, Xiang Z, Cai L, Pan F, Zhang X, Shi Z, Lu W. Carbon, 2021, 182: 254.

doi: 10.1016/j.carbon.2021.06.028
[83]
Zhao H Q, Cheng Y, Zhang Z, Zhang B S, Pei C C, Fan F Y, Ji G B. Carbon, 2021, 173: 501.

doi: 10.1016/j.carbon.2020.11.035
[84]
Zhang X, Cheng J, Xiang Z, Cai L, Lu W. Carbon, 2022, 187: 477.

doi: 10.1016/j.carbon.2021.11.044
[85]
Cheng J B, Wang Y Q, Zhang A N, Zhao H B, Wang Y Z. Carbon, 2021, 183: 205.

doi: 10.1016/j.carbon.2021.07.019
[86]
Xu R X, Xu D W, Zeng Z, Liu D. Chem. Eng. J., 2022, 427: 130796.
[87]
Lyu L F, Zheng S N, Wang F L, Liu Y, Liu J R. J. Colloid Interface Sci., 2021, 602: 197.

doi: 10.1016/j.jcis.2021.05.184
[88]
Wang C S, Wu S Q, Li Z Q, Chen S, Chen A N, Yan C Z, Shi Y S, Zhang H B, Fan P Y. Virtual Phys. Prototyp., 2022, 17(3): 718.

doi: 10.1080/17452759.2022.2056950
[89]
Luo J H, Dai Z Y, Feng M N, Chen X W, Sun C H, Xu Y. J. Mater. Sci. Technol., 2022, 129: 206.

doi: 10.1016/j.jmst.2022.04.047
[90]
Qiao J, Zhang X, Liu C, Zeng Z H, Yang Y F, Wu L L, Wang F L, Wang Z, Liu W, Liu J R. Carbon, 2022, 191: 525.

doi: 10.1016/j.carbon.2022.02.024
[91]
Dai B S, Li J Y, Liu X G, Wang N, Dai Y X, Qi Y. Carbon, 2022, 195: 308.

doi: 10.1016/j.carbon.2022.04.035
[92]
Zhao X X, Yan J, Huang Y, Liu X D, Ding L, Zong M, Liu P B, Li T H. J. Colloid Interface Sci., 2021, 595: 78.

doi: 10.1016/j.jcis.2021.03.109
[1] Sicheng Yuan, Dan Lin, Xiguang Zhang, Huaiyuan Wang. Fabrication and Application of Slippery Liquid Infused Porous Functional Surface [J]. Progress in Chemistry, 2021, 33(1): 87-96.
[2] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[3] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[4] Du Xin, Zhao Caixia, Huang Hongwei, Wen Yongqiang, Zhang Xueji. Synthesis of Dendrimer-Like Porous Silica Nanoparticles and Their Applications in Advanced Carrier [J]. Progress in Chemistry, 2016, 28(8): 1131-1147.
[5] Zeng Feng, Pan Zhenzhen, Zhang Meng, Huang Yongzhuo, Cui Yanna, Xu Qin. Preparation and Application of Ordered Mesoporous Silica Nanoparticles in the Therapy and Diagnosis of Tumor [J]. Progress in Chemistry, 2015, 27(10): 1356-1373.
[6] Li Li Ji Weijie Au Chek-Tong. Gold Nanoparticles Supported on Mesoporous Silica and Their Catalytic Applications [J]. Progress in Chemistry, 2009, 21(09): 1742-1749.
[7] Wang Qing1,2,Wang Yingyong1,Guo Xiangyun1*. Biomorphic High-Performance Materials [J]. Progress in Chemistry, 2007, 19(0708): 1217-1222.
[8] Lu Guodong,Yan Qingzhi,Su Xintai,Liu Zhongqing,Ge Changchun**. Progress of Porous Hydrogels [J]. Progress in Chemistry, 2007, 19(04): 485-493.