中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (4): 606-619 DOI: 10.7536/PC220934 Previous Articles   Next Articles

• Review •

Modification and Application of Bi2MoO6 in Photocatalytic Technology

Dandan Wang1,2(), Zhaoxin Lin3,4, Huijie Gu3,4, Yunhui Li3,4, Hongji Li1,2(), Jing Shao3,4()   

  1. 1. College of Engineering, Jilin Normal University,Siping 136000, China
    2. Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education,Changchun 130103, China
    3. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology,Changchun 130022, China
    4. Zhongshan Institute of Changchun University of Science and Technology,Zhongshan 528437, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: dandanwang@jlnu.edu.cn (Dandan Wang); jlsdlhj@163.com (Hongji Li); shaojing7079@163.com (Jing Shao)
  • Supported by:
    development of Science and Technology of Jilin Province(YDZJ202201ZYTS629); Natural Science Foundation Project of Jilin Province(YDZJ202201ZYTS356); Natural Science Foundation Project of Jilin Province(YDZJ202101ZYTS073)
Richhtml ( 46 ) PDF ( 521 ) Cited
Export

EndNote

Ris

BibTeX

At present, ecological pollution and energy shortage have become global problems threatening human survival. Green and low energy consumption photocatalytic technology is of strategic significance to solve environmental disaster and energy crisis. As a ternary Aurivillius compound, Bi2MoO6 has attracted extensive attention of researchers due to its unique layered structure. However, the high carrier recombination rate limits its application in photocatalysis. This paper summarizes the strategies for modifying the performance of Bi2MoO6 based photocatalysts, such as surface structure tuning, defect engineering, metal deposition, heterojunction fabrication and photosensitization treatment. In many modification strategies, the influence of the construction of Bi2MoO6 based heterojunction on the photocatalytic performance has been mainly discussed. Finally, the current challenges faced by Bi2MoO6 based photocatalyst in photocatalysis technology are summarized, and the future development prospects are given, providing new ideas for accelerating the development of Bi2MoO6 based photocatalyst.

Fig.1 Schematic diagram of Bi2MoO6 crystal structure[16]
Table 1 Comparison of different preparation methods of Bi2MoO6
Fig.2 Schematic diagram of photocatalytic process of Bi2MoO6
Fig.3 SEM of (a,b) HT-Bi2Mo6 and (c,d) CP-Bi2Mo2[47]
Table 2 Comparison of various modified Bi2MoO6 based photocatalysts reported for organic pollutant degradation in recent years
Table 3 Comparison of various modified Bi2MoO6 based photocatalysts reported for CO2 reduction in recent years
Fig.4 Schematic of charge transfer of p-n heterojunction
Fig.5 Schematic of energy band arrangement of type Ⅰ, type Ⅱ and type Ⅲ heterojunction
Fig.6 Schematic diagram of (a) Direct Z-type het erojunction (b) Redox pair Z-type heterojunction (c) Z-type heterojunction in solid medium
Fig.7 Schematic of charge transfer of S-scheme heterojunction
Table 4 Comparison of Bi2MoO6 based heterojunction photocatalysts reported for organic pollutant degradation in recent years
Table 5 Comparison of advantages and disadvantages of various heterojunctions
[1]
Mohit Y, Seema , Amrish C, Klara H. J. Photochem., 2019, 383: 112014.
[2]
Gao M C, Yang J X, Sun T, Zhang Z Z, Zhang D F, Huang H J, Lin H X, Fang Y, Wang X X. Appl. Catal. B Environ., 2019, 243: 734.

doi: 10.1016/j.apcatb.2018.11.020
[3]
Low J, Cheng B, Yu J G. Appl. Surf. Sci., 2017, 392: 658.

doi: 10.1016/j.apsusc.2016.09.093
[4]
Jiang Z F, Sun H L, Wang T Q, Wang B, Wei W, Li H M, Yuan S Q, An T C, Zhao H J, Yu J G, Wong P K. Energy Environ. Sci., 2018, 11(9): 2382.

doi: 10.1039/C8EE01781F
[5]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6): 3962.

doi: 10.1021/acs.chemrev.8b00400
[6]
Li X D, Liang L, Sun Y F, Xu J Q, Jiao X C, Xu X L, Ju H X, Pan Y, Zhu J F, Xie Y. J. Am. Chem. Soc., 2019, 141(1): 423.

doi: 10.1021/jacs.8b10692
[7]
Rachna S, Akhand P S, Sunil K, Balendu S G, Ki-hyun K. J. Cleaner Prod., 2019, 234: 1484.

doi: 10.1016/j.jclepro.2019.06.243
[8]
Ben Y J, Fu C X, Hu M, Liu L, Wong M H, Zheng C M. Environ. Res., 2019, 169: 483.

doi: 10.1016/j.envres.2018.11.040
[9]
Joel Y. Y. Loh, Nazir P. Kherani & Geoffrey A. Ozin. Nat. Sustain., 2021, 4: 466.

doi: 10.1038/s41893-021-00681-y
[10]
Li J Y, Li Y H, Qi M Y, Lin Q, Tang Z R, Xu Y J. ACS Catal., 2020, 10(11): 6262.

doi: 10.1021/acscatal.0c01567
[11]
Cheng L, Xiang Q J, Liao Y L, Zhang H W. Energy Environ. Sci., 2018, 11(6): 1362.

doi: 10.1039/C7EE03640J
[12]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116(12): 7159.

doi: 10.1021/acs.chemrev.6b00075
[13]
Harshita C, Amrish C, Pravin P I, Garg S. J. Ind. Eng. Chem., 2021, 95(25): 1.

doi: 10.1016/j.jiec.2020.12.028
[14]
Wang L, Gao W, Zhao Z Y, Li P, He H C, Alsaedi A, Hayat T, Wang X Y, Zhou Y, Zou Z G. Catal. Sci. Technol., 2019, 9(24): 7045.

doi: 10.1039/c9cy02059d
[15]
Wang J. Master Dissertation of Shanghai University Of Engineering Science, 2019.
王杰. 上海工程技术大学硕士论文, 2019.).
[16]
Núñez-González R, Rangel R, Antúnez-García J, Galván D H. Solid State Commun., 2020, 318: 113978.

doi: 10.1016/j.ssc.2020.113978
[17]
Zhao Y F, Mao Y F, Zhai X Y, Zhang G Y. Progress in Chemistry, 2021, 33(8): 1331.
赵依凡, 毛琦云, 翟晓雅, 张国英. 化学进展. 2021, 33(8): 1331. ).

doi: 10.7536/PC201236
[18]
Liu X T, Gu S N, Zhao Y J, Zhou G W, Li W J. J. Mater. Sci. Technol., 2020, 56: 45.

doi: 10.1016/j.jmst.2020.04.023
[19]
Yin G L, Jia Y L, Lin Y H, Zhang C Y, Zhu Z H, Ma Y. New J. Chem., 2022, 46(3): 906.

doi: 10.1039/D1NJ04705A
[20]
Yu H B, Jiang L B, Wang H, Huang B B, Yuan X Z, Huang J H, Zhang J, Zeng G M. Small, 2019, 15(23): 1970122.

doi: 10.1002/smll.v15.23
[21]
Xia Y. Master Dissertation of Shenzhen University, 2020.
夏宇. 深圳大学硕士论文, 2020.).
[22]
Zhang X C, Ren G M, Zhang C M, Xue J B, Zhao Q, Li R, Wang Y F, Fan C M. Green Energy Environ., 2021, 6(5): 693.

doi: 10.1016/j.gee.2020.06.014
[23]
Fu F, Shen H D, Sun X, Xue W W, Shoneye A, Ma J N, Luo L, Wang D J, Wang J G, Tang J W. Appl. Catal. B Environ., 2019, 247: 150.

doi: 10.1016/j.apcatb.2019.01.056
[24]
Mao D, Wan J W, Wang J Y, Wang D. Adv. Mater., 2019, 31(38): 1970274.

doi: 10.1002/adma.v31.38
[25]
Zhu X W, Wang Z L, Zhong K, Li Q D, Ding P H, Feng Z Y, Yang J M, Du Y S, Song Y H, Hua Y J, Yuan J J, She Y B, Li H M, Xu H. Chem. Eng. J., 2022, 429: 132204.

doi: 10.1016/j.cej.2021.132204
[26]
Wang M, Yang C X, Zheng H Y, Guo P Y, Song E J. J. Chin. Ceram. Soc., 2015, 43(11): 1643.
王敏, 杨长秀, 郑浩岩, 郭鹏瑶, 宋恩军. 硅酸盐学报. 2015, 43(11): 1643.).
[27]
Umapathy V, Manikandan A, Arul Antony S, Ramu P, Neeraja P. Trans. Nonferrous Met. Soc. China, 2015, 25(10): 3271.

doi: 10.1016/S1003-6326(15)63948-6
[28]
Zhang Q, Wang X F, Duan F, Chen M Q. Chin. J. Inorg. Chem., 2015, 31(11): 2152.
张琴, 汪晓凤, 段芳, 陈明清. 无机化学学报, 2015, 31(11): 2152.).
[29]
Zhang T, Huang J F, Cao L Y, Zhou S. Journal of the Chinese Ceramic Society, 2013, 41(5): 710.
张婷, 黄剑锋, 曹丽云, 周森. 硅酸盐学报. 2013, 41(5): 710.).
[30]
Zuo G L, Ye H Y, Li R L. Environmental Protection of Chemical Industry, 2015, 35(1): 89.
左广玲, 叶红勇, 李入林. 化工环保. 2015, 35(1): 89.).
[31]
Li X Y, Wang C, Tang J W. Nat. Rev. Mater., 2022, 7(8): 617.

doi: 10.1038/s41578-022-00422-3
[32]
Hunge Y M, Yadav A A, Kang S W, Mohite B M. Recent Pat. Nanotechnol., 2023, 17(1): 5.

doi: 10.2174/1872210516666220304162429
[33]
Geoffrey Ozin. Matter, 2022, 5(9): 2594.

doi: 10.1016/j.matt.2022.07.033
[34]
Sun C, Zhao Z T, Fan H G, Chen Y L, Liu X Y, Cao J, Lang J H, Wei M B, Liu H L, Yang L L. CrystEngComm, 2021, 23(41): 7270.

doi: 10.1039/D1CE00868D
[35]
Li W T, Huang W Z, Zhou H, Yin H Y, Zheng Y F, Song X C. J. Alloys Compd., 2015, 638: 148.

doi: 10.1016/j.jallcom.2015.03.103
[36]
Phuruangrat A, Buapoon S, Bunluesak T, Suebsom P, Wannapop S, Thongtem T, Thongtem S. J. Aust. Ceram. Soc., 2022, 58(3): 999.

doi: 10.1007/s41779-022-00765-8
[37]
Ren G M, Liu S, Li Z Z, Bai H C, Hu X D, Meng X C. Advanced Science News, 2022: 2200154.
[38]
Yu Q, Jiang L Y, Gao S Y, Zhang S M, Ai T T, Feng X M, Wang W. Ceram. Int., 2017, 43(2): 2864.

doi: 10.1016/j.ceramint.2016.10.190
[39]
Wang M, Zheng H Y, Liu Q, Niu C, Che Y S, Dang M Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2013, 114: 74.
[40]
Shan L W, Wang G L, Suriyaprakash J, Li D, Liu L Z, Dong L M. J. Alloys Compd., 2015, 636: 131.

doi: 10.1016/j.jallcom.2015.02.113
[41]
Huo W C, Xu W N, Cao T, Guo Z Y, Liu X Y, Ge G X, Li N, Lan T, Yao H C, Zhang Y X, Dong F. J. Colloid Interface Sci., 2019, 557: 816.

doi: 10.1016/j.jcis.2019.09.089
[42]
Zhang W H, Yu N, Zhang L S, Jiang K W, Chen Y Z, Chen Z G. Mater. Lett., 2016, 163: 16.

doi: 10.1016/j.matlet.2015.09.113
[43]
Li X Y, Li W J, Liu X T, Fan H X, Geng L, Ma X H, Dong M, Liu S J. J. Alloys Compd., 2021, 889: 161757.

doi: 10.1016/j.jallcom.2021.161757
[44]
Li H D, Li W J, Wang F Z, Liu X T, Ren C J. Appl. Catal. B Environ., 2017, 217: 378.

doi: 10.1016/j.apcatb.2017.06.015
[45]
Jing K Q, Ma W, Ren Y H, Xiong J H, Guo B B, Song Y J, Liang S J, Wu L. Appl. Catal. B Environ., 2019, 243: 10.

doi: 10.1016/j.apcatb.2018.10.027
[46]
Chen Y, Yang W Y, Gao S, Sun C X, Li Q. ACS Appl. Nano Mater., 2018, 1(7): 3565.

doi: 10.1021/acsanm.8b00719
[47]
Anukorn P, Sunisa P, Phattranit D, Nuengruethai E, Somchai T, Titipun T. Mat. Sci. Semicon. Proc., 2015, 34: 175.

doi: 10.1016/j.mssp.2015.02.028
[48]
Xu F X, Wang J G, Zhang N C, Liang H, Sun H H. Appl. Surf. Sci., 2022, 575: 151738.

doi: 10.1016/j.apsusc.2021.151738
[49]
Meng X C, Zhang Z S. Appl. Surf. Sci., 2017, 392: 169.

doi: 10.1016/j.apsusc.2016.08.113
[50]
Phuruangrat A, Keereesaensuk P O, Karthik K, Dumrongrojthanath P, Ekthammathat N, Thongtem S, Thongtem T. J. Inorg. Organomet. Polym. Mater., 2020, 30(2): 322.

doi: 10.1007/s10904-019-01190-4
[51]
Ji S L, Lei H, Wu M X, He Q S, Sun P F, Dong X P. J. Taiwan Inst. Chem. Eng., 2022, 133: 104260.

doi: 10.1016/j.jtice.2022.104260
[52]
Shen Z Y, Zhou H Y, Zhou P, Zhang H, Xiong Z K, Yu Y H, Yao G, Lai B. J. Hazard. Mater., 2022, 425: 127781.

doi: 10.1016/j.jhazmat.2021.127781
[53]
Zhang J J, Kai C M, Zhang F J, Wang Y R. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 648: 129255.

doi: 10.1016/j.colsurfa.2022.129255
[54]
He W J, Wei Y C, Xiong J, Tang Z L, Song W Y, Liu J, Zhao Z. Chem. Eng. J., 2022, 433: 133540.

doi: 10.1016/j.cej.2021.133540
[55]
Risov D, Kousik D, Sathyapal R C, Sebastian C P. Chem. Commun., 2022, 58: 6638.

doi: 10.1039/D2CC00490A
[56]
Risov D, Kousik D, Bitan R, Chathakudath P V, Sebastian C P. Energy Environ. Sci., 2022, 15: 1967.

doi: 10.1039/D1EE02976B
[57]
Dai W L, Xiong W W, Yu J J, Zhang S Q, Li B, Yang L X, Wang T Y, Luo X B, Zou J P, Luo S L. ACS Appl. Mater. Interfaces, 2020, 12(23): 25861.

doi: 10.1021/acsami.0c04730
[58]
Dai W L, Yu J J, Xu H, Hu X, Luo X B, Yang L X, Tu X M. CrystEngComm, 2016, 18(19): 3472.

doi: 10.1039/C6CE00248J
[59]
Zhang L, Wang W, Wang H, Ma X, Bian Z Y. J. Mater. Sci. Mater. Electron., 2019, 30(6): 5808.

doi: 10.1007/s10854-019-00879-z
[60]
Dai W L, Long J F, Yang L X, Zhang S Q, Xu Y, Luo X B, Zou J P, Luo S L. J. Energy Chem., 2021, 61: 281.

doi: 10.1016/j.jechem.2021.01.009
[61]
Li S G, Bai L Q, Ji N, Yu S X, Lin S, Tian N, Huang H W. J. Mater. Chem. A, 2020, 8(18): 9268.

doi: 10.1039/D0TA02102D
[62]
Mostafa Z, Fatemeh M, Peyman N, Mohammad H B. J. Mol. Struct., 2022, 1256: 132472.

doi: 10.1016/j.molstruc.2022.132472
[63]
Li S J, Hu S W, Jiang W, Liu Y, Zhou Y T, Liu J S, Wang Z H. J. Colloid Interface Sci., 2018, 530: 171.

doi: 10.1016/j.jcis.2018.06.084
[64]
Qiao X Q, Zhang Z W, Li Q H, Hou D F, Zhang Q C, Zhang J, Li D S, Feng P Y, Bu X H. J. Mater. Chem. A, 2018, 6(45): 22580.

doi: 10.1039/C8TA08294D
[65]
Du H, Liu Y N, Shen C C, Xu A W. Chin. J. Catal., 2017, 38(8): 1295.

doi: 10.1016/S1872-2067(17)62866-3
[66]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.v29.20
[67]
Li Z, Zheng R J, Dai S J, Zhao T L, Chen M, Zhang Q W. J. Alloys Compd., 2021, 882: 160681.

doi: 10.1016/j.jallcom.2021.160681
[68]
Subha N, Mahalakshmi M, Myilsamy M, Neppolian B, Murugesan V. J. Photochem. Photobiol. A Chem., 2019, 379: 150.

doi: 10.1016/j.jphotochem.2019.05.004
[69]
Cui H, Dong S Y, Wang K K, Luan M S, Huang T L. Sep. Purif. Technol., 2021, 255: 117758.

doi: 10.1016/j.seppur.2020.117758
[70]
Guo R N, Zhang X Y, Li B, Zhang H X, Gou J F, Cheng X W. J. Phys. D: Appl. Phys., 2019, 52(8): 085302.

doi: 10.1088/1361-6463/aaf4e2
[71]
Xu X M, Meng L J, Dai Y X, Zhang M, Sun C, Yang S G, He H, Wang S M, Li H. J. Hazard. Mater., 2020, 381: 120953.

doi: 10.1016/j.jhazmat.2019.120953
[72]
Wu H, Meng F M, Liu X B, Yu B. Nanotechnology, 2022, 33(11): 115203.

doi: 10.1088/1361-6528/ac3f13
[73]
Shan L W, Li J C, Wu Z, Dong L M, Chen H T, Li D, Suriyaprakash J, Zhang X L. Chem. Eng. J., 2022, 436: 131516.

doi: 10.1016/j.cej.2021.131516
[74]
Kumar A, Singla Y, Sharma M, Bhardwaj A, Krishnan V. Chemosphere, 2022, 308: 136212.

doi: 10.1016/j.chemosphere.2022.136212
[75]
Mu F H, Miao X W, Cao J H, Zhao W, Yang G, Zeng H H, Li S J, Sun C. J. Clean. Prod., 2022, 360: 131948.

doi: 10.1016/j.jclepro.2022.131948
[76]
Zhou Y P, Jiao W Y, Xie Y, He F, Ling Y, Yang Q, Zhao J S, Ye H, Hou Y. J. Colloid Interface Sci., 2022, 608: 2213.

doi: 10.1016/j.jcis.2021.10.053
[77]
Guo R N, Zhang X Y, Li B, Zhang H X, Gou J F, Cheng X W. J. Phys. D: Appl. Phys., 2019, 52(8): 085302.

doi: 10.1088/1361-6463/aaf4e2
[78]
Wu J, Sun Y Y, Gu C H, Wang T, Xin Y J, Chai C, Cui C Y, Ma D. Appl. Catal. B Environ., 2018, 237: 622.

doi: 10.1016/j.apcatb.2018.06.016
[79]
Zhu P F, Chen Y J, Duan M, Ren Z H, Hu M. Catal. Sci. Technol., 2018, 8(15): 3818.

doi: 10.1039/C8CY01087K
[80]
Shen X F, Song B T, Shen X X, Shen C, Shan S D, Xue Q Q, Chen X B, Li S J. Chem. Eng. J., 2022, 445: 136703.

doi: 10.1016/j.cej.2022.136703
[81]
Li S J, Wang C C, Cai M J, Liu Y P, Dong K X, Zhang J L. J. Colloid Interface Sci., 2022, 624: 219.

doi: 10.1016/j.jcis.2022.05.151
[82]
Sun K Y, Zhou H L, Li X Y, Ma X H, Zhang D H, Li M C. J. Alloys Compd., 2022, 913: 165119.

doi: 10.1016/j.jallcom.2022.165119
[83]
Ou B, Wang J X, Wu Y, Zhao S, Wang Z. Chem. Eng. J., 2020, 380: 122600.

doi: 10.1016/j.cej.2019.122600
[84]
Liu J, Li J, Bing X M, Ng D H L, Cui X L, Ji F, Dienguila Kionga D. Mater. Res. Bull., 2018, 102: 379.

doi: 10.1016/j.materresbull.2018.03.010
[85]
Hu F X, Cui E T, Liu H X, Wu J, Dai Y, Yu G Y. J. Mater. Sci. Mater. Electron., 2019, 30(3): 2572.

doi: 10.1007/s10854-018-0532-9
[86]
Li X Y, Ma T, Dong L X, Na Y, Liu Y M, Li Z, Zheng R J, Dai S J, Zhao T L. Adv. Powder Technol., 2022, 33(3): 103468.

doi: 10.1016/j.apt.2022.103468
[87]
Jia Y F, Li J J, Liu Z J, Wang Q Z, Zhang W B, Bae J S, Liu C L. Chem. Eng. J., 2022, 437: 135300.

doi: 10.1016/j.cej.2022.135300
[88]
Wang A W, Ni J X, Wang W, Wang X Y, Liu D M, Zhu Q. J. Hazard. Mater., 2022, 426: 128106.

doi: 10.1016/j.jhazmat.2021.128106
[89]
Wang Q M, Zhang Y J, Li J L, Liu N, Jiao Y F, Jiao Z B. J. Colloid Interface Sci., 2020, 567: 145.

doi: 10.1016/j.jcis.2020.02.003
[90]
Rama K C, Namgyu S, Yang S K, Misook K. Inorg. Chem. Front., 2020, 7(15): 2818.

doi: 10.1039/D0QI00339E
[91]
Heng H M, Gan Q, Meng P C, Liu X. J. Alloys Compd., 2017, 696: 51.

doi: 10.1016/j.jallcom.2016.11.116
[92]
Zhao J Q, Zhang H T, Jia S C, Jiang D M, Zhan Q F. J. Mater. Sci., 2021, 56(27): 15241.

doi: 10.1007/s10853-021-06263-9
[93]
Zhen Y Z, Yang C M, Shen H D, Xue W W, Gu C R, Feng J H, Zhang Y C, Fu F, Liang Y C. Phys. Chem. Chem. Phys., 2020, 22(45): 26278.

doi: 10.1039/D0CP02199G
[94]
El-Sabban H A, Hegazey R M, Hamdy A, Moustafa Y. J. Mol. Struct., 2022, 1269: 133755.

doi: 10.1016/j.molstruc.2022.133755
[95]
Guo J H, Shi L, Zhao J Y, Wang Y, Tang K B, Zhang W Q, Xie C Z, Yuan X Y. Appl. Catal. B Environ., 2018, 224: 692.

doi: 10.1016/j.apcatb.2017.11.030
[96]
Zheng Y, Zhou T F, Zhao X D, Pang W K, Gao H, Li S A, Zhou Z, Liu H K, Guo Z P. Adv. Mater., 2017, 29(26): 1700396.

doi: 10.1002/adma.v29.26
[97]
Zhang X C, Ren G M, Zhang C M, Li R, Zhao Q, Fan C M. Catal. Lett., 2020, 150(9): 2510.

doi: 10.1007/s10562-020-03182-3
[98]
Hu T P, Yang Y, Dai K, Zhang J F, Liang C H. Appl. Surf. Sci., 2018, 456: 473.

doi: 10.1016/j.apsusc.2018.06.186
[99]
Shi W L, Li M Y, Huang X L, Ren H J, Guo F, Tang Y B, Lu C Y. Chem. Eng. J., 2020, 394: 125009.

doi: 10.1016/j.cej.2020.125009
[100]
Wang D Y, Li K, Zhou C lei L, de Rancourt de MimÉrand Y, Jin X Y, Guo J. Appl. Surf. Sci., 2022, 585: 152591.

doi: 10.1016/j.apsusc.2022.152591
[101]
Meng Q Q, Lv C D, Sun J X, Hong W Z, Xing W N, Qiang L S, Chen G, Jin X L. Appl. Catal. B Environ., 2019, 256: 117781.

doi: 10.1016/j.apcatb.2019.117781
[1] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[2] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[3] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[4] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[5] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[6] Ze Feng, Dan Sun, Yougen Tang, Haiyan Wang. Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material [J]. Progress in Chemistry, 2019, 31(2/3): 442-454.
[7] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[8] Wenhao Yao, Fei Yu, Jie Ma. Preparation of Alginate Composite Gel and Its Application in Water Treatment [J]. Progress in Chemistry, 2018, 30(11): 1722-1733.
[9] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[10] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[11] Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*. Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode [J]. Progress in Chemistry, 2017, 29(10): 1173-1183.
[12] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[13] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[14] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[15] Tang Yuanyuan, Xu Jia, Chen Xing, Gao Congjie. Core of Forward Osmosis for Desalination——Forward Osmosis Membrane [J]. Progress in Chemistry, 2015, 27(7): 818-830.