中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (1): 88-104 DOI: 10.7536/PC220544 Previous Articles   Next Articles

• Review •

1D Nanoribbons of 2D Materials

Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi()   

  1. State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University,Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: shilei26@mail.sysu.edu.cn
  • Supported by:
    Guangzhou Basic and Applied Basic Research Foundation(202201011790); National Natural Science Foundation of China(51902353); Fundamental Research Funds for the Central Universities, and the Sun Yat-sen University(22lgqb03)
Richhtml ( 62 ) PDF ( 685 ) Cited
Export

EndNote

Ris

BibTeX

Since the discovery of graphene, studies on two-dimensional (2D) materials have become a hot research area. 2D materials can be prepared into one-dimensional (1D) nanoribbons by using different methods. The obtained 1D nanoribbons present unique electrical, optical, and magnetic properties, which are different from that of their 2D material counterparts, due to their limited width and specific edge structures. Therefore, more and more researches focus on the 1D nanoribbons of 2D materials recently. In this review, we introduce several typical 1D nanoribbons of 2D materials, such as graphene, graphdiyne, biphenylene, boron nitride, black phosphorus, and transition metal dichalcogenides. We firstly discuss the structures and modified properties when the 2D materials are formed into 1D nanoribbons. Then, typical synthesis methods including “top-down” and “bottom-up” strategies are presented in detail. Especially, several methods are mainly introduced including on-surface synthesis, solution synthesis, confined synthesis, unzipping the nanotubes, and chemical vapor deposition, leading to controllable synthesis of nanoribbons with sub-nanometer in width and/or with designed edge structure, which ultimately result in nanoribbons with tailored properties. Finally, advantages and disadvantages of these synthesis methods are summarized and perspectives on the precision synthesis of certain nanoribbons with specific properties as well as applications are highlighted. We hope that this review is able to attract domestic and international peers’ attention on this new research focus on the 1D nanoribbons of 2D materials.

Contents

1 Introduction

2 Graphene nanoribbons

2.1 Structure and properties of graphene nanoribbons

2.2 Preparation of graphene nanoribbons

3 Graphdiyne nanoribbons

3.1 Structure and properties of graphdiyne nanoribbons

3.2 Preparation of graphdiyne nanoribbons

4 Biphenylene nanoribbons

4.1 Structure and properties of biphenylen nanoribbons

4.2 Preparation of biphenylen nanoribbons

5 Boron nitride nanoribbons

5.1 Structure and properties of boron nitride nanoribbons

5.2 Preparation of boron nitride nanoribbons

6 Phosphorus nanoribbons

6.1 Structure and properties of phosphorus nanoribbons

6.2 Preparation of phosphorus nanoribbons

7 Transition metal dichalcogenides nanoribbons

7.1 MoS2 nanoribbon

7.2 MoSe2 nanoribbon

7.3 WS2 nanoribbon

7.4 WSe2 nanoribbon

7.5 WTe2 nanoribbon

7.6 ReS2 nanoribbon

8 Conclusion and outlook

Fig. 1 Development of one-dimensional nanoribbons of various two-dimensional materials. Copyright can be found separately in the following figures
Fig. 2 The variation of band gaps of Na-AGNRs as a function of width obtained from (a) tight-binding calculations, (b) local density approximation calculations[8]. Copyright 2006, American Physical Society
Fig. 3 (a) Electronic structure of a 16-ZGNR without external electric field, (b) The spatial distribution of the charge difference between α-spin (red) and β-spin (blue) for the ground state without electric field, (c) From left to right, band structures of the α-spin and β-spin with increased electric field of 0.0, 0.05 and 0.1 V·?-1. Copyright 2006, Springer Nature
Fig. 4 (a~c) Device images, (d~f) conductance as a function of gate voltage measured at different temperatures, (g) conductance versus width, (h) energy gap versus width of GNRs. Copyright 2007, American Physical Society
Fig. 5 Atomic force microscopy images of graphene nanoribbons with variable width obtained from solution sonication[15]. Copyright 2008, AAAS
Fig. 6 (a) Schematic of multi-walled carbon nanotubes etching to obtain graphene nanoribbons[16]. Copyright 2009, Springer Nature. (b) Schematic of the gradual unzipping of one wall of a carbon nanotube to form a nanoribbon[17]. Copyright 2009, Springer Nature
Fig. 7 (a) Schematic of molecular reactions of synthesis of graphene nanoribbons on Au(111) surface[18]. Copyright 2010, Springer Nature. (b) Reaction scheme and process of synthesis of graphene nanoribbons in solution[21]. Copyright 2014, Springer Nature
Fig. 8 Schematic of synthetic strategy to graphene nanoribbons with specific edges[30]. Copyright 2021, Springer Nature
Fig. 9 (a) Synthesis of graphene nanoribbons within a single-walled carbon nanotube from polyaromatic hydrocarbons[31]. Copyright 2011, American Chemical Society. (b) High resolution transmission electron microscopy images and corresponding simulations for armchair graphene nanoribbons synthesized from ferrocene[32]. Copyright 2021, Elsevier
Fig. 10 (a) Schematic of graphdiyne fragment, (b) The stepwise intermolecular and intramolecular Glazer-Hay coupling reaction for graphdiyne nanoribbons[41]. Copyright 2020, John Wiley and Sons
Fig. 11 (a) Reaction process of synthesis of biphenylene nanoribbons and biphenylene network, (b) Scanning tunneling microscopy images and corresponding atomic force microscopy images of biphenylene nanoribbons[44]. Copyright 2021, AAAS
Fig.12 (a) Schematic of exfoliation and cutting of boron nitride in water via Sonication-Assisted Hydrolysis[57]. Copyright 2011, American Chemical Society. (b) Schematic of epitaxial growth of boron nitride nanoribbons from the edge of a graphene[58]. Copyright 2013, American Chemical Society
Fig. 13 Schematic of in situ transmission electron microscope and scanning transmission electron microscope nanosculpting of zigzag few-layer phosphorus nanoribbons[64]. Copyright 2016, American Chemical Society
Fig. 14 (a) Schematic illustration of growth process, (b) Optical microscopy image of as-grown MoS2 nanoribbons on sapphire supported monolayer MoS2 flakes, (c) The statistics on the relative orientation of MoS2 nanoribbons, (d) The atomic structure illustration of MoS2 nanoribbons[77]. Copyright 2019, John Wiley and Sons
Fig. 15 Schematic of the electrochemical/chemical synthesis of MoS2 nanoribbons[79]. Copyright 2005, American Chemical Society
Fig. 16 Fabrication of MoSe2 nanoribbons via molecular beam epitaxy method[85]. Copyright 2017, John Wiley and Sons
Fig. 17 (a) Schematic of two-step controlled growth of MoSe2 ultranarrow ribbon on Au(100), (b~d) Scanning tunneling microscopy images of corresponding growth stages[86]. Copyright 2017, American Chemical Society
Fig. 18 (a,b) Schematic of synthesis procedure of transition-metal dichalcogenide nanoribbons, (c,d) Illustration of transition-metal dichalcogenide nanoplates and nanoribbons synthesis using space-confined and substrate-directed chemical vapor deposition and conventional chemical vapor deposition strategy, respectively[97]. Copyright 2020, Elsevier
Fig. 19 (a) Schematic of stacked WTe converting into zigzag nanoribbons, (b) Illustration showing the geometrical structures of the pristine WTe and the vertically and horizontally aligned WX2 obtained after reaction, (c~f) Scanning electron microscope images of the pristine WTe, and the WS2, WSe2, and WTe2 nanoribbons, respectively[106]. Copyright 2021, American Chemical Society
Table 1 Preparation methods, widths, layer number and energy gaps of various nanoribbons
Preparation Method Width Layer Number Energy Gap
Graphene Nanoribbon lithography[12~14] tens of nm single 0.002~0.126 eV[12]
ultrasonication in solution[15] 10~50 nm ≤3 /
nanotube zipping[16,17] 10~20 nm single/few /
on-surface synthesis[18~22] 7-AGNR/3-AGNR single 2.3/3.2 eV[18]
CVD[25~28] ~23 nm/3-AGNR single /
epitaxy[30] <5 nm single /
confined synthesis[31~34] 0.5~1 nm/6,7-AGNR single 1.9~2.3 eV[32]
Graphdiyne Nanoribbon organic synthesis[41] ~60 nm single 1.9 eV[41]
Biphenylene Nanoribbon on-surface synthesis[44,48] 12-/18-/21-
armchair BNR
single 0.1~1 eV[42~47]

Boron Nitride Nanoribbon
nanotube zipping[53~56] <30 nm several armchair: >4 eV
zigzag: metallic[49~52]
ultrasonication in solution[57] <200 nm single/few
epitaxy[58] hundreds of nm single
Phosphorus Nanoribbon lithography[64,65] <10 nm few >1.5 eV[59]
ultrasonication in solution[66,67] 4~50 nm single/few


MoS2 Nanoribbon
nanotube zipping[73] ~90 nm 20~30 armchair: >0.56 eV[69]
confined synthesis[74] 1.5~4 nm single
CVD[75~77] tens to hundreds of nm single/few
lithography[78] 157~465 nm 5
organic synthesis[79] 50~800 nm several

MoSe2 Nanoribbon
lithography[83] 300±50 nm single <1.5 eV[80]
CVD[80] ~150 nm single
molecular beam epitaxy[84~85] 10~30 nm single/few
template assisted growth[86] ~0.7 nm single

WS2 Nanoribbon
nanotube zipping[73,90] ~100 nm several armchair: semiconducting
zigzag: metallic[88]
lithography[91] ~20 nm several
confined synthesis[92] 1~3 nm single

WSe2 Nanoribbon
lithography[96] <10 nm single armchair: semiconducting
zigzag: metallic[93]
CVD[97] tens to thousands of nm single
epitaxy[98] tens to hundreds of nm single

WTe2 Nanoribbon
CVD[102~104] 100~200 nm single/few armchair: semiconducting
zigzag: metallic[100]
confined synthesis[105] ~1 nm single
transformation from nanowire[106] ~10 nm several
ReS2 Nanoribbon CVD[109] ~50 nm few 0.9~1.6 eV[108]
confined synthesis[110] ~1.3 nm single
[1]
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L B, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F N, Wang Y L, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A. ACS Nano, 2015, 9(12): 11509.

doi: 10.1021/acsnano.5b05556 pmid: 26544756
[2]
Ruffieux P, Wang S Y, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Müllen K, Fasel R. Nature, 2016, 531(7595): 489.

doi: 10.1038/nature17151
[3]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

doi: 10.1126/science.1102896 pmid: 15499015
[4]
Iijima S. Nature, 1991, 354(6348): 56.

doi: 10.1038/354056a0
[5]
Jin G, Lin Z, Shi L. Prog. Chem., 2021, 33: 188.
[6]
Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P, Pichler T. Nat. Mater., 2016, 15(6): 634.

doi: 10.1038/nmat4617
[7]
Ruffieux P, Cai J M, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X L, Müllen K, Pignedoli C A, Fasel R. ACS Nano, 2012, 6(8): 6930.

doi: 10.1021/nn3021376 pmid: 22853456
[8]
Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2007, 98(8): 089901.

doi: 10.1103/PhysRevLett.98.089901
[9]
Yang L, Park C H, Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2007, 99(18): 186801.

doi: 10.1103/PhysRevLett.99.186801
[10]
Lawrence J, Brandimarte P, Berdonces-Layunta A, Mohammed M S G, Grewal A, Leon C C, Sánchez-Portal D, de Oteyza D G. ACS Nano, 2020, 14(4): 4499.

doi: 10.1021/acsnano.9b10191 pmid: 32101402
[11]
Son Y W, Cohen M L, Louie S G. Nature, 2006, 444: 347.

doi: 10.1038/nature05180
[12]
Han M Y, Özyilmaz B, Zhang Y B, Kim P. Phys. Rev. Lett., 2007, 98(20): 206805.

doi: 10.1103/PhysRevLett.98.206805
[13]
Bai J W, Duan X F, Huang Y. Nano Lett., 2009, 9(5): 2083.

doi: 10.1021/nl900531n
[14]
Shin Y S, Son J Y, Jo M H, Shin Y H, Jang H M. J. Am. Chem. Soc., 2011, 133(15): 5623.

doi: 10.1021/ja108464s
[15]
Li X L, Wang X R, Zhang L, Lee S, Dai H J. Science, 2008, 319(5867): 1229.

doi: 10.1126/science.1150878
[16]
Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458(7240): 877.

doi: 10.1038/nature07919
[17]
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458(7240): 872.

doi: 10.1038/nature07872
[18]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.

doi: 10.1038/nature09211
[19]
Langlais V, Schneider K, Tang H. J. Phys.: Condens. Matter, 2022, 34(5): 055001.
[20]
Zhou X H, Yu G. Adv. Mater., 2020, 32(6): 1905957.

doi: 10.1002/adma.201905957
[21]
Vo T H, Shekhirev M, Kunkel D A, Morton M D, Berglund E, Kong L M, Wilson P M, Dowben P A, Enders A, Sinitskii A. Nat. Commun., 2014, 5: 3189.

doi: 10.1038/ncomms4189
[22]
Yoon K Y, Dong G B. Mater. Chem. Front., 2020, 4(1): 29.

doi: 10.1039/C9QM00519F
[23]
Narita A, Feng X L, Hernandez Y, Jensen S A, Bonn M, Yang H F, Verzhbitskiy I A, Casiraghi C, Hansen M R, Koch A H R, Fytas G, Ivasenko O, Li B, Mali K S, Balandina T, Mahesh S, de Feyter S, Müllen K. Nat. Chem., 2014, 6(2): 126.

doi: 10.1038/nchem.1819
[24]
Celis A, Nair M N, Taleb-Ibrahimi A, Conrad E H, Berger C, de Heer W A, Tejeda A. J. Phys. D: Appl. Phys., 2016, 49(14): 143001.

doi: 10.1088/0022-3727/49/14/143001
[25]
Kato T, Hatakeyama R. Nat. Nanotechnol., 2012, 7(10): 651.

doi: 10.1038/nnano.2012.145
[26]
Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T. Adv. Mater., 2014, 26(24): 4134.

doi: 10.1002/adma.201305034
[27]
Chen Z P, Zhang W, Palma C A, Lodi Rizzini A, Liu B L, Abbas A, Richter N, Martini L, Wang X Y, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Kläui M, Candini A, Affronte M, Zhou C W, de Renzi V, del Pennino U, Barth J V, Räder H J, Narita A, Feng X L, Müllen K. J. Am. Chem. Soc., 2016, 138(47): 15488.

doi: 10.1021/jacs.6b10374
[28]
Fedotov P V, Rybkovskiy D V, Novikov I V, Obraztsova E D. Phys. Status Solidi B, 2022, 259(4): 2100501.

doi: 10.1002/pssb.202100501
[29]
Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A. Nat. Nanotechnol., 2010, 5(10): 727.

doi: 10.1038/nnano.2010.192 pmid: 20890273
[30]
Wang H S, Chen L X, Elibol K, He L, Wang H M, Chen C, Jiang C X, Li C, Wu T R, Cong C X, Pennycook T J, Argentero G, Zhang D L, Watanabe K, Taniguchi T, Wei W Y, Yuan Q H, Meyer J C, Xie X M. Nat. Mater., 2021, 20(2): 202.

doi: 10.1038/s41563-020-00806-2
[31]
Talyzin A V, Anoshkin I V, Krasheninnikov A V, Nieminen R M, Nasibulin A G, Jiang H, Kauppinen E I. Nano Lett., 2011, 11(10): 4352.

doi: 10.1021/nl2024678
[32]
Kuzmany H, Shi L, Martinati M, CambrÉ S, Wenseleers W, Kürti J, Koltai J, Kukucska G, Cao K C, Kaiser U, Saito T, Pichler T. Carbon, 2021, 171: 221.

doi: 10.1016/j.carbon.2020.08.065
[33]
Zhang Y F, Cao K C, Saito T, Kataura H, Kuzmany H, Pichler T, Kaiser U, Yang G W, Shi L. Nano Res., 2022, 15(3): 1709.

doi: 10.1007/s12274-021-3819-8
[34]
Chuvilin A, Bichoutskaia E, Gimenez-Lopez M C, Chamberlain T W, Rance G A, Kuganathan N, Biskupek J, Kaiser U, Khlobystov A N. Nat. Mater., 2011, 10(9): 687.

doi: 10.1038/nmat3082 pmid: 21822259
[35]
Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem. Commun., 2010, 46(19): 3256.

doi: 10.1039/b922733d
[36]
Bai H C, Zhu Y, Qiao W Y, Huang Y H. RSC Adv., 2011, 1(5): 768.

doi: 10.1039/c1ra00481f
[37]
Chen C, Li J, Sheng X L. Phys. Lett. A, 2017, 381(38): 3337.

doi: 10.1016/j.physleta.2017.08.034
[38]
Lin Z Z, Wei Q, Zhu X M. Carbon, 2014, 66: 504.

doi: 10.1016/j.carbon.2013.09.027
[39]
Serafini P, Milani A, Tommasini M, Castiglioni C, Casari C S. Phys. Rev. Materials, 2020, 4: 014001.

doi: 10.1103/PhysRevMaterials.4.014001
[40]
Kang J, Wu F M, Li J B. J. Phys.: Condens. Matter, 2012, 24(16): 165301.
[41]
Zhou W X, Shen H, Zeng Y, Yi Y P, Zuo Z C, Li Y J, Li Y L. Angew. Chem. Int. Ed., 2020, 59(12): 4908.

doi: 10.1002/anie.201916518
[42]
Wang X Q, Li H D, Wang J T. Phys. Chem. Chem. Phys., 2013, 15(6): 2024.

doi: 10.1039/C2CP43070C
[43]
Denis P A. J. Phys. Chem. C, 2014, 118(43): 24976.

doi: 10.1021/jp5069895
[44]
Fan Q, Yan L, Tripp M W, Krej? í O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, Gottfried J M. Science, 2021, 372: 852.

doi: 10.1126/science.abg4509
[45]
Shen H, Yang R Y, Xie K, Yu Z Y, Zheng Y X, Zhang R J, Chen L Y, Wu B R, Su W S, Wang S Y. Phys. Chem. Chem. Phys., 2022, 24(1): 357.

doi: 10.1039/D1CP04481H
[46]
Ge H Y, Wang G, Liao Y. Chem. Phys. Lett., 2016, 648: 97.

doi: 10.1016/j.cplett.2016.02.011
[47]
Karaush N N, Bondarchuk S V, Baryshnikov G V, Minaeva V A, Sun W H, Minaev B F. RSC Adv., 2016, 6(55): 49505.

doi: 10.1039/C6RA06832D
[48]
Schlütter F, Nishiuchi T, Enkelmann V, Müllen K. Angew. Chem. Int. Ed., 2014, 53(6): 1538.

doi: 10.1002/anie.201309324 pmid: 24492971
[49]
Zhang Z H, Guo W L. Phys. Rev. B, 2008, 77: 439.

doi: 10.1103/PhysRev.77.439
[50]
Lai L, Lu J, Wang L, Luo G F, Zhou J, Qin R, Gao Z X, Mei W N. J. Phys. Chem. C, 2009, 113(6): 2273.

doi: 10.1021/jp8079827
[51]
Chen W, Li Y F, Yu G T, Li C Z, Zhang S B, Zhou Z, Chen Z F. J. Am. Chem. Soc., 2010, 132(5): 1699.

doi: 10.1021/ja908475v pmid: 20085366
[52]
Ding Y, Wang Y L, Ni J. Appl. Phys. Lett., 2009, 94(7): 073111.

doi: 10.1063/1.3085967
[53]
Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y, Golberg D. Nano Lett., 2010, 10(12): 5049.

doi: 10.1021/nl103251m
[54]
Erickson K J, Gibb A L, Sinitskii A, Rousseas M, Alem N, Tour J M, Zettl A K. Nano Lett., 2011, 11(8): 3221.

doi: 10.1021/nl2014857 pmid: 21608991
[55]
Li L, Li L H, Chen Y, Dai X J, Lamb P R, Cheng B M, Lin M Y, Liu X W. Angew. Chem. Int. Ed., 2013, 52(15): 4212.

doi: 10.1002/anie.201209597
[56]
Liao Y L, Chen Z F, Connell J W, Fay C C, Park C, Kim J W, Lin Y. Adv. Funct. Mater., 2014, 24(28): 4497.

doi: 10.1002/adfm.201400599
[57]
Lin Y, Williams T V, Xu T B, Cao W, Elsayed-Ali H E, Connell J W. J. Phys. Chem. C, 2011, 115(6): 2679.

doi: 10.1021/jp110985w
[58]
Han G H, Rodríguez-Manzo J A, Lee C W, Kybert N J, Lerner M B, Qi Z J, Dattoli E N, Rappe A M, Drndic M, Johnson A T C. ACS Nano, 2013, 7(11): 10129.

doi: 10.1021/nn404331f
[59]
Vy T, Yang L. Phys. Rev. B, 2014, 89: 106.

doi: 10.1103/PhysRev.89.106
[60]
de Sousa D J P, de Castro L V, da Costa D R, Pereira J M. Phys. Rev. B, 2016, 94(23): 235415.

doi: 10.1103/PhysRevB.94.235415
[61]
Wu Q Y, Shen L, Yang M, Cai Y Q, Huang Z G, Feng Y P. Phys. Rev. B, 2015, 92(3): 035436.

doi: 10.1103/PhysRevB.92.035436
[62]
Taghizadeh Sisakht E, Zare M H, Fazileh F. Phys. Rev. B, 2015, 91(8): 085409.

doi: 10.1103/PhysRevB.91.085409
[63]
Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J. 2D Mater., 2014, 1(2): 025001.
[64]
Masih Das P, Danda G, Cupo A, Parkin W M, Liang L B, Kharche N, Ling X, Huang S X, Dresselhaus M S, Meunier V, Drndić M. ACS Nano, 2016, 10(6): 5687.

doi: 10.1021/acsnano.6b02435 pmid: 27192448
[65]
Feng X W, Huang X, Chen L, Tan W C, Wang L, Ang K W. Adv. Funct. Mater., 2018, 28(28): 1801524.

doi: 10.1002/adfm.201801524
[66]
Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartu? S P, Payton O D, Skipper N T, Tileli V, Howard C A. Nature, 2019, 568(7751): 216.

doi: 10.1038/s41586-019-1074-x
[67]
Liu Q, Zhang X, Wang J H, Zhang Y L, Bian S, Cheng Z Q, Kang N, Huang H, Gu S, Wang Y, Liu D N, Chu P K, Yu X F. Angew. Chem. Int. Ed., 2020, 59(34): 14383.

doi: 10.1002/anie.202006679
[68]
Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Adv. Mater., 2012, 24(17): 2320.

doi: 10.1002/adma.201104798
[69]
Li Y F, Zhou Z, Zhang S B, Chen Z F. J. Am. Chem. Soc., 2008, 130(49): 16739.

doi: 10.1021/ja805545x
[70]
Wang R, Zhou X Y, Xu X Y, Hu J G, Pan J. J. Phys. D: Appl. Phys., 2017, 50(9): 095102.

doi: 10.1088/1361-6463/aa4f37
[71]
Pan H, Zhang Y W. J. Mater. Chem., 2012, 22(15): 7280.

doi: 10.1039/c2jm15906f
[72]
Ma C R, Yan J H, Huang Y C, Zheng Z Q, Yang G W. Nanotechnology, 2020, 31(6): 065204.

doi: 10.1088/1361-6528/ab50d2
[73]
Vasu K, Yamijala S S R K C, Zak A, Gopalakrishnan K, Pati S K, Rao C N R. Small, 2015, 11(32): 3916.

doi: 10.1002/smll.201500350
[74]
Wang Z Y, Li H, Liu Z, Shi Z J, Lu J, Suenaga K, Joung S K, Okazaki T, Gu Z N, Zhou J, Gao Z X, Li G P, Sanvito S, Wang E G, Iijima S. J. Am. Chem. Soc., 2010, 132(39): 13840.

doi: 10.1021/ja1058026
[75]
Li S S, Lin Y C, Zhao W, Wu J, Wang Z, Hu Z H, Shen Y D, Tang D M, Wang J Y, Zhang Q, Zhu H, Chu L Q, Zhao W J, Liu C, Sun Z P, Taniguchi T, Osada M, Chen W, Xu Q H, Wee A T S, Suenaga K, Ding F, Eda G. Nat. Mater., 2018, 17(6): 535.

doi: 10.1038/s41563-018-0055-z
[76]
Yang C X, Wang B, Xie Y N, Zheng Y F, Jin C H. Nanotechnology, 2019, 30(25): 255602.

doi: 10.1088/1361-6528/ab0a1d
[77]
Wu D, Shi J, Zheng X M, Liu J X, Dou W D, Gao Y L, Yuan X M, Ouyang F P, Huang H. Phys. Status Solidi RRL, 2019, 13(7): 1900063.

doi: 10.1002/pssr.201900063
[78]
Hung Y H, Lu A Y, Chang Y H, Huang J K, Chang J K, Li L J, Su C Y. ACS Appl. Mater. Interfaces, 2016, 8(32): 20993.

doi: 10.1021/acsami.6b05827
[79]
Li Q, Walter E C, van der Veer W E, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M. J. Phys. Chem. B, 2005, 109(8): 3169.

doi: 10.1021/jp045032d
[80]
Chen T, Hao G L, Wang G, Li B, Kou L Z, Yang H, Zheng X M, Zhong J X.2D Mater., 2019, 6(2): 025002.
[81]
Zhang H M, Li Z Y. J. Phys.: Condens. Matter, 2020, 32(36): 365303.
[82]
Chen H J, Xie Y A, Cui H L, Zhao W, Zhu X L, Wang Y M, Lü X, Huang F Q. Chem. Commun., 2014, 50(34): 4475.

doi: 10.1039/C3CC49600G
[83]
Wang Z X, Zhang X, Hachtel J A, Apte A, Tiwary C S, Vajtai R, Idrobo J C, Ozturk R, Ajayan P. Nanoscale Horiz., 2019, 4(3): 689.

doi: 10.1039/C8NH00364E
[84]
Chen Y X, Cui P, Ren X B, Zhang C D, Jin C H, Zhang Z Y, Shih C K. Nat. Commun., 2017, 8: 15135.

doi: 10.1038/ncomms15135
[85]
Poh S M, Tan S J R, Zhao X X, Chen Z X, Abdelwahab I, Fu D Y, Xu H, Bao Y, Zhou W, Loh K P. Adv. Mater., 2017, 29(12): 1605641.

doi: 10.1002/adma.201605641
[86]
Cheng F, Xu H, Xu W T, Zhou P J, Martin J, Loh K P. Nano Lett., 2017, 17(2): 1116.

doi: 10.1021/acs.nanolett.6b04715 pmid: 28090772
[87]
Zhang H, Li X B, Liu L M. J. Appl. Phys., 2013, 114(9): 093710.

doi: 10.1063/1.4820470
[88]
Lopez-Urias F, Elias A L, Perea-Lopez N, Gutierrez H R, Terrones M, Terrones H.2D Mater., 2015, 2: 015002.
[89]
Han D, Wang M, Yang X H, Du M, Cheng L, Wang X Y. J. Alloys Compd., 2022, 903: 163850.

doi: 10.1016/j.jallcom.2022.163850
[90]
Nethravathi C, Jeffery A A, Rajamathi M, Kawamoto N, Tenne R, Golberg D, Bando Y. ACS Nano, 2013, 7(8): 7311.

doi: 10.1021/nn4029635 pmid: 23883418
[91]
Heyne M H, de Marneffe J F, Delabie A, Caymax M, Neyts E C, Radu I, Huyghebaert C, de Gendt S. Nanotechnology, 2017, 28(4): 04LT01.

doi: 10.1088/1361-6528/aa510c
[92]
Wang Z Y, Zhao K K, Li H, Liu Z, Shi Z J, Lu J, Suenaga K, Joung S K, Okazaki T, Jin Z X, Gu Z N, Gao Z X, Iijima S. J. Mater. Chem., 2011, 21(1): 171.

doi: 10.1039/C0JM02821E
[93]
Chen K X, Luo Z Y, Mo D C, Lyu S S. Phys. Chem. Chem. Phys., 2016, 18(24): 16337.

doi: 10.1039/C6CP02456D
[94]
Shahbazi M. Phys. B Condens. Matter, 2018, 545: 159.

doi: 10.1016/j.physb.2018.06.004
[95]
Wang J, Xie F, Cao X H, An S C, Zhou W X, Tang L M, Chen K Q. Sci. Rep., 2017, 7: 41418.

doi: 10.1038/srep41418 pmid: 28120912
[96]
Stanford M G, Pudasaini P R, Cross N, Mahady K, Hoffman A N, Mandrus D G, Duscher G, Chisholm M F, Rack P D. Small Methods, 2017, 1(4): 1600060.

doi: 10.1002/smtd.201600060
[97]
Duan Z J, Chen T, Shi J W, Li J, Song K, Zhang C, Ding S J, Li B, Wang G, Hu S G, He X Y, He C Y, Xu H, Liu X F, Jin C H, Zhong J X, Hao G L. Sci. Bull., 2020, 65(12): 1013.

doi: 10.1016/j.scib.2020.03.002
[98]
Aljarb A, Fu J H, Hsu C C, Chuu C P, Wan Y, Hakami M, Naphade D R, Yengel E, Lee C J, Brems S, Chen T A, Li M Y, Bae S H, Hsu W T, Cao Z, Albaridy R, Lopatin S, Chang W H, Anthopoulos T D, Kim J, Li L J, Tung V. Nat. Mater., 2020, 19(12): 1300.

doi: 10.1038/s41563-020-0795-4
[99]
Wang J H, Yang W, Zhou M, Yang Y, Yan J Y, Zhang P. Phys. Lett. A, 2018, 382(38): 2754.

doi: 10.1016/j.physleta.2018.06.031
[100]
Ghosh B, Gupta A, Bishnoi B. J. Semicond., 2014, 35(11): 113002.

doi: 10.1088/1674-4926/35/11/113002
[101]
Kwak J, Jo Y, Song S, Kim J H, Kim S Y, Lee J U, Lee S, Park J, Kim K, Lee G D, Yoo J W, Kim S Y, Kong Y M, Lee G H, Lee wan-gyu, Park J, Xu X D, Cheong H, Yoon E, Lee Z, Kwon S Y. Adv. Mater., 2018, 30(30): 1707260.

doi: 10.1002/adma.201707260
[102]
Zhou Y, Jang H, Woods J M, Xie Y J, Kumaravadivel P, Pan G A, Liu J B, Liu Y H, Cahill D G, Cha J J. Adv. Funct. Mater., 2017, 27(8): 1605928.

doi: 10.1002/adfm.201605928
[103]
Zhou J D, Liu F C, Lin J H, Huang X W, Xia J, Zhang B W, Zeng Q S, Wang H, Zhu C, Niu L, Wang X W, Fu W, Yu P, Chang T R, Hsu C H, Wu D, Jeng H T, Huang Y Z, Lin H, Shen Z X, Yang C L, Lu L, Suenaga K, Zhou W, Pantelides S T, Liu G T, Liu Z. Adv. Mater., 2017, 29(3): 201770015.
[104]
Li J, Hong M L, Sun L J, Zhang W F, Shu H B, Chang H X. ACS Appl. Mater. Interfaces, 2018, 10(1): 458.

doi: 10.1021/acsami.7b13387
[105]
Kanda N, Nakanishi Y, Liu D, Liu Z, Inoue T, Miyata Y, Tománek D, Shinohara H. Nanoscale, 2020, 12(33): 17185.

doi: 10.1039/D0NR03129A
[106]
Lim H E, Liu Z, Kim J, Pu J, Shimizu H, Endo T, Nakanishi Y, Takenobu T, Miyata Y. ACS Appl. Nano Mater., 2022, 5(2): 1775.

doi: 10.1021/acsanm.1c03160
[107]
Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J. Nat. Commun., 2015, 5: 3252.

doi: 10.1038/ncomms4252
[108]
Yu Z G, Cai Y Q, Zhang Y W. Sci. Rep., 2015, 5: 13783.

doi: 10.1038/srep13783
[109]
He X X, Liu F C, Hu P, Fu W, Wang X L, Zeng Q S, Zhao W, Liu Z. Small, 2015, 11(40): 5423.

doi: 10.1002/smll.201501488
[110]
Norman L T, Biskupek J, Rance G A, Stoppiello C T, Kaiser U, Khlobystov A N. Nano Res., 2022, 15(2): 1282.

doi: 10.1007/s12274-021-3650-2
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[7] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[8] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[9] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[10] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[11] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[12] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[13] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[14] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[15] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
Viewed
Full text


Abstract

1D Nanoribbons of 2D Materials