中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 247-262 DOI: 10.7536/PC220806 Previous Articles   Next Articles

• Review •

Light-Driven Handedness Inversion of Cholesteric Liquid Crystals

Xiaojun Liu1, Lang Qin1(), Yanlei Yu1,2   

  1. 1 Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University,Shanghai 200433, China
    2 South China Academy of Advanced Optoelectronics, SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), South China Normal University,Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: qinlang@fudan.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52173110); National Natural Science Foundation of China(51903053)
Richhtml ( 49 ) PDF ( 693 ) Cited
Export

EndNote

Ris

BibTeX

Light-driven cholesteric liquid crystals are soft intelligent photonic crystal materials, which change their optical properties upon irradiation of light. The molecules are organized into helical superstructures to selectively reflect the circularly polarized light with the same handedness as the light-driven cholesteric liquid crystals. By modulating the helical superstructures with light stimuli, the wavelength or polarization of the selective reflection is tuned. Light-driven handedness inversion of helical superstructures in cholesteric liquid crystals is currently in the limelight. The inversion of handedness alters the chirality of the circularly polarized light, which has wide potential for applications in tunable filters, anti-counterfeiting technologies, circularly polarized lasers, and 3D displays. However, inducing the handedness inversion of cholesteric liquid crystal still remains a challenge because the energy barrier between the opposite twist sense is difficult to overcome. It is necessary to figure out the universal strategies for designing light-driven cholesteric liquid crystal systems with reversible handedness inversion. This review mainly focuses on the development of the light-driven cholesteric liquid crystals with handedness inversion. The reported strategies for controlling the handedness are summarized, including the handedness inversion induced by reverse molecular chirality upon photoirradiation and introduction of chiral conflict. The reverse molecular chirality in different chiral molecular switches with tetrahedral, planar, or axial chirality induced by azobenzene, dithienylethene, overcrowded alkene, or cyano-functionalized diarylethene is concluded. During the photoisomerization process, the changes of conjugation, geometry, and dipole moment are analyzed. The strategies to introduce chiral conflict in cholesteric liquid crystals are demonstrated, and the mechanism of chiral conflict to facilitate handedness inversion is explained. Most importantly, the existing challenges and opportunities toward the systems are discussed.

Contents

1 Introduction

2 Handedness inversion in light-driven cholesteric liquid crystals

3 Handedness inversion induced by helicity change of light-driven chiral switches

4 Handedness inversion controlled by chiral conflict of light-driven chiral switches and chiral dopants

5 Conclusion and outlook

Fig.1 Schematic illustration showing (a) the process and (b) the mechanism of handedness inversion in cholesteric liquid crystals (CLCs) induced by light-driven chiral switches. P or M represents the P-helicity or M-helicity of the chiral molecules
Fig.2 Typical chemical structures and photoisomerization of chiral switches, including azobenzene, dithienylthene, and overcrowded alkene
Fig.3 (a) Chemical structure of chiral switches 1. (b) Chemical structures of chiral switches 2a~2c. (c) POM images of 10 wt% 2a in 5CB (left), after 310 nm UV irradiation for 30 s (middle), and followed by 670 nm irradiation for 60 s (right)[53]. Copyright 2011, American Chemical Society
Fig.4 (a) Chemical structure of the chiral switch 3. (b) POM images showing the switching behavior of the cholesteric phase, which is right-handed at initial state, changes to compensated nematic phase and finally becomes left-handed. The CLC is induced by dissolving 6 wt% of 3 in nematic MLC-2039 upon irradiation with UV light for different time. From left to right, 0, 4, 5 min, and the photostationary state[54]. Copyright 2002, The Royal Society of Chemistry
Fig.5 Illustration to show different conformations of binaphthyl[56]. Copyright 2012, American Chemical Society
Fig.6 (a) Chemical structures of chiral switches 4a~4e. (b) POM images of light-driven CLCs between the open form (left) and closed form (right) by light irradiation. Along the corresponding POM images are described schematic illustrations[56]. Copyright 2012, American Chemical Society
Fig.7 (a) Chemical structures of chiral switches 5a and 5b. (b) POM images and corresponding diffraction patterns of CLC containing 1.0 mol% 5b under 2.2 V AC electric field. The handedness inversion of the CLCs is triggered upon visible light irradiation, inducing the change of the diffraction patterns change PSS440nm (left), transient nematic phase (middle), and PSS530nm (right)[57]. Copyright 2020, Wiley-VCH
Fig.8 (a) Chemical structures of chiral switches 6. (b) POM images to show handedness inversion of 6 (0.8 mol%) in 5CB upon UV irradiation in a wedge cell (a-e) and in a homeotropic cell (f-j; conoscopic observation for (h)); illustrations of the corresponding liquid crystal phases (bottom)[60]. Copyright 2013, Wiley-VCH.
Fig.9 Schematic illustration of wavelength-selective NIR light triggered reversible handedness inversion of the self-organized helical superstructure incorporated with chiral switch 6 and core-multishell nanotransducers[62].Copyright 2015,Wiley-VCH
Fig.10 (a) Chemical structures of chiral switches 7a and 7b. (b) POM images of a planar aligned cholesteric film containing 10 wt % 7a in ZLI-1132 at room temperature, showing reversible phase transitions occurring by light irradiation of the sample inside a 5 μm cell[64]. Copyright 2010, American Chemical Society
Fig.11 (a) Chemical structures of chiral motor 8, 9 and 10. (b) Glass rod rotating on the CLC during irradiation with UV light[66]. Copyright 2006, American Chemical Society
Fig.12 (a) Chemical structures and light-driven rotation process of chiral motor 11a~11c. (b) Photographs and the transmission spectra of the CLCs with recorded patterns under nonpolarized light, left-, and right-circular polarized light[72]. Copyright 2020, Wiley-VCH
Fig.13 (a) Schematic illustration of the mechanism of handedness inversion in self-organized helical superstructures induced by chiral conflict[73]. Copyright 2013, Wiley-VCH. (b) Chemical structures of chiral switches 12a~12c. (c) Chemical structures of chiral switches 13a~13d
Fig.14 (a) Chemical structures of chiral switches 14a and 14b. (b) Schematic illustration of preparation process of information coding by using photomasks. (c) The photographs of fluorescent binary code under UV light (365 nm) and the encode word “OPEN”. The circles in PSS365 without circularly polarized luminescence represent the number “0”, the circles in PSS450 with right circularly polarized luminescence represent the number “1”, and the background emits left circularly polarized luminescence[75]. Copyright 2021, Wiley-VCH
Fig.15 (a) Chemical structure of the chiral switch 15. (b) Chemical structure of the chiral switch 16 and the chiral dopant LM36
Fig.16 (a) The transmission spectra of the light-driven CLC under 405 nm violet light irradiation (8.8 mW·cm-2). (b) The light-driven spectrum tunable Airy beams. Micrographs and reflected diffraction patterns under 0, 2, 45, 65, 85, and 150 s violet light irradiation, respectively. The scale bars are 100 μm[82]. Copyright 2019, Springer Nature
Fig.17 (a) Chemical structures of the chiral switch 17 and the chiral dopant R5011. (b) POM images to show changes of microscopic optical textures in cholesteric microdroplets under 365 nm UV irradiation (15 mW cm-2). Anti-clockwise (i and iv) and clockwise (viii and x) arrows indicate the opposite spirals; the dashed line (v) connects two point defects at the poles of the droplets and the dashed ring (ix) indicates a ring defect[84]. Copyright 2017, The Royal Society of Chemistry
Table 1 HTPs of the chiral molecular switches in LC hosts and the changes between different states
[1]
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S H, Kaplan D L, Buehler M J, Ling S J. Chem. Rev., 2019, 119(24): 12279.

doi: 10.1021/acs.chemrev.9b00416
[2]
Wang L, Urbas A M, Li Q. Adv. Mater., 2020, 32(41): 1801335.

doi: 10.1002/adma.v32.41
[3]
Dumanli A G, Savin T. Chem. Soc. Rev., 2016, 45(24): 6698.

pmid: 27510041
[4]
Bisoyi H K, Bunning T J, Li Q. Adv. Mater., 2018, 30(25): 1706512.

doi: 10.1002/adma.v30.25
[5]
Nguyen T D, Peres B U, Carvalho R M, MacLachlan M J. Adv. Funct. Mater., 2016, 26(17): 2875.

doi: 10.1002/adfm.v26.17
[6]
Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Chem. Soc. Rev., 2012, 41(8): 3297.

doi: 10.1039/c2cs15267c
[7]
Sharma V, Crne M, Park J O, Srinivasarao M. Science, 2009, 325(5939): 449.

doi: 10.1126/science.1172051 pmid: 19628862
[8]
Jewell S A, Vukusic P, Roberts N W. New J. Phys., 2007, 9(4): 99.

doi: 10.1088/1367-2630/9/4/099
[9]
Lv J W, Ding D F, Yang X K, Hou K, Miao X, Wang D W, Kou B C, Huang L, Tang Z Y. Angew. Chem. Int. Ed., 2019, 58(23): 7783.

doi: 10.1002/anie.v58.23
[10]
Vignolini S, Rudall P J, Rowland A V, Reed A, Moyroud E, Faden R B, Baumberg J J, Glover B J, Steiner U. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(39): 15712.

doi: 10.1073/pnas.1210105109
[11]
Dumanli A G, Kamita G, Landman J, van der Kooij H, Glover B J, Baumberg J J, Steiner U, Vignolini S. Adv. Opt. Mater., 2014, 2(7): 646.

pmid: 26229742
[12]
Yablonovitch E. Phys. Rev. Lett., 1987, 58(20): 2059.

doi: 10.1103/PhysRevLett.58.2059
[13]
John S. Phys. Rev. Lett., 1987, 58(23): 2486.

doi: 10.1103/PhysRevLett.58.2486
[14]
Zheng Z G, Lu Y Q, Li Q. Adv. Mater., 2020, 32(41): 1905318.

doi: 10.1002/adma.v32.41
[15]
Dai L L, Li W, Cao J, Li J, Liu S X. Progress in Chemistry, 2015, 27(7): 861.
(代林林, 李伟, 曹军, 李坚, 刘守新. 化学进展, 2015, 27(7): 861.).
[16]
He Y R, Lin S Y, Guo J B, Li Q. Aggregate, 2021, 2(6): e141.
[17]
Bisoyi H K, Li Q. Chem. Rev., 2016, 116(24): 15089.

doi: 10.1021/acs.chemrev.6b00415
[18]
Mitov M. Adv. Mater., 2012, 24(47): 6260.

doi: 10.1002/adma.201202913
[19]
Guo Q Y, Wu S B, Qian Y, Hu W. Acta Polym. Sin., 2020, 51(5): 484.
(郭清仪, 吴赛博, 钱妍, 胡伟. 高分子学报, 2020, 51(5): 484.).
[20]
Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J. Nature, 2010, 468(7322): 422.

doi: 10.1038/nature09540
[21]
Ge J P, Yin Y D. Angew. Chem. Int. Ed., 2011, 50(7): 1492.

doi: 10.1002/anie.200907091
[22]
Liu X J, Qin L, Zhan Y Y, Chen M, Yu Y L. Acta Chim. Sinica, 2020, 78(6): 478.

doi: 10.6023/A20040103
(刘晓珺, 秦朗, 詹媛媛, 陈萌, 俞燕蕾. 化学学报, 2020, 78(6): 478.).
[23]
Qin L, Gu W, Wei J, Yu Y L. Adv. Mater., 2018, 30(8): 1704941.

doi: 10.1002/adma.v30.8
[24]
Bisoyi H K, Li Q. Acc. Chem. Res., 2014, 47(10): 3184.

doi: 10.1021/ar500249k
[25]
Zhao D X, Jiang Q, Wang J, Qiu Y, Liao Y G, Xie X L. Chin. J. Polym. Sci., 2021, 39(12): 1617.

doi: 10.1007/s10118-021-2618-8
[26]
Tamaoki N. Adv. Mater., 2001, 13(15): 1135.

doi: 10.1002/(ISSN)1521-4095
[27]
Zhan X Q, Xu F F, Zhou Z H, Yan Y L, Yao J N, Zhao Y S. Adv. Mater., 2021, 33(37): 2104418.

doi: 10.1002/adma.v33.37
[28]
Hong W, Yuan Z K, Chen X D. Small, 2020, 16(16): 1907626.

doi: 10.1002/smll.v16.16
[29]
Chen P, Wei B Y, Hu W, Lu Y Q. Adv. Mater., 2020, 32(27): 1903665.
[30]
Cui S Z, Qin L, Liu X J, Yu Y L. Adv. Opt. Mater., 2022, 10(5): 2102108.

doi: 10.1002/adom.v10.5
[31]
Zola R S, Bisoyi H K, Wang H, Urbas A M, Bunning T J, Li Q. Adv. Mater., 2019, 31(7): 1806172.

doi: 10.1002/adma.v31.7
[32]
Ryabchun A, Bobrovsky A. Adv. Opt. Mater., 2018, 6(15): 1800335.

doi: 10.1002/adom.v6.15
[33]
Ma L L, Hu W, Zheng Z G, Wu S B, Chen P, Li Q, Lu Y Q. Adv. Optical Mater., 2019, 7(16): 1900393.

doi: 10.1002/adom.v7.16
[34]
McConney M E, Rumi M, Godman N P, Tohgha U N, Bunning T J. Adv. Optical Mater., 2019, 7(16): 1900429.

doi: 10.1002/adom.v7.16
[35]
Bisoyi H K, Li Q. Angewandte Chemie Int. Ed., 2016, 55(9): 2994.

doi: 10.1002/anie.v55.9
[36]
Wang Y, Li Q. Adv. Mater., 2012, 24(15): 1926.

doi: 10.1002/adma.201200241
[37]
Wang L, Li Q. Chem. Soc. Rev., 2018, 47(3): 1044.

doi: 10.1039/C7CS00630F
[38]
Klajn R. Chem. Soc. Rev., 2014, 43(1): 148.

doi: 10.1039/C3CS60181A
[39]
Shi Y H, Han J L, Jin X, Miao W G, Zhang Y, Duan P F. Adv. Sci., 2022, 9(20): 2201565.

doi: 10.1002/advs.v9.20
[40]
Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim S N, Kurihara S. Adv. Mater., 2005, 17(10): 1226.

doi: 10.1002/(ISSN)1521-4095
[41]
Hou J X, Toyoda R, Meskers S C J, Feringa B L. Angewandte Chemie Int. Ed., 2022, 61(41): e202206310.
[42]
Hu H L, Liu B H, Li M Q, Zheng Z G, Zhu W H. Adv. Mater., 2022, 34(15): 2110170.

doi: 10.1002/adma.v34.15
[43]
Lin S Y, Gutierrez-Cuevas K G, Zhang X F, Guo J B, Li Q. Adv. Funct. Mater., 2021, 31(7): 2007957.

doi: 10.1002/adfm.v31.7
[44]
Yu H T, Tang J W, Feng Y Y, Feng W. Chin. J. Polym. Sci., 2019, 37(12): 1183.

doi: 10.1007/s10118-019-2331-z
[45]
Qin L, Wei J, Yu Y L. Adv. Optical Mater., 2019, 7(18): 1900430.

doi: 10.1002/adom.v7.18
[46]
Qin L, Gu W, Chen Y Y, Wei J, Yu Y L. RSC Adv., 2018, 8(68): 38935.

doi: 10.1039/C8RA07657J
[47]
Zou Q, Zhang J J, Tian H. Progress in Chemistry, 2012, 24(9): 1632.
(邹祺, 张隽佶, 田禾. 化学进展, 2012, 24(9): 1632.).
[48]
Li Y N, Urbas A, Li Q. J. Am. Chem. Soc., 2012, 134(23): 9573.

doi: 10.1021/ja302772z
[49]
Zheng Z G, Hu H L, Zhang Z P, Liu B H, Li M Q, Qu D H, Tian H, Zhu W H, Feringa B L. Nat. Photon., 2022, 16(3): 226.

doi: 10.1038/s41566-022-00957-5
[50]
Eelkema R, Feringa B L. Org. Biomol. Chem., 2006, 4(20): 3729.

pmid: 17024276
[51]
Štacko P, Kistemaker J C M, van Leeuwen T, Chang M C, Otten E, Feringa B L. Science, 2017, 356(6341): 964.

doi: 10.1126/science.aam8808 pmid: 28572394
[52]
Denekamp C, Feringa B L. Adv. Mater., 1998, 10(14): 1080.

doi: 10.1002/(ISSN)1521-4095
[53]
Rameshbabu K, Urbas A, Li Q. J. Phys. Chem. B, 2011, 115(13): 3409.

doi: 10.1021/jp112401k
[54]
Ruslim C, Ichimura K. J. Mater. Chem., 2002, 12(12): 3377.

doi: 10.1039/b208578j
[55]
Proni G, Spada G P, Lustenberger P, Welti R, Diederich F. J. Org. Chem., 2000, 65(18): 5522.

pmid: 10970290
[56]
Hayasaka H, Miyashita T, Nakayama M, Kuwada K, Akagi K. J. Am. Chem. Soc., 2012, 134(8): 3758.

doi: 10.1021/ja2088053
[57]
Wang H, Bisoyi H K, Li B X, McConney M E, Bunning T J, Li Q. Angew. Chem. Int. Ed., 2020, 59(7): 2684.

doi: 10.1002/anie.201913977 pmid: 31802595
[58]
BlÉger D, Schwarz J, Brouwer A M, Hecht S. J. Am. Chem. Soc., 2012, 134(51): 20597.

doi: 10.1021/ja310323y
[59]
Goh M, Akagi K. Liq. Cryst., 2008, 35(8): 953.

doi: 10.1080/02678290802305098
[60]
Li Y N, Xue C M, Wang M F, Urbas A, Li Q. Angew. Chem. Int. Ed., 2013, 52(51): 13703.

doi: 10.1002/anie.201306396
[61]
Yuan C L, Huang W B, Zheng Z G, Liu B H, Bisoyi H K, Li Y N, Shen D, Lu Y Q, Li Q. Sci. Adv., 2019, 5(10): eaax9501.
[62]
Wang L, Dong H, Li Y N, Liu R, Wang Y F, Bisoyi H K, Sun L D, Yan C H, Li Q. Adv. Mater., 2015, 27(12): 2065.

doi: 10.1002/adma.v27.12
[63]
Zheng Z G, Li Y N, Bisoyi H K, Wang L, Bunning T J, Li Q. Nature, 2016, 531(7594): 352.

doi: 10.1038/nature17141
[64]
Mathews M, Zola R S, Hurley S, Yang D K, White T J, Bunning T J, Li Q. J. Am. Chem. Soc., 2010, 132(51): 18361.

doi: 10.1021/ja108437n pmid: 21126075
[65]
van Delden R A, Koumura N, Harada N, Feringa B L. Proc. Natl. Acad. Sci. U. S. A., 2002, 99(8): 4945.

doi: 10.1073/pnas.062660699
[66]
Eelkema R, Pollard M M, Katsonis N, Vicario J, Broer D J, Feringa B L. J. Am. Chem. Soc., 2006, 128(44): 14397.

pmid: 17076514
[67]
Feringa B L, Huck N P M, van Doren H A. J. Am. Chem. Soc., 1995, 117(39): 9929.

doi: 10.1021/ja00144a027
[68]
van Delden R A, van Gelder M B, Huck N P M, Feringa B L. Adv. Funct. Mater., 2003, 13(4): 319.

doi: 10.1002/adfm.200304313
[69]
White T J, Cazzell S A, Freer A S, Yang D K, Sukhomlinova L, Su L L, Kosa T, Taheri B, Bunning T J. Adv. Mater., 2011, 23(11): 1389.

doi: 10.1002/adma.v23.11
[70]
Sleczkowski P, Zhou Y, Iamsaard S, de Pablo J J, Katsonis N, Lacaze E. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(17): 4334.

doi: 10.1073/pnas.1720742115
[71]
Bao J Y, Lan R C, Shen C, Huang R, Wang Z Z, Hu W, Zhang L Y, Yang H. Adv. Opt. Mater., 2022, 10(3): 2101910.

doi: 10.1002/adom.v10.3
[72]
Ryabchun A, Lancia F, Chen J W, Morozov D, Feringa B L, Katsonis N. Adv. Mater., 2020, 32(47): 2004420.

doi: 10.1002/adma.v32.47
[73]
Li Y N, Wang M F, White T J, Bunning T J, Li Q. Angew. Chem. Int. Ed., 2013, 52(34): 8925.

doi: 10.1002/anie.201303786
[74]
Fu D W, Li J T, Wei J, Guo J B. Soft Matter, 2015, 11(15): 3034.

doi: 10.1039/C5SM00128E
[75]
He Y R, Zhang S, Bisoyi H K, Qiao J H, Chen H, Gao J J, Guo J B, Li Q. Angew. Chem. Int. Ed., 2021, 60(52): 27158.

doi: 10.1002/anie.v60.52
[76]
Li J T, Zhang Z W, Tian J J, Li G Q, Wei J, Guo J B. Adv. Opt. Mater., 2017, 5(8): 1700014.

doi: 10.1002/adom.201700014
[77]
Li J T, Bisoyi H K, Lin S Y, Guo J B, Li Q. Angew. Chem. Int. Ed., 2019, 58(45): 16052.

doi: 10.1002/anie.v58.45
[78]
Li J T, Bisoyi H K, Tian J J, Guo J B, Li Q. Adv. Mater., 2019, 31(10): 1807751.

doi: 10.1002/adma.v31.10
[79]
Kurihara S, Nomiyama S, Nonaka T. Chem. Mater., 2000, 12(1): 9.

doi: 10.1021/cm9901616
[80]
Kurihara S, Nomiyama S, Nonaka T. Chem. Mater., 2001, 13(6): 1992.

doi: 10.1021/cm0007555
[81]
Ryabchun A, Yakovlev D, Bobrovsky A, Katsonis N. ACS Appl. Mater. Interfaces, 2019, 11(11): 10895.

doi: 10.1021/acsami.8b22465
[82]
Chen P, Ma L L, Hu W, Shen Z X, Bisoyi H K, Wu S B, Ge S J, Li Q, Lu Y Q. Nat. Commun., 2019, 10: 2518.

doi: 10.1038/s41467-019-10538-w
[83]
Chen P, Shen Z X, Xu C T, Zhang Y H, Ge S J, Ma L L, Hu W, Lu Y Q. Laser Photonics Rev., 2022, 16(5): 2270024.

doi: 10.1002/lpor.v16.5
[84]
Wang L, Chen D, Gutierrez-Cuevas K G, Krishna Bisoyi H, Fan J, Zola R S, Li G Q, Urbas A M, Bunning T J, Weitz D A, Li Q. Mater. Horiz., 2017, 4(6): 1190.

doi: 10.1039/C7MH00644F
[85]
Qiao J H, He Y R, Lin S Y, Fan Q Y, Guo J B. J. Mater. Chem. C, 2022, 10(18): 7311.

doi: 10.1039/D2TC00424K
[86]
Zhu L, Xu C T, Chen P, Zhang Y H, Liu S J, Chen Q M, Ge S J, Hu W, Lu Y Q. Light. Sci. Appl., 2022, 11: 135.

doi: 10.1038/s41377-022-00835-3
[1] Huang Yong. Recent Advances in Liquid Crystals of Cellulose and Its Derivatives [J]. Progress in Chemistry, 1997, 9(02): 209-.