中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (4): 509-518 DOI: 10.7536/PC220939   Next Articles

• Review •

Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts

Yixue Xu1, Shishi Li1, Xiaoshuang Ma1, Xiaojin Liu1, Jianjun Ding2,3(), Yuqiao Wang1()   

  1. 1. Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
    2. Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences,Hefei 230031, China
    3. Anhui Institute of Innovation for Industrial Technology,Hefei 230088, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: dingjj@rntek.cas.cn(Jianjun Ding), yqwang@seu.edu.cn(Yuqiao Wang)
  • Supported by:
    National Natural Science Foundation of China(61774033); Key Research and Development Project of Anhui Province(2022107020009)
Richhtml ( 73 ) PDF ( 698 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalysis is an attractive technology for clean energy production and environmental pollution prevention, which is of significant importance in promoting the realization of “carbon peaking and carbon neutral” in the future and adjusting the energy structure of China. However, among the various photocatalytic materials, bismuth-based catalysts with layered structures are of considerable attention in the field of photocatalysis owing to their suitable band gap. However, the photocatalytic activity of bismuth-based catalysts is limited by the lower separation and transport efficiency of carriers. This paper provides a summary of the strategies to enhance the photogenerated carrier separation and transport efficiency of bismuth-based catalysts through surface interface modulation, including morphology modulation, defect engineering, heteroatom doping and heterostructure construction. Particularly, the mechanism of the above strategies for improving the strength of the built-in electric field of bismuth-based catalysts, constructing efficient internal carrier transport channels and prolonging carrier lifetime is analyzed from the perspective of electronic structure and geometry. It provides a theoretical reference for further research on the design of catalysts with high carrier separation and transport efficiency. Finally, we analyzed the specific reasons for the improvement of carrier separation and transport efficiency by different surface interface strategies and the challenges and development prospects of bismuth-based catalysts in industrial applications.

Fig.1 (a) Photocurrent responses diagram; (b) electrochemical impedance plots; (c, d) the calculated surface work function of Bi4O5Br2 and BiOBr[17]. Copyright 2019, Elsevier
Fig.2 Synthesis processes of different Bi24O31Br10 nanostructures[19]. Copyright 2019, Elsevier
Fig.3 Schematic illustration of the evolution process from micro-rod structure to hollow nanotube Bi2WO6[20]. Copyright 2018, Elsevier
Fig.4 Proposed possible photocatalytic selective oxidation reaction pathway under aerobic and anaerobic conditions[27]. Copyright 2021, Elsevier
Fig.5 (a) HAADF-STEM image of Bi2WO6 with W defects, inset depicting the atomic structure of its {100} and {001} crystal planes; (b, c) intensity of the orange and green boxes along the HAADF-STEM image; (d) schematic diagram of selective photocatalytic benzyl-alcohol oxidation of benzaldehyde[28]. Copyright 2020, American Chemical Society
Fig.6 Surface charge density distribution of (a) BOC, (b) BOC-OV, (c) BOC-ClV and (d) BOC-(O+Cl)V[31]. Copyright 2022, American Chemical Society
Fig.7 (a~d) Density of states calculations for Bi3O4Br, Bi3O4Br with one oxygen vacancy, Bi3O4Br with one bismuth vacancy, and Bi3O4Br with one bismuth vacancy and one oxygen vacancy; (e) ultrafast TA spectroscopy and (f) time-resolved transient PL decay[32]. Copyright 2019, Wiley
Fig.8 Schematic illustration of the separation and migration of electrons and holes in pure Bi3O4Cl and C-doped Bi3O4Cl[41]. Copyright 2016, Wiley
Fig.9 Schematic illustration of the effect of B doping on BiOCl-B-OV excitons dissociation and carrier generation[43]. Copyright 2021, Wiley
Fig.10 (a) Fe K-edge extended XANES oscillation functions k3χ(k) and EXAFS spectra of Bi4O5I2-Fe30; (b) The calculated band structures; the calculated surface work function of Bi4O5I2-Fe30 and Bi4O5I2, (c) Bi4O5I2-Fe30 and (d) Bi4O5I2[49]. Copyright 2021, American Chemical Society
Fig.11 Schematic illustration of the BiOI/Bi2O2SO4 p-n heterojunction[55]. Copyright 2022, Elsevier
Fig.12 Illustration of the fabrication of the BP/MBWO heterojunction[59]. Copyright 2019, Wiley
Fig.13 (a) Before contact, (b) after contact, (c) photogenerated charge carrier transfer process in S-scheme mode[64]. Copyright 2020, Elsevier
Fig.14 Proposed photocatalysis improvement mechanism of the Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction under visible light[65]. Copyright 2022, Elsevier
[1]
Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Chem. Rev., 2014, 114(19): 9987.

doi: 10.1021/cr500008u
[2]
Di J, Xia J X, Li H M, Guo S J, Dai S. Nano Energy, 2017, 41: 172.

doi: 10.1016/j.nanoen.2017.09.008
[3]
Ouyang T, Wang H J, Huang H H, Wang J W, Guo S, Liu W J, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2018, 57(50): 16480.

doi: 10.1002/anie.201811010 pmid: 30362217
[4]
Kominami H, Yamamoto S, Imamura K, Tanaka A, Hashimoto K. Chem. Commun., 2014, 50(35): 4558.

doi: 10.1039/C3CC49340G
[5]
Yang X F, Qin J L, Jiang Y, Chen K M, Yan X H, Zhang D, Li R, Tang H. Appl. Catal. B Environ., 2015, 166: 231.
[6]
Xia D H, Liu H D, Xu B H, Wang Y C, Liao Y H, Huang Y J, Ye L Q, He C, Wong P K, Qiu R L. Appl. Catal. B Environ., 2019, 245: 177.

doi: 10.1016/j.apcatb.2018.12.056
[7]
Guan Y, Wu J, Lin Y Y, Liu Q Z, Qi Y F, Pan W G, He P, Qi X M, Wang R, Ji Z H. Appl. Surf. Sci., 2019, 481: 838.

doi: 10.1016/j.apsusc.2019.03.177
[8]
Guan Y, Wu J, Man X K, Liu Q Z, Qi Y F, He P, Qi X M. Chem. Eng. J., 2020, 396: 125234.

doi: 10.1016/j.cej.2020.125234
[9]
Kim T W, Choi K S. Science, 2014, 343(6174): 990.

doi: 10.1126/science.1246913
[10]
Fan Z, Zhao Y B, Zhai W, Qiu L, Li H, Hoffmann M R. RSC Adv., 2016, 6(3): 2028.

doi: 10.1039/C5RA18768K
[11]
Zhang K, Wang J, Jiang W J, Yao W Q, Yang H P, Zhu Y F. Appl. Catal. B Environ., 2018, 232: 175.

doi: 10.1016/j.apcatb.2018.03.059
[12]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253.

doi: 10.1039/B800489G
[13]
Chen L X. PANS, 2020, 117(16): 8672.
[14]
Li L, Salvador P A, Rohrer G S. Nanoscale, 2014, 6(1): 24.

doi: 10.1039/c3nr03998f pmid: 24084897
[15]
Xiong J, Di J, Li H M. Adv. Sci., 2018, 5(7): 1800244.

doi: 10.1002/advs.v5.7
[16]
Cui P Z, Wang J L, Wang Z M, Chen J, Xing X R, Wang L Z, Yu R B. Nano Res., 2016, 9(3): 593.

doi: 10.1007/s12274-015-0939-z
[17]
Jin X L, Lv C D, Zhou X, Xie H Q, Sun S F, Liu Y, Meng Q Q, Chen G. Nano Energy, 2019, 64: 103955.

doi: 10.1016/j.nanoen.2019.103955
[18]
Ye L Q, Jin X L, Liu C, Ding C H, Xie H Q, Chu K H, Wong P K. Appl. Catal. B Environ., 2016, 187: 281.

doi: 10.1016/j.apcatb.2016.01.044
[19]
Chen X, Zhang J, Liu L, Hu B R, Zhao Y L, Zhao S, Zhao W T, Li S, Hai X. Appl. Surf. Sci., 2019, 491: 1.

doi: 10.1016/j.apsusc.2019.05.300
[20]
Xiao L B, Lin R B, Wang J, Cui C, Wang J Y, Li Z Q. J. Colloid Interface Sci., 2018, 523: 151.

doi: 10.1016/j.jcis.2018.03.064
[21]
Di J, Zhu C, Ji M X, Duan M L, Long R, Yan C, Gu K Z, Xiong J, She Y B, Xia J X, Li H M, Liu Z. Angew. Chem. Int. Ed., 2018, 57(45): 14847.

doi: 10.1002/anie.201809492
[22]
Luo Z S, Ye X Y, Zhang S J, Xue S K, Yang C, Hou Y D, Xing W D, Yu R, Sun J, Yu Z Y, Wang X C. Nat. Commun., 2022, 13: 2230.

doi: 10.1038/s41467-022-29825-0
[23]
Bai Y, Ye L Q, Chen T, Wang L, Shi X, Zhang X, Chen D. ACS Appl. Mater. Interfaces, 2016, 8(41): 27661.

doi: 10.1021/acsami.6b08129
[24]
Chen F, Huang H W, Ye L Q, Zhang T R, Zhang Y H, Han X P, Ma T Y. Adv. Funct. Mater., 2018, 28(46): 1804284.

doi: 10.1002/adfm.v28.46
[25]
Sun M L, Dong X A, Lei B, Li J Y, Chen P, Zhang Y X, Dong F. Nanoscale, 2019, 11(43): 20562.

doi: 10.1039/C9NR06874K
[26]
Ding J, Dai Z, Qin F, Zhao H P, Zhao S, Chen R. Appl. Catal. B Environ., 2017, 205: 281.

doi: 10.1016/j.apcatb.2016.12.018
[27]
Sun Z L, Yang X L, Yu X F, Xia L H, Peng Y H, Li Z, Zhang Y, Cheng J B, Zhang K S, Yu J Q. Appl. Catal. B Environ., 2021, 285: 119790.

doi: 10.1016/j.apcatb.2020.119790
[28]
Huang H W, Zhou C, Jiao X C, Yuan H F, Zhao J W, He C Q, Hofkens J, Roeffaers M B J, Long J L, Steele J A. ACS Catal., 2020, 10(2): 1439.

doi: 10.1021/acscatal.9b04789
[29]
Di J, Chen C, Zhu C, Song P, Xiong J, Ji M X, Zhou J D, Fu Q D, Xu M Z, Hao W, Xia J X, Li S Z, Li H M, Liu Z. ACS Appl. Mater. Interfaces, 2019, 11(34): 30786.

doi: 10.1021/acsami.9b08109
[30]
Gao S, Gu B C, Jiao X C, Sun Y F, Zu X L, Yang F, Zhu W G, Wang C M, Feng Z M, Ye B J, Xie Y. J. Am. Chem. Soc., 2017, 139(9): 3438.

doi: 10.1021/jacs.6b11263
[31]
Yang Z P, Shi Y B, Li H, Mao C L, Wang X B, Liu X F, Liu X, Zhang L Z. Environ. Sci. Technol., 2022, 56(6): 3587.

doi: 10.1021/acs.est.1c08532
[32]
Di J, Xia J X, Chisholm M F, Zhong J, Chen C, Cao X Z, Dong F, Chi Z, Chen H L, Weng Y X, Xiong J, Yang S Z, Li H M, Liu Z, Dai S. Adv. Mater., 2019, 31(28): 1807576.

doi: 10.1002/adma.v31.28
[33]
Li L Q, Long R, Bertolini T, Prezhdo O V. Nano Lett., 2017, 17(12): 7962.

doi: 10.1021/acs.nanolett.7b04374
[34]
Zhou W, Fu H G. Inorg. Chem. Front., 2018, 5(6): 1240.

doi: 10.1039/C8QI00122G
[35]
Xu Y C, Li H Z, Sun B J, Qiao P Z, Ren L P, Tian G H, Jiang B J, Pan K, Zhou W. Chem. Eng. J., 2020, 379: 122295.

doi: 10.1016/j.cej.2019.122295
[36]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058
[37]
Li Z A, Wang J L, Chen J F, Liu L, Yang X F, Chen T, Chen Z Z, Yang M M, Yan W S, Fu Z P, Liu M, Lu Y L. J. Alloys Compd., 2019, 806: 492.

doi: 10.1016/j.jallcom.2019.07.216
[38]
Ikram M, Hassan J, Raza A, Haider A, Naz S, Ul-Hamid A, Haider J, Shahzadi I, Qamar U, Ali S. RSC Adv., 2020, 10(50): 30007.

doi: 10.1039/d0ra05862a pmid: 35518250
[39]
Wang S, Bai L M, Ao X L. RSC Adv., 2018, 8(64): 36745.

doi: 10.1039/C8RA06778C
[40]
Wang Y Q, Xu X X, Lu W, Huo Y Q, Bian L J. Dalton Trans., 2018, 47(12): 4219.

doi: 10.1039/C7DT04912A
[41]
Li J, Cai L J, Shang J, Yu Y, Zhang L Z. Adv. Mater., 2016, 28(21): 4059.

doi: 10.1002/adma.201600301
[42]
Wang S Y, Ding X, Zhang X H, Pang H, Hai X, Zhan G M, Zhou W, Song H, Zhang L Z, Chen H, Ye J H. Adv. Funct. Mater., 2017, 27(47): 1703923.

doi: 10.1002/adfm.201703923
[43]
Shi Y B, Zhan G M, Li H, Wang X B, Liu X F, Shi L J, Wei K, Ling C C, Li Z L, Wang H, Mao C L, Liu X, Zhang L Z. Adv. Mater., 2021, 33(38): 2100143.

doi: 10.1002/adma.v33.38
[44]
Zhou J, Zhou J B, Hu Z S, Wang L. Mater. Sci. Semicond. Process., 2019, 90: 112.

doi: 10.1016/j.mssp.2018.10.012
[45]
Ding X, Zhao K, Zhang L Z. Environ. Sci. Technol., 2014, 48(10): 5823.

doi: 10.1021/es405714q
[46]
Jin X X, Wang R Y, Zhang L X, Si R, Shen M, Wang M, Tian J J, Shi J L. Angew. Chem. Int. Ed., 2020, 59(17): 6827.

doi: 10.1002/anie.v59.17
[47]
Wang Q, Li J, Tu X. Chem. Mater., 2019, 32: 734.

doi: 10.1021/acs.chemmater.9b03708
[48]
Di J, Chen C, Yang S Z, Chen S M, Duan M L, Xiong J, Zhu C, Long R, Hao W, Chi Z, Chen H L, Weng Y X, Xia J X, Song L, Li S Z, Li H M, Liu Z. Nat. Commun., 2019, 10: 2840.

doi: 10.1038/s41467-019-10392-w
[49]
Jin X L, Xu Y X, Zhou X, Lv C D, Huang Q Z, Chen G, Xie H Q, Ge T, Cao J, Zhan J Q, Ye L Q. ACS Mater. Lett., 2021, 3(4): 364.
[50]
Zhang X C, Guan M H, Zhang Q R, Zhang C M, Li R, Liu J X, Wang Y W, Fan C M, Acta Phys. Sin., 2021, 70(8): 087101.

doi: 10.7498/aps
张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 物理学报, 2021, 70(8): 087101.).
[51]
Hao L, Kang L, Huang H W, Ye L Q, Han K L, Yang S Q, Yu H J, Batmunkh M, Zhang Y H, Ma T Y. Adv. Mater., 2019, 31(25): 1900546.

doi: 10.1002/adma.v31.25
[52]
Xie M Z, Fu X D, Jing L Q, Luan P, Feng Y J, Fu H G. Adv. Energy Mater., 2014, 4(5): 1300995.

doi: 10.1002/aenm.201300995
[53]
Wang M Y, Sun L, Lin Z Q, Cai J H, Xie K P, Lin C J. Energy Environ. Sci., 2013, 6(4): 1211.

doi: 10.1039/c3ee24162a
[54]
Yu J G, Low J, Xiao W, Zhou P, Jaroniec M. J. Am. Chem. Soc., 2014, 136(25): 8839.

doi: 10.1021/ja5044787
[55]
Geng Q, Xie H T, He Y, Sun Y J, Hou X F, Wang Z M, Dong F. Appl. Catal. B Environ., 2021, 297: 120492.

doi: 10.1016/j.apcatb.2021.120492
[56]
Li J F, Li Z Y, Liu X M, Li C Y, Zheng Y F, Yeung K W K, Cui Z D, Liang Y Q, Zhu S L, Hu W B, Qi Y J, Zhang T J, Wang X B, Wu S L. Nat. Commun., 2021, 12: 1224.

doi: 10.1038/s41467-021-21435-6
[57]
Lu M L, Xiao X Y, Wang Y, Chen J Y. J. Alloys Compd., 2020, 831: 154789.

doi: 10.1016/j.jallcom.2020.154789
[58]
Kosco J, Bidwell M, Cha H, Martin T, Howells C T, Sachs M, Anjum D H, Gonzalez Lopez S, Zou L Y, Wadsworth A, Zhang W M, Zhang L S, Tellam J, Sougrat R, Laquai F, DeLongchamp D M, Durrant J R, McCulloch I. Nat. Mater., 2020, 19(5): 559.

doi: 10.1038/s41563-019-0591-1 pmid: 32015530
[59]
Hu J D, Chen D Y, Mo Z, Li N J, Xu Q F, Li H, He J H, Xu H, Lu J M. Angew. Chem., 2019, 131(7): 2095.

doi: 10.1002/ange.v131.7
[60]
Chen L, Wang J F, Li X J, Zhao C R, Hu X, Wu Y, He Y M. Inorg. Chem. Front., 2022, 9(11): 2714.

doi: 10.1039/D2QI00175F
[61]
Wang L, Zhao X, Lv D D, Liu C W, Lai W H, Sun C Y, Su Z M, Xu X, Hao W C, Dou S X, Du Y. Adv. Mater., 2020, 32(48): 2004311.

doi: 10.1002/adma.v32.48
[62]
Li G J, Lian Z, Wan Z W, Liu Z N, Qian J W, Deng Y, Zhang S L, Zhong Q. Appl. Catal. B Environ., 2022, 317: 121787.

doi: 10.1016/j.apcatb.2022.121787
[63]
Chen W X, Wei W, Wang K F, Zhang N, Chen G L, Hu Y J, Ostrikov K K. Nanoscale, 2021, 13(12): 6201.

doi: 10.1039/D1NR00317H
[64]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.

doi: 10.1016/j.chempr.2020.06.010
[65]
Li S J, Wang C C, Liu Y P, Cai M J, Wang Y N, Zhang H Q, Guo Y, Zhao W, Wang Z H, Chen X B. Chem. Eng. J., 2022, 429: 132519.

doi: 10.1016/j.cej.2021.132519
[66]
Xu Y X, Jin X L, Ge T, Xie H Q, Sun R X, Su F Y, Li X, Ye L Q. Chem. Eng. J., 2021, 409: 128178.

doi: 10.1016/j.cej.2020.128178
[67]
Shi Y B, Li J, Mao C L, Liu S, Wang X B, Liu X F, Zhao S X, Liu X, Huang Y Q, Zhang L Z. Nat. Commun., 2021, 12: 5923.

doi: 10.1038/s41467-021-26219-6
[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[3] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[4] Xiaofang Wang, Yin Hu, Qifa Pan, Ruilong Yang, Zhong Long, Kezhao Liu. Crystal Structure and Electronic Structure of Uranium Nitrides [J]. Progress in Chemistry, 2018, 30(12): 1803-1818.
[5] Chen Piheng, Lai Xinchun, Wang Xiaolin. Progress in Theoretical Research of Metallic Plutonium and its Compounds [J]. Progress in Chemistry, 2011, 23(7): 1316-1321.
[6] Su Jing, Li Jun. Theoretical Studies on Fluorescence Spectra of Actinide Complexes [J]. Progress in Chemistry, 2011, 23(7): 1329-1337.
[7] Kong Desheng Lu Wenhua Feng Yuanyuan Bi Siwei. Advances and Some Problems in Electrocatalysis of DSA Electrodes [J]. Progress in Chemistry, 2009, 21(6): 1107-1117.
[8] Tian Mengkui1,2,3|Shangguan Wenfeng2**|Wang Shijie1,Ouyang Ziyuan1. Visible Light-Driven Semiconductor Photocatalysts for the Decomposition of Water [J]. Progress in Chemistry, 2007, 19(05): 680-688.
[9] Li Xiaogang,Xu Yu,Liu Yunqi,Zhu Daoben,Yang Shihe. Progress on the Research of Endohedral Metallfullerenes [J]. Progress in Chemistry, 2000, 12(04): 385-.