中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (4): 543-559 DOI: 10.7536/PC221122 Previous Articles   Next Articles

• Review •

Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides

Yue Yang1, Ke Xu1, Xuelu Ma1,2()   

  1. 1. School of Chemical & Environmental Engineering, China University of Mining & Technology,Beijing 100083, China
    2. Fujian Key Laboratory of Functional Marine Sensing Materials,Minjiang University,Fuzhou 350108, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: maxl@cumtb.edu.cn
  • Supported by:
    Beijing Natural Science Foundation(2232019); National Natural Science Foundation of China(21902182); Open Project Program of Fujian Key Laboratory of Functional Marine Sensing Materials(MJUKF-FMSM202202); Fundamental Research Funds for the Central Universities(2023ZKPYHH01); Training Program of Innovation and Entrepreneurship for Undergraduates(202203038)
Richhtml ( 153 ) PDF ( 2053 ) Cited
Export

EndNote

Ris

BibTeX

Metal oxides have been widely investigated in experimental and industrial catalysis due to their excellent activity, selectivity and stability in many important reactions, especially in some redox reactions, such as CO2 reduction, water-gas shift (WGS) reaction, reduction of nitrogen, oxygen evolution reaction. It has been proved that metal oxides usually contain many defects, which are the active sites in catalytic reactions, and oxygen vacancies (OVs) are one of the most representative species among them. OVs affect crystal structure and electronic structure of the materials, thus affecting the catalytic activity, so they have great significance to be studied. In this review, we firstly introduce the classification and regulation strategies of OVs based on the formation of them in metal oxides. Secondly, the characteristics and mechanisms of OVs in thermocatalysis, electrocatalysis and photocatalysis were discussed. Finally, the potential applications and future challenges were summarized and prospected.

Fig.1 Different types of OVs on CeO2[45].
Fig.2 Statistical chart of the formation methods of OVs in different types of metal oxides
Fig.3 Schematic diagram of catalytic cycle of NH3-SCR reaction on W-doped CeO2 catalysts[35]
Fig.4 Schematic diagram of CO oxidation reaction on OV-rich perovskite La0.8Sr0.2CoO3 (Vo-OM LSCO)[72]
Fig.5 Schematic diagram of benzene oxidation reaction on Ag-doped CeO2-Co3O4 catalysts[75]
Fig.6 Molecular-level mechanism for CO2 hydrogenation into hydrocarbons on In2O3-zeolite[1]. (a) Schematic diagram of CO2 hydrogenation to CH3OH at the oxygen vacancy site on the In2O3 catalyst surface; (b) Schematic diagram of the hydrocarbon-pool mechanism for CH3OH conversion into hydrocarbons inside HZSM-5
Fig.7 Schematic diagram of CLPs on stoichiometric CeO2 (110) and FLPs on reduced CeO2-x (110)[80]
Fig.8 Schematic diagram of defective RuO2 electrocatalyst (UfD-RuO2/CC) and the rate-determining step of OER at Ru0, Ru1 and Ru2 sites[87]
Fig.9 Schematic diagram of OER mechanism on CoP/CeO2 heterojunction[37]
Fig.10 (a) The atomic configurations of OV-Bi4O5I2-OH; (b) the electronic structure by introducing an OV and hydroxyl on Bi4O5I2; (c) the mimicking “π back-donation” process on Bi4O5I2 modified by OV and hydroxyl simultaneously[91]
Fig.11 The optimized structure models of defective Li4Ti5O12-x. The green, blue, red and black balls donate Li, Ti, O atoms and OV, respectively[85]
Fig.12 The crystal structures of BiOS and BiOS-OV[6]
Fig.13 Schematic structure of Cu-doped OV-TiO2 and CO2 adsorption[7]
Fig.14 Schematic diagram of CO2 photothermal reduction to CH3COOH[104]
Fig.15 (a) Schematic diagram of atomic structure and (b) schematic diagram of molecular oxygen-activated species of BiOCl models with different OV concentrations[106]
Fig.16 Schematic illustration of photochemical SO2 oxidation on TiO2-OV surface, site1 stands for surface O, site2 stands for surface OH, site3 stands for surface unsaturated Ti[108]
[1]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.

doi: 10.1038/nchem.2794
[2]
Gu Z X, Yang N, Han P, Kuang M, Mei B B, Jiang Z, Zhong J, Li L, Zheng G F. Small Methods, 2018: 1800449.
[3]
Geng Z G, Kong X D, Chen W W, Su H Y, Liu Y, Cai F, Wang G X, Zeng J. Angew. Chem. Int. Ed., 2018, 57(21): 6054.

doi: 10.1002/anie.v57.21
[4]
Varandili S B, Huang J F, Oveisi E, De Gregorio G L, Mensi M, Strach M, Vavra J, Gadiyar C, Bhowmik A, Buonsanti R. ACS Catal., 2019, 9(6): 5035.

doi: 10.1021/acscatal.9b00010
[5]
Chen X, Li Q, Zhang M, Li J J, Cai S C, Chen J, Jia H P. ACS Appl. Mater. Interfaces, 2020, 12(35): 39304.

doi: 10.1021/acsami.0c11576
[6]
Jiang L S, Li Y, Wu X Y, Zhang G K. Sci. China Mater., 2021, 64(9): 2230.

doi: 10.1007/s40843-020-1622-8
[7]
Chen J B, Iyemperumal S K, Fenton T, Carl A, Grimm R, Li G H, Deskins N A. ACS Catal., 2018, 8(11): 10464.

doi: 10.1021/acscatal.8b02372
[8]
Yu H J, Li J Y, Zhang Y H, Yang S Q, Han K L, Dong F, Ma T Y, Huang H W. Angew. Chem. Int. Ed., 2019, 58(12): 3880.

doi: 10.1002/anie.v58.12
[9]
Xu M, Yao S Y, Rao D M, Niu Y M, Liu N, Peng M, Zhai P, Man Y, Zheng L R, Wang B, Zhang B S, Ma D, Wei M. J. Am. Chem. Soc., 2018, 140(36): 11241.

doi: 10.1021/jacs.8b03117
[10]
Yang C H, Zhu Y T, Liu J Q, Qin Y C, Wang H Q, Liu H L, Chen Y N, Zhang Z C, Hu W P. Nano Energy, 2020, 77: 105126.

doi: 10.1016/j.nanoen.2020.105126
[11]
Xu Y S, Liu X H, Cao N, Xu X, Bi L. Sustain. Mater. Technol., 2021, 27: e00229.
[12]
Li H, Shang J, Ai Z H, Zhang L Z. J. Am. Chem. Soc., 2015, 137(19): 6393.

doi: 10.1021/jacs.5b03105
[13]
Xue X L, Chen R P, Chen H W, Hu Y, Ding Q Q, Liu Z T, Ma L B, Zhu G Y, Zhang W J, Yu Q, Liu J, Ma J, Jin Z. Nano Lett., 2018, 18(11): 7372.

doi: 10.1021/acs.nanolett.8b03655
[14]
Ma X L, Liu J C, Xiao H, Li J. J. Am. Chem. Soc., 2018, 140(1): 46.

doi: 10.1021/jacs.7b10354
[15]
Yu K, Lou L L, Liu S X, Zhou W Z. Adv. Sci., 2020, 7(2): 1901970.

doi: 10.1002/advs.v7.2
[16]
Zhu K Y, Shi F, Zhu X F, Yang W S. Nano Energy, 2020, 73: 104761.

doi: 10.1016/j.nanoen.2020.104761
[17]
Zhuang G X, Chen Y W, Zhuang Z Y, Yu Y, Yu J G. Sci. China Mater., 2020, 63(11): 2089.

doi: 10.1007/s40843-020-1305-6
[18]
Liu F Y, Chen C, Guo H W, Saghayezhian M, Wang G M, Chen L N, Chen W, Zhang J D, Plummer E W. Surf. Sci., 2017, 655: 25.

doi: 10.1016/j.susc.2016.08.007
[19]
Takuya M, Hiroyuki T, Tomoji K, Shichio K. Jap. J. Appl. Phys., 1993, 295: 35.
[20]
Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G, Hebenstreit W, Schmid M, Varga P. Surf. Sci., 1998, 411(1/2): 137.

doi: 10.1016/S0039-6028(98)00356-2
[21]
Suzuki S, Fukui K I, Onishi H, Iwasawa Y. Phys. Rev. Lett., 2000, 84(10): 2156.

pmid: 11017232
[22]
Xie C, Zhou B, Zhou L, Wu Y J, Wang S Y. Prog. Chem., 2020, 32(8): 1172.
谢超, 周波, 周灵, 吴雨洁, 王双印. 化学进展. 2020, 32 (8): 1172.).

doi: 10.7536/PC200434
[23]
Guzman J, Carrettin S, Corma A. J. Am. Chem. Soc., 2005, 127(10): 3286.

doi: 10.1021/ja043752s
[24]
Wu Z L, Li M J, Howe J, Meyer H M III, Overbury S H. Langmuir, 2010, 26(21): 16595.

doi: 10.1021/la101723w
[25]
Lee Y J, He G H, Akey A J, Si R, Flytzani-Stephanopoulos M, Herman I P. J. Am. Chem. Soc., 2011, 133(33): 12952.

doi: 10.1021/ja204479j
[26]
de Castro Silva I, Sigoli F A, Mazali I O. J. Phys. Chem. C, 2017, 121(23): 12928.

doi: 10.1021/acs.jpcc.7b03155
[27]
Zheng J Y, Lyu Y H, Wang R L, Xie C, Zhou H J, Jiang S P, Wang S Y. Nat. Commun., 2018, 9: 3572.

doi: 10.1038/s41467-018-05580-z
[28]
Zheng J Y, Lyu Y H, Xie C, Wang R L, Tao L, Wu H B, Zhou H J, Jiang S P, Wang S Y. Adv. Mater., 2018, 30(31): 1801773.

doi: 10.1002/adma.v30.31
[29]
Liu Y W, Cheng H, Lyu M J, Fan S J, Liu Q H, Zhang W S, Zhi Y D, Wang C M, Xiao C, Wei S Q, Ye B J, Xie Y. J. Am. Chem. Soc., 2014, 136(44): 15670.

doi: 10.1021/ja5085157
[30]
Zhou P, Wang Y Y, Xie C, Chen C, Liu H W, Chen R, Huo J, Wang S Y. Chem. Commun., 2017, 53(86): 11778.

doi: 10.1039/C7CC07186H
[31]
Schaub R, Thostrup P, Lopez N, Lægsgaard E, Stensgaard I, NØrskov J K, Besenbacher F. Phys. Rev. Lett., 2001, 87(26): 266104.

doi: 10.1103/PhysRevLett.87.266104
[32]
Yoon B, Ha¨kkinen H, Landman U, Wörz A S, Antonietti J M, Abbet S, Ken J D, Heiz U. Science, 2005, 307(5708): 403.

doi: 10.1126/science.1104168
[33]
Ganduglia-Pirovano M V, Hofmann A, Sauer J. Surf. Sci. Rep., 2007, 62(6): 219.

doi: 10.1016/j.surfrep.2007.03.002
[34]
Ke J, Xiao J W, Zhu W, Liu H C, Si R, Zhang Y W, Yan C H. J. Am. Chem. Soc., 2013, 135(40): 15191.

doi: 10.1021/ja407616p
[35]
Liu B, Liu J, Ma S C, Zhao Z, Chen Y, Gong X Q, Song W Y, Duan A J, Jiang G Y. J. Phys. Chem. C, 2016, 120(4): 2271.

doi: 10.1021/acs.jpcc.5b11355
[36]
Werner K, Weng X F, Calaza F, Sterrer M, Kropp T, Paier J, Sauer J, Wilde M, Fukutani K, Shaikhutdinov S, Freund H J. J. Am. Chem. Soc., 2017, 139(48): 17608.

doi: 10.1021/jacs.7b10021
[37]
Li M, Pan X C, Jiang M Q, Zhang Y F, Tang Y W, Fu G T. Chem. Eng. J., 2020, 395: 125160.

doi: 10.1016/j.cej.2020.125160
[38]
He L N. Chin. Sci. Bull., 2021, 66(7): 713.

doi: 10.1360/TB-2021-0157
[39]
Lin X T, Li S J, He H, Wu Z, Wu J L, Chen L M, Ye D Q, Fu M L. Appl. Catal. B Environ., 2018, 223: 91.

doi: 10.1016/j.apcatb.2017.06.071
[40]
Liu Y W, Xiao C, Li Z, Xie Y. Adv. Energy Mater., 2016, 6(23): 1600436.

doi: 10.1002/aenm.201600436
[41]
Jiang S H, Zhang R Y, Liu H X, Rao Y, Yu Y N, Chen S, Yue Q, Zhang Y N, Kang Y J. J. Am. Chem. Soc., 2020, 142(14): 6461.

doi: 10.1021/jacs.9b13915
[42]
Zhu W C, Chen H, Zhang M J, Yang X Z, Feng H B. Appl. Surf. Sci., 2021, 544: 148813.

doi: 10.1016/j.apsusc.2020.148813
[43]
Widmann D, Behm R J. Accounts. Chem. Res., 2014, 47 (3): 740.

doi: 10.1021/ar400203e pmid: 24555537
[44]
Liu S, Wu X D, Tang J, Cui P Y, Jiang X Q, Chang C G, Liu W, Gao Y X, Li M, Weng D. Catal. Today, 2017, 281: 454.

doi: 10.1016/j.cattod.2016.05.036
[45]
Yuan K, Zhang Y W. J. Chin. Soc. Rare Earths, 2020, 38(3): 326.
袁堃, 张亚文. 中国稀土学报, 2020, 38(3): 326.).
[46]
Lin M H, Song W L, Zeng L, Zeng D W, Xie C S. Mater. Rep., 2014, 28(8): 22.
李明辉, 宋武林, 曾磊, 曾大文, 谢长生. 材料导报. 2014, 28 (8): 22.).
[47]
Hao L, Zhang H N, Yan J C, Cheng L J, Guan S J, Lu Y. J. Tianjing Univ. Sci. Technol., 2018, 33(55): 2.
郝亮, 张慧娜, 闫建成, 程丽君, 关苏军, 鲁云. 天津科技大学学报, 2018, 33 (55): 2.).
[48]
Cronemeyer D C. Phys. Rev., 1959, 113(5): 1222.

doi: 10.1103/PhysRev.113.1222
[49]
Lv K L, Xiang Q J, Yu J G. Appl. Catal. B Environ., 2011, 104(3/4): 275.

doi: 10.1016/j.apcatb.2011.03.019
[50]
Xu H Y, Huang Y H, Liu S, Xu K W, Ma F, Chu P K. RSC Adv., 2016, 6(83): 79383.

doi: 10.1039/C6RA13189A
[51]
Over H, Kim Y D, Seitsonen A P, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G. Science, 2000, 287(5457): 1474.

pmid: 10688793
[52]
Liu D L, Wang C H, Yu Y F, Zhao B H, Wang W C, Du Y H, Zhang B. Chem, 2019, 5(2): 376.

doi: 10.1016/j.chempr.2018.11.001
[53]
He W J, Sun Y J, Jiang G M, Li Y H, Zhang X M, Zhang Y X, Zhou Y, Dong F. Appl. Catal. B Environ., 2018, 239: 619.

doi: 10.1016/j.apcatb.2018.08.064
[54]
Jiang H, Liu J, Li M, Tian L, Ding G, Chen P, Luo X. Chin. J. Catal., 2018, 39 (4): 747.

doi: 10.1016/S1872-2067(18)63038-4
[55]
Kim J K, Chai S U, Ji Y F, Levy-Wendt B, Kim S H, Yi Y, Heinz T F, NØrskov J K, Park J H, Zheng X L. Adv. Energy Mater., 2018, 8(29): 1801717.

doi: 10.1002/aenm.v8.29
[56]
Nolan M. J. Mater. Chem., 2011, 21(25): 9160.

doi: 10.1039/c1jm11238d
[57]
Tan H Q, Zhao Z, Zhu W B, Coker E N, Li B S, Zheng M, Yu W X, Fan H Y, Sun Z C. ACS Appl. Mater. Interfaces, 2014, 6(21): 19184.

doi: 10.1021/am5051907
[58]
Han Z S, Choi C, Hong S, Wu T S, Soo Y L, Jung Y, Qiu J S, Sun Z Y. Appl. Catal. B Environ., 2019, 257: 117896.

doi: 10.1016/j.apcatb.2019.117896
[59]
Zhang J B, Yin R G, Shao Q, Zhu T, Huang X Q. Angew. Chem. Int. Ed., 2019, 58(17): 5609.

doi: 10.1002/anie.v58.17
[60]
Zhao Y, An H Z, Dong G J, Feng J, Wei T, Ren Y M, Ma J. Chem. Eng. J., 2020, 388: 124371.

doi: 10.1016/j.cej.2020.124371
[61]
Wu M D, Chen S Y, Xiang W G. Chem. Eng. J., 2020, 387: 124101.

doi: 10.1016/j.cej.2020.124101
[62]
Wang J Z, Cao C S, Zhang Y, Zhang Y Q, Zhu L Y. Appl. Catal. B Environ., 2021, 286: 119911.

doi: 10.1016/j.apcatb.2021.119911
[63]
Yang Q, Cao J X, Ma Y, Zhou Y C, Jiang L M, Zhong X L. J. Appl. Phys., 2013, 113(18): 184110.

doi: 10.1063/1.4804941
[64]
Aidhy D S, Rawat K. J. Appl. Phys., 2021, 129(17): 171102.

doi: 10.1063/5.0049001
[65]
Deml A M, Stevanović V, Muhich C L, Musgrave C B, O'Hayre R. Energy Environ. Sci., 2014, 7(6): 1996.

doi: 10.1039/c3ee43874k
[66]
Michalsky R, Botu V, Hargus C M, Peterson A A, Steinfeld A. Adv. Energy Mater., 2015, 5(7): 1401082.

doi: 10.1002/aenm.v5.7
[67]
Tang Y, Zhao S, Long B, Liu J C, Li J. J. Phys. Chem. C, 2016, 120(31): 17514.

doi: 10.1021/acs.jpcc.6b05338
[68]
Zhang B L, Zhang S Y, Zhang S G. Prog. Chem., 2022, 34(2): 301.
张柏林, 张生杨, 张深根. 化学进展. 2022, 34 (2): 301.).

doi: 10.7536/PC210630
[69]
Ma X L, Yang Y, Xu L M, Xiao H, Yao W Z, Li J. J. Mater. Chem. A, 2022, 10(11): 6146.

doi: 10.1039/D1TA08350C
[70]
Liu M H, Chen Y W, Lin T S, Mou C Y. ACS Catal., 2018, 8(8): 6862.

doi: 10.1021/acscatal.8b01282
[71]
Yin C C, Liu Y N, Xia Q N, Kang S F, Li X, Wang Y G, Cui L F. J. Colloid Interface Sci., 2019, 553: 427.

doi: 10.1016/j.jcis.2019.06.046
[72]
Yang J, Hu S Y, Fang Y R, Hoang S, Li L, Yang W W, Liang Z F, Wu J, Hu J P, Xiao W, Pan C Q, Luo Z, Ding J, Zhang L Z, Guo Y B. ACS Catal., 2019, 9(11): 9751.

doi: 10.1021/acscatal.9b02408
[73]
Zha K W, Sun W J, Huang Z, Xu H L, Shen W. ACS Catal., 2020, 10(20): 12127.

doi: 10.1021/acscatal.0c02944
[74]
Su Y, Ji K M, Xun J Y, Zhao L, Zhang K, Liu P. Prog. Chem., 2021, 33(9): 1560.
苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 化学进展. 2021, 33 (9): 1560.).

doi: 10.7536/PC200810
[75]
Ma X Y, Xiao M L, Yang X Q, Yu X L, Ge M F. J. Colloid Interface Sci., 2021, 594: 882.

doi: 10.1016/j.jcis.2021.03.076
[76]
Liu H, Jia W L, Yu X, Tang X, Zeng X H, Sun Y, Lei T Z, Fang H Y, Li T Y, Lin L. ACS Catal., 2021, 11(13): 7828.

doi: 10.1021/acscatal.0c04503
[77]
Li L X, Cao R R, Zhang P Y. Prog. Chem., 2021, 33(7): 1188.
李连欣, 曹冉冉, 张彭义. 化学进展. 2021, 33 (7): 1188.).

doi: 10.7536/PC200716
[78]
Liu B, Li C M, Zhang G Q, Yao X S, Chuang S S C, Li Z. ACS Catal., 2018, 8(11): 10446.

doi: 10.1021/acscatal.8b00415
[79]
Zhang W, Ma X L, Xiao H, Lei M, Li J. J. Phys. Chem. C, 2019, 123(18): 11763.

doi: 10.1021/acs.jpcc.9b02120
[80]
Huang Z Q, Li T H, Yang B L, Chang C R. Chin. J. Catal., 2020, 41(12): 1906.

doi: 10.1016/S1872-2067(20)63627-0
[81]
Sun C Z, Kong Y, Shao L, Sun K N, Zhang N Q. J. Power Sources, 2020, 459: 228017.

doi: 10.1016/j.jpowsour.2020.228017
[82]
Dong C L, Dong W J, Lin X Y, Zhao Y T, Li R Z, Huang F Q. EnergyChem, 2020, 2(6): 100045.

doi: 10.1016/j.enchem.2020.100045
[83]
Liu L Z, Huang H W, Chen F, Yu H J, Tian N, Zhang Y H, Zhang T R. Sci. Bull., 2020, 65(11): 934.

doi: 10.1016/j.scib.2020.02.019
[84]
DavÓ-Quiñonero A, BailÓn-García E, LÓpez-Rodríguez S, Juan-Juan J, Lozano-CastellÓ D, García-Melchor M, Herrera F C, Pellegrin E, Escudero C, Bueno-LÓpez A. ACS Catal., 2020, 10(11): 6532.

doi: 10.1021/acscatal.0c00648
[85]
Liu Z J, Huang Y D, Cai Y J, Wang X C, Zhang Y, Guo Y, Ding J, Cheng W H. ACS Appl. Mater. Interfaces, 2021, 13(16): 18876.

doi: 10.1021/acsami.1c02962
[86]
Zhuang L Z, Ge L, Yang Y S, Li M R, Jia Y, Yao X D, Zhu Z H. Adv. Mater., 2017, 29(17): 1606793.

doi: 10.1002/adma.v29.17
[87]
Ge R X, Li L, Su J W, Lin Y C, Tian Z Q, Chen L. Adv. Energy Mater., 2019, 9(35): 1901313.

doi: 10.1002/aenm.v9.35
[88]
Ma Y D, Zhang H, Xia J, Pan Z R, Wang X F, Zhu G X, Zheng B, Liu G X, Lang L M. Int. J. Hydrog. Energy, 2020, 45(19): 11052.

doi: 10.1016/j.ijhydene.2020.02.045
[89]
Li Y G, Wang Y, Lu J M, Yang B, San X Y, Wu Z S. Nano Energy, 2020, 78: 105185.

doi: 10.1016/j.nanoen.2020.105185
[90]
Wang P Y, Zhang L, Wang Z, Bu D C, Zhan K, Yan Y, Yang J H, Zhao B. J. Colloid Interface Sci., 2021, 597: 361.

doi: 10.1016/j.jcis.2021.04.013
[91]
Lv C D, Zhong L X, Yao Y, Liu D B, Kong Y, Jin X L, Fang Z W, Xu W J, Yan C S, Dinh K N, Shao M H, Song L, Chen G, Li S Z, Yan Q Y, Yu G H. Chem, 2020, 6(10): 2690.

doi: 10.1016/j.chempr.2020.07.006
[92]
Wen Y Y, Liu J H, Zhang F R, Li Z X, Wang P, Fang Z, He M, Chen J S, Song W Y, Si R, Wang L Z. Nano Res., 2022, https://doi.org/10.1007/s12274-022-5117-5.
[93]
Li M, Wang Y L, Wu X Y, Duan L, Zhang C M, He D N. Prog. Chem., 2017, 29(12): 1526.
李敏, 王艳丽, 吴晓燕, 段磊, 张春明, 何丹农. 化学进展. 2017, 29 (12): 1526.).

doi: 10.7536/PC170732
[94]
Gu Y J, Chen Y B, Liu H Q, Wang Y M, Sun J. Chin. J. Power Sources, 2013, 37(12): 2116.
谷亦杰, 陈蕴博, 刘洪权, 王延敏, 孙杰. 电源技术研究与设计. 2013, 37 (12): 2116.).
[95]
Shi R, Zhao Y X, Waterhouse G I N, Zhang S, Zhang T R. ACS Catal., 2019, 9(11): 9739.

doi: 10.1021/acscatal.9b03246
[96]
Zhao Y F, Mao Q Y, Zhai X Y, Zhang G Y. Prog. Chem., 2021, 33(8): 1331.
赵依凡, 毛琦云, 翟晓雅, 张国英. 化学进展. 2021, 33 (8): 1331.).

doi: 10.7536/PC201236
[97]
Ren W J, Mei Z W, Zheng S S, Li S N, Zhu Y M, Zheng J X, Lin Y, Chen H B, Gu M, Pan F. Research, 2020, 2020: 3750314.
[98]
Cui D D, Wang L, Xu K, Ren L, Wang L, Yu Y X, Du Y, Hao W C. J. Mater. Chem. A, 2018, 6(5): 2193.

doi: 10.1039/C7TA09897A
[99]
Bhatt V, Kumar M, Kim J, Chung H J, Yun J H. Ceram. Int., 2019, 45(7): 8561.

doi: 10.1016/j.ceramint.2019.01.174
[100]
Mao Y S, Wang P F, Li L N, Chen Z W, Wang H T, Li Y, Zhan S H. Angew. Chem. Int. Ed., 2020, 59(9): 3685.

doi: 10.1002/anie.v59.9
[101]
Li M M, Wang P F, Ji Z Z, Zhou Z R, Xia Y G, Li Y, Zhan S H. Appl. Catal. B Environ., 2021, 289: 120020.

doi: 10.1016/j.apcatb.2021.120020
[102]
Liu Y N, Miao C L, Yang P F, He Y F, Feng J T, Li D Q. Appl. Catal. B Environ., 2019, 244: 919.

doi: 10.1016/j.apcatb.2018.12.028
[103]
Pan F P, Xiang X M, Du Z C, Sarnello E, Li T, Li Y. Appl. Catal. B Environ., 2020, 260: 118189.

doi: 10.1016/j.apcatb.2019.118189
[104]
Zhu J C, Shao W W, Li X D, Jiao X C, Zhu J F, Sun Y F, Xie Y. J. Am. Chem. Soc., 2021, 143(43): 18233.

doi: 10.1021/jacs.1c08033
[105]
Xiao M, Zhang L, Luo B, Lyu M Q, Wang Z L, Huang H M, Wang S C, Du A J, Wang L Z. Angew. Chem. Int. Ed., 2020, 59(18): 7230.

doi: 10.1002/anie.202001148 pmid: 32067299
[106]
Mao C L, Cheng H G, Tian H, Li H, Xiao W J, Xu H, Zhao J C, Zhang L Z. Appl. Catal. B Environ., 2018, 228: 87.

doi: 10.1016/j.apcatb.2018.01.018
[107]
Wang J G, Chen Z M, Zhai G J, Men Y. Appl. Surf. Sci., 2018, 462: 760.

doi: 10.1016/j.apsusc.2018.08.181
[108]
Shang H, Wang X, Li H, Li M Q, Mao C L, Xing P, Zhao S X, Chen Z Y, Sun J, Ai Z H, Zhang L Z. Appl. Catal. B Environ., 2021, 290: 120024.

doi: 10.1016/j.apcatb.2021.120024
[109]
Qiu H, Ma X J, Sun C Y, Zhao B, Chen F. Appl. Surf. Sci., 2020, 506: 145021.

doi: 10.1016/j.apsusc.2019.145021
[110]
Ni J X, Wang W, Liu D M, Zhu Q, Jia J L, Tian J Y, Li Z Y, Wang X, Xing Z P. J. Hazard. Mater., 2021, 408: 124432.

doi: 10.1016/j.jhazmat.2020.124432
[111]
Li T R, Liu Y L, Li M Y, Jiang J J, Gao J Y, Dong S S. Sep. Purif. Technol., 2021, 266: 118605.

doi: 10.1016/j.seppur.2021.118605
[112]
Yang H, Xu B, Zhang Q T, Yuan S S, Zhang Z P, Liu Y T, Nan Z D, Zhang M, Ohno T. Appl. Catal. B Environ., 2021, 286: 119845.

doi: 10.1016/j.apcatb.2020.119845
[113]
Li Q, Li Y L, Li B, Hao Y J, Wang X J, Liu R H, Ling Y, Liu X Y, Li F T. Appl. Catal. B Environ., 2021, 289: 120041.

doi: 10.1016/j.apcatb.2021.120041
[114]
Badreldin A, Danyal Imam M, Wubulikasimu Y, Elsaid K, Abusrafa A E, Balbuena P B, Abdel-Wahab A. J. Alloys Compd., 2021, 871: 159615.

doi: 10.1016/j.jallcom.2021.159615
[115]
Zhao L Z, Wu H H, Yang C H, Zhang Q B, Zhong G M, Zheng Z M, Chen H X, Wang J M, He K, Wang B L, Zhu T, Zeng X C, Liu M L, Wang M S. ACS Nano, 2018, 12(12): 12597.

doi: 10.1021/acsnano.8b07319
[116]
Park J Y, Kim S J, Chang J H, Seo H K, Lee J Y, Yuk J M. Nat. Commun., 2018, 9: 922.

doi: 10.1038/s41467-018-03322-9
[117]
Kaup K, Bishop K, Assoud A, Liu J, Nazar L F. J. Am. Chem. Soc., 2021, 143(18): 6952.

doi: 10.1021/jacs.1c00941
[118]
Ma W C, Xie S J, Liu T T, Fan Q Y, Ye J Y, Sun F F, Jiang Z, Zhang Q H, Cheng J, Wang Y. Nat. Catal., 2020, 3(6): 478.

doi: 10.1038/s41929-020-0450-0
[119]
Li F W, Thevenon A, Rosas-Hernández A, Wang Z Y, Li Y L, Gabardo C M, Ozden A, Dinh C T, Li J, Wang Y H, Edwards J P, Xu Y, McCallum C, Tao L Z, Liang Z Q, Luo M C, Wang X, Li H H, O’Brien C P, Tan C S, Nam D H, Quintero-Bermudez R, Zhuang T T, Li Y C, Han Z J, David Britt R, Sinton D, Agapie T, Peters J C, Sargent E H. Nature, 2020, 577(7791): 509.

doi: 10.1038/s41586-019-1782-2
[120]
Wang L X, Guan E J, Wang Y Q, Wang L, Gong Z M, Cui Y, Meng X J, Gates B C, Xiao F S. Nat. Commun., 2020, 11: 1033.

doi: 10.1038/s41467-020-14817-9
[121]
Zhong H X, Ghorbani-Asl M, Ly K H, Zhang J C, Ge J, Wang M C, Liao Z Q, Makarov D, Zschech E, Brunner E, Weidinger I M, Zhang J, Krasheninnikov A V, Kaskel S, Dong R H, Feng X L. Nat. Commun., 2020, 11: 1409.

doi: 10.1038/s41467-020-15141-y
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[13] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[14] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[15] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.