中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 407-420 DOI: 10.7536/PC220902 Previous Articles   Next Articles

• Review •

Development of Na-Based Seawater Batteries: “Key Components and Challenges”

Niu Wenhui1,2,3, Zhang Da1,2,3(), Zhao Zhengang1,2,3, Yang Bin1,2,3, Liang Feng1,2,3()   

  1. 1. Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology,Kunming 650093, China
    2. National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology,Kunming 650093, China
    3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,Kunming 650093, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: liangfeng@kust.edu.cn (Feng Liang); d912080781@163.com (Da Zhang)
  • Supported by:
    National Natural Science Foundation of China(12175089); National Natural Science Foundation of China(12205127); Key Research and Development Program of Yunnan Province(202103AF140006); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202001AW070004)
Richhtml ( 31 ) PDF ( 587 ) Cited
Export

EndNote

Ris

BibTeX

Na-based seawater batteries are expected to become a new-generation of energy storage device due to its advantages of environmental friendliness, high energy density, and abundant and easy availability of seawater. Its working principle is that the conversion between the chemical energy and the electrical energy is achieved through redox reaction when seawater is considered as the electrolyte. In this review, the electrochemical principle, and design and optimization strategy of battery structure of Na-based seawater batteries are summarized. The latest research progress of Na-based seawater batteries is reviewed. Finally, the challenges to overcome the performance improvement and commercialization of Na-based seawater batteries are discussed, and the future development directions of the batteries are forecasted. The review provides the theoretical guidance for the development of Na-based seawater batteries, and then promotes Na-based seawater batteries support for major national needs such as the deep-sea energy supply and extremely environmental-energy source.

Contents

1 Introduction

2 The introduction of Na-based seawater battery

2.1 The concept of Na-based seawater battery

2.2 The electrochemical principle of Na-based seawater battery

2.3 The characteristics of Na-based seawater battery

2.4 Battery design and optimization

3 Key components and challenges of Na-based seawater battery

3.1 Anode

3.2 Organic electrolyte

3.3 Solid electrolyte

3.4 Catalysts

4 Conclusion and prospect

Fig. 1 Working diagram of Na-based seawater battery
Fig. 2 (a) Simulated Pourbaix diagram of seawater about thermodynamics. (b) Simulated Pourbaix diagram of seawater about kinetics[16]
Fig. 3 The physical map of (a) pouch cell[13], (b) coin cell, (c) rectangular cell, and (d) prismatic cell[51]
Fig. 4 (a) Time-lapse photographs of Na dendrite growth on the Cu current collector, the yellow circle shows the appearance of Na dendrite. (b) Schematic of the battery design and Na dendrite growth, top-view scanning electron microscope (SEM) images of (c) Cu and (d) Gr/Cu current collectors, the insets represent current collectors. (e) High resolution scanning tunneling microscope (STM) topography image of Gr/Cu current collector. (f) Time-lapse photographs of Na dendrite growth on the Gr/Cu current collector. the yellow circle shows the appearance of Na dendrite. (g) Chronopotentiometry plots of Gr/Cu (red line) and Cu (black line) current collectors. (h) Schematic diagram of charge-discharge of Na-base seawater battery with Cu and Gr/Cu current collectors[57]
Fig. 5 (a) Schematic diagram of charging and discharging process of Na-BP-DEGDME anode battery. (b) Cycle performance of Na-based seawater battery with Na-BP-DEGDME anode[59]. (c) Cycling performance and energy efficiency of battery with Na-BP-TEGDME anode at 0.01 mA·cm-2. (d) Galvanostatic cycling of battery with Na-BP-TEGDME anode at 0.01 mA·cm-2. (e) Power density of batteries with different catalysts and Na-BP-TEGDME anode[35]
Table 1 Comparison of electrochemical performance of Na-based seawater batteries with organic electrolyte
Fig. 6 (a) Charge-discharge curves and (b) Cycling performance of the seawater battery with 1 M NaCF3SO3 in TEGDME and 1 M NaClO4 in EC/PC electrolyte[63]. (c) Capacity retention of Na-based seawater battery with ILE-EC electrolyte[46]. (d) Cycling performance of Na-based seawater battery with ILE-EC and 1 M NaCF3SO3 in TEGDME electrolyte[56]
Fig. 7 (a) Crystal structures of the β-Al2O3,and β″-Al2O3 solid electrolytes[75]. (b) X ray diffraction (XRD) patterns of β″-Al2O3 solid electrolytes before and after cycling of Na-based seawater battery[43]. (c) Crystal structures and ion transport paths of NASICON (Na3Zr2Si2PO12) solid electrolytes[83]. (d) XRD patterns and SEM images of NASICON solid electrolytes before and after immersion in seawater[13]. (e) Ionic conductivity of NASICON solid electrolytes with immersion different time in solutions with different pH values. (f) Corrosion mechanism of NASICON solid electrolyte in acidic solutions with different pH values[86]
Table 2 Comparison of electrochemical performance of Na-based seawater batteries with different catalyst
Fig. 8 (a) Charge-discharge curves of Na-based seawater half-battery with PC catalyst at 0.01 mA·cm-2. Inset is SEM image of PC[91]. (b) Cycling performance of Na-based seawater battery with PPC catalyst at 50 mA· g a n o d e - 1 [93]. (c) Charge-discharge curves of Na-based seawater half-battery with CMO catalyst at 0.01 mA·cm-2. Inset is SEM image of CMO[95]. (d) Cycling performance of Na-based seawater battery with Co3V2O8 catalyst at 0.1 mA·cm-2[96]. (e) Charge-discharge curves of Na-based seawater battery with S-rGO-CNT-Co catalyst at 0.01 mA·cm-2. Inset is SEM image of S-rGO-CNT-Co[100]. (f) Cycling performance of Na-based seawater battery with PPy+Co3O4@CF catalyst at 20 mA·g-1[101]
[1]
Ellabban O, Abu-Rub H, Blaabjerg F. Renew. Sustain. Energy Rev., 2014, 39: 748.

doi: 10.1016/j.rser.2014.07.113
[2]
Hunt C T. Chem. Eng. News Archive, 2008, 86(42): 66.
[3]
Zhang Y J, Senthilkumar S T, Park J, Park J, Kim Y. Batter. Supercaps, 2018, 1(1): 6.

doi: 10.1002/batt.v1.1
[4]
Vaalma C, Buchholz D, Weil M, Passerini S. Nat. Rev. Mater., 2018, 3(4): 18013.

doi: 10.1038/natrevmats.2018.13
[5]
Choi J W, Aurbach D. Nat. Rev. Mater., 2016, 1(4): 16013.

doi: 10.1038/natrevmats.2016.13
[6]
Huppes G, Ishikawa M, Kramer G J. J. Ind. Ecol., 2011, 15(5): 677.

doi: 10.1111/j.1530-9290.2011.00380.x
[7]
Huang Y M, Dong Y H, Li S, Lee J, Wang C, Zhu Z, Xue W J, Li Y, Li J. Adv. Energy Mater., 2021, 11(2): 2000997.
[8]
Huang C F, Ji Q Q, Zhang H L, Wang Y T, Wang S M, Liu X H, Guo Y M, Zhang C H. J. Colloid Interface Sci., 2022, 606: 654.

doi: 10.1016/j.jcis.2021.08.046
[9]
Weber A. Fuel Cells, 2021, 21(5): 440.
[10]
Chang S L, Hou M J, Xu B W, Liang F, Qiu X C, Yao Y C, Qu T, Ma W H, Yang B, Dai Y N, Chen K F, Xue D F, Zhao H P, Lin X T, Poon F, Lei Y, Sun X L. Adv. Funct. Mater., 2021, 31(22): 2011151.
[11]
Wu Y Q, Qiu X C, Liang F, Zhang Q K, Koo A, Dai Y N, Lei Y, Sun X L. Appl. Catal. B Environ., 2019, 241: 407.

doi: 10.1016/j.apcatb.2018.09.063
[12]
Kim J K, Mueller F, Kim H, Jeong S, Park J S, Passerini S, Kim Y. ChemSusChem, 2016, 9(1): 1.

doi: 10.1002/cssc.201501673
[13]
Hwang S M, Park J S, Kim Y, Go W, Han J, Kim Y, Kim Y,. Adv. Mater., 2019, 31(20): 1804936.
[14]
Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. ChemSusChem, 2016, 9(9): 962.

doi: 10.1002/cssc.201501581 pmid: 27010750
[15]
Peled E, Golodnitsky D, Mazor H, Goor M, Avshalomov S. J. Power Sources, 2011, 196(16): 6835.

doi: 10.1016/j.jpowsour.2010.09.104
[16]
Yu J, Li B Q, Zhao C X, Zhang Q. Energy Environ. Sci., 2020, 13(10): 3253.

doi: 10.1039/D0EE01617A
[17]
Son M, Park S, Kim N, Angeles A T, Kim Y, Cho K H. Adv. Sci., 2021, 8(18): 2101289.
[18]
Meng F L, Zhong H X, Bao D, Yan J M, Zhang X B. J. Am. Chem. Soc., 2016, 138(32): 10226.

doi: 10.1021/jacs.6b05046
[19]
Stamenkovic V, M Markovic N, Ross P N Jr. J. Electroanal. Chem., 2001, 500(1/2): 44.

doi: 10.1016/S0022-0728(00)00352-1
[20]
Arruda T M, Shyam B, Ziegelbauer J M, Mukerjee S, Ramaker D E. J. Phys. Chem. C, 2008, 112(46): 18087.

doi: 10.1021/jp8067359
[21]
Zhang L, Mukerjee S. J. Electrochem. Soc., 2006, 153(6): A1062.

doi: 10.1149/1.2180715
[22]
Lane R F, Hubbard A T. J. Phys. Chem., 1975, 79(8): 808.

doi: 10.1021/j100575a008
[23]
Wright J, Colling A. 1995, 29.
[24]
Deng J, Bae C, Marcicki J, Masias A, Miller T. Nat. Energy, 2018, 3(4): 261.

doi: 10.1038/s41560-018-0122-3
[25]
Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Nat. Chem., 2011, 3(7): 546.

doi: 10.1038/nchem.1069 pmid: 21697876
[26]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.

doi: 10.1038/nmat3191
[27]
Lu X F, Xia B Y, Zang S Q, David Lou X W. Angew. Chem. Int. Ed., 2020, 59(12): 4634.

doi: 10.1002/anie.v59.12
[28]
Deng Y J, Luo J M, Chi B, Tang H B, Li J, Qiao X C, Shen Y J, Yang Y J, Jia C M, Rao P, Liao S J, Tian X L. Adv. Energy Mater., 2021, 11(37): 2101222.
[29]
Schmidt T J, Paulus U A, Gasteiger H A, Behm R J. J. Electroanal. Chem., 2001, 508(1/2): 41.

doi: 10.1016/S0022-0728(01)00499-5
[30]
Wu X Y, Han X P, Ma X Y, Zhang W, Deng Y D, Zhong C, Hu W B. ACS Appl. Mater. Interfaces, 2017, 9(14): 12574.

doi: 10.1021/acsami.6b16602
[31]
Shen F C, Wang Y, Tang Y J, Li S L, Wang Y R, Dong L Z, Li Y F, Xu Y, Lan Y Q. ACS Energy Lett., 2017, 2(6): 1327.

doi: 10.1021/acsenergylett.7b00229
[32]
McCrory C C L, Jung S, Peters J C, Jaramillo T F. J. Am. Chem. Soc., 2013, 135(45): 16977.

doi: 10.1021/ja407115p
[33]
Kulkarni A, Siahrostami S, Patel A, Nørskov J K. Chem. Rev., 2018, 118(5): 2302.

doi: 10.1021/acs.chemrev.7b00488
[34]
Huang Z F, Song J J, Du Y H, Xi S B, Dou S, Nsanzimana J M V, Wang C, Xu Z J, Wang X. Nat. Energy, 2019, 4(4): 329.
[35]
Kang Y, Wang S, Zhu S Q, Gao H X, Hui K S, Yuan C Z, Yin H, Bin F, Wu X L, Mai W J, Zhu L, Hu M C, Liang F, Chen F M, Hui K N. Appl. Catal. B Environ., 2021, 285: 119786.

doi: 10.1016/j.apcatb.2020.119786
[36]
Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. Nat. Energy, 2016, 1: 15006.

doi: 10.1038/nenergy.2015.6
[37]
Meier J C, Galeano C, Katsounaros I, Witte J, Bongard H J, Topalov A A, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer K J J. Beilstein J. Nanotechnol., 2014, 5: 44.

doi: 10.3762/bjnano.5.5
[38]
Job N, Chatenet M, Berthon-Fabry S, Hermans S, Maillard F. J. Power Sources, 2013, 240: 294.

doi: 10.1016/j.jpowsour.2013.03.188
[39]
Shinde S S, Lee C H, Sami A, Kim D H, Lee S U, Lee J H. ACS Nano, 2017, 11(1): 347.

doi: 10.1021/acsnano.6b05914
[40]
Guo L, Rueping M. Acc. Chem. Res., 2018, 51(5): 1185.

doi: 10.1021/acs.accounts.8b00023
[41]
Zhang D, Zhao H P, Liang F, Ma W H, Lei Y. J. Power Sources, 2021, 493: 229722.
[42]
Lu L, Zheng Y, Yang R, Kakimov A, Li X. Mater. Today Chem., 2021, 21: 100488.
[43]
Kim Y, Kim H, Park S, Seo I, Kim Y,. Electrochimica Acta, 2016, 191: 1.

doi: 10.1016/j.electacta.2016.01.054
[44]
Kim Y, Varzi A, Mariani A, Kim G T, Kim Y, Passerini S. Adv. Energy Mater., 2021, 11(38): 2102061.
[45]
Gao H X, Zhu S Q, Kang Y, Dinh D A, Hui K S, Bin F, Fan X, Chen F M, Mahmood A, Geng J X, Cheong W C M, Hui K N. ACS Appl. Energy Mater., 2022, 5(2): 1662.

doi: 10.1021/acsaem.1c03073
[46]
Kim Y, Kim G T, Jeong S, Dou X W, Geng C X, Kim Y, Passerini S. Energy Storage Mater., 2019, 16: 56.
[47]
Yin W W, Fu Z W. ChemCatChem, 2017, 9(9): 1545.

doi: 10.1002/cctc.v9.9
[48]
Kim Y, Ha K H, Oh S M, Lee K T. Chem. Eur. J., 2014, 20(38): 11980.

doi: 10.1002/chem.v20.38
[49]
Han J, Hwang S M, Go W, Senthilkumar S T, Jeon D, Kim Y. J. Power Sources, 2018, 374: 24.

doi: 10.1016/j.jpowsour.2017.11.022
[50]
Kim Y, Harzandi A M, Lee J, Choi Y, Kim Y,. Adv. Sustainable Syst., 2021, 5(1): 2000106.
[51]
Kim Y, Shin K, Jung Y, Lee W G, Kim Y,. Adv. Sustain. Syst., 2022, 6(6): 2100484.
[52]
Wang H, Yu D D, Kuang C W, Cheng L W, Li W, Feng X L, Zhang Z, Zhang X B, Zhang Y. Chem, 2019, 5(2): 313.

doi: 10.1016/j.chempr.2018.11.005
[53]
Sun J, Lee H W, Pasta M, Yuan H T, Zheng G Y, Sun Y M, Li Y Z, Cui Y. Nat. Nanotechnol., 2015, 10(11): 980.

doi: 10.1038/nnano.2015.194
[54]
Zhao C L, Lu Y X, Yue J M, Pan D, Qi Y R, Hu Y S, Chen L Q. J. Energy Chem., 2018, 27(6): 1584.

doi: 10.1016/j.jechem.2018.03.004
[55]
Hong Y S, Li N, Chen H S, Wang P, Song W L, Fang D N. Energy Storage Mater., 2018, 11: 118.
[56]
Senthilkumar S T, Go W, Han J, Pham Thi Thuy L, Kishor K, Kim Y, Kim Y,. J. Mater. Chem. A, 2019, 7(40): 22803.

doi: 10.1039/c9ta08321a
[57]
Kim D H, Choi H, Hwang D Y, Park J, Kim K S, Ahn S, Kim Y, Kwak S K, Yu Y J, Kang S J. J. Mater. Chem. A, 2018, 6(40): 19672.

doi: 10.1039/C8TA07610C
[58]
Liang F, Qiu X C, Zhang Q K, Kang Y, Koo A, Hayashi K, Chen K F, Xue D F, Hui K N, Yadegari H, Sun X L. Nano Energy, 2018, 49: 574.

doi: 10.1016/j.nanoen.2018.04.074
[59]
Kim Y, Jung J, Yu H, Kim G T, Jeong D, Bresser D, Kang S J, Kim Y, Passerini S. Adv. Funct. Mater., 2020, 30(24): 2001249.
[60]
Lim D H, Dong C, Kim H W, Bae G H, Choo K, Cho G B, Kim Y, Jin B, Kim J K. Mater. Today Energy, 2021, 21: 100805.
[61]
Luo W, Shen F, Bommier C, Zhu H L, Ji X L, Hu L B. Acc. Chem. Res., 2016, 49(2): 231.

doi: 10.1021/acs.accounts.5b00482
[62]
Hu Z, Liu Q N, Chou S L, Dou S X. Adv. Mater., 2017, 29(48): 1700606.
[63]
Kim H, Park J S, Sahgong S H, Park S, Kim J K, Kim Y. J. Mater. Chem. A, 2014, 2(46): 19584.

doi: 10.1039/C4TA04937C
[64]
Lee S, Cho I Y, Kim D, Park N K, Park J, Kim Y, Kang S J, Kim Y, Hong S Y. ChemSusChem, 2020, 13(9): 2220.

doi: 10.1002/cssc.v13.9
[65]
Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat. Mater., 2009, 8(8): 621.

doi: 10.1038/nmat2448
[66]
Watanabe M, Thomas M L, Zhang S G, Ueno K, Yasuda T, Dokko K. Chem. Rev., 2017, 117(10): 7190.

doi: 10.1021/acs.chemrev.6b00504
[67]
Kim Y, Hwang S M, Yu H, Kim Y,. J. Mater. Chem. A, 2018, 6(7): 3046.

doi: 10.1039/C7TA10668H
[68]
Kim J K, Mueller F, Kim H, Bresser D, Park J S, Lim D H, Kim G T, Passerini S, Kim Y. NPG Asia Mater., 2014, 6(11): e144.

doi: 10.1038/am.2014.106
[79]
Farrington G C, Briant J L. Mater. Res. Bull., 1978, 13(8): 763.

doi: 10.1016/0025-5408(78)90038-7
[80]
Harbach F. Solid State Ion., 1983, 9/10: 231.

doi: 10.1016/0167-2738(83)90239-4
[81]
Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull., 1976, 11(2): 203.

doi: 10.1016/0025-5408(76)90077-5
[82]
Park H, Jung K, Nezafati M, Kim C S, Kang B. ACS Appl. Mater. Interfaces, 2016, 8(41): 27814.

doi: 10.1021/acsami.6b09992
[83]
Zhao C L, Liu L L, Qi X G, Lu Y X, Wu F X, Zhao J M, Yu Y, Hu Y S, Chen L Q. Adv. Energy Mater., 2018, 8(17): 1703012.
[84]
Senthilkumar S T, Han J, Park J, Hwang S M, Jeon D, Kim Y. Energy Storage Mater., 2018, 12: 324.
[85]
Hwang S M, Kim J, Kim Y, Kim Y,. J. Mater. Chem. A, 2016, 4(46): 17946.

doi: 10.1039/C6TA07838A
[86]
Hou M J, Yang X C, Liang F, Dong P, Chen Y N, Li J R, Chen K F, Dai Y N, Xue D F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33262.

doi: 10.1021/acsami.1c07601
[87]
Kim K, Hwang S M, Park J S, Han J, Kim J, Kim Y. J. Power Sources, 2016, 313: 46.

doi: 10.1016/j.jpowsour.2016.02.060
[88]
Sahgong S H, Senthilkumar S T, Kim K, Hwang S M, Kim Y. Electrochem. Commun., 2015, 61: 53.

doi: 10.1016/j.elecom.2015.10.004
[89]
Yang X C, Su F M, Hou M J, Zhang D, Dai Y N, Liang F. Dalton Trans., 2021, 50(20): 7041.

doi: 10.1039/D1DT00807B
[90]
Ping H, Tao Z, Jie J, Zhou H S. J. Phys. Chem. Lett., 2016, 7(7): 1267.

doi: 10.1021/acs.jpclett.6b00080 pmid: 26977713
[91]
Senthilkumar S T, Park S O, Kim J, Hwang S M, Kwak S K, Kim Y. J. Mater. Chem. A, 2017, 5(27): 14174.

doi: 10.1039/C7TA03298F
[92]
Li W J, Han C, Zhang K, Chou S L, Dou S X. J. Mater. Chem. A, 2021, 9(11): 6671.

doi: 10.1039/D1TA00203A
[93]
Kim J, Park J, Lee J, Lim W G, Jo C, Lee J,. Adv. Funct. Mater., 2021, 31(22): 2010882.
[94]
Zhang J T, Zhao Z H, Xia Z H, Dai L M. Nat. Nanotechnol., 2015, 10(5): 444.

doi: 10.1038/nnano.2015.48
[95]
Abirami M, Hwang S M, Yang J C, Senthilkumar S T, Kim J, Go W S, Senthilkumar B, Song H K, Kim Y. ACS Appl. Mater. Interfaces, 2016, 8(48): 32778.

doi: 10.1021/acsami.6b10082
[69]
Lu Y, Li L, Zhang Q, Niu Z Q, Chen J. Joule, 2018, 2(9): 1747.

doi: 10.1016/j.joule.2018.07.028
[70]
Tang B, Jaschin P W, Li X, Bo S H, Zhou Z. Mater. Today, 2020, 41: 200.

doi: 10.1016/j.mattod.2020.08.016
[71]
Yao Y F Y, Kummer J T. J. Inorg. Nucl. Chem., 1967, 29(9): 2453.

doi: 10.1016/0022-1902(67)80301-4
[72]
Whittingham, Stanley M. J. Chem. Phys., 1971, 54(1): 414.

doi: 10.1063/1.1674623
[73]
Kim K K, Mundy J N, Chen W K. J. Phys. Chem. Solids, 1979, 40(10): 743.

doi: 10.1016/0022-3697(79)90157-4
[74]
La Rosa D, Monforte G, D’Urso C, Baglio V, Antonucci V, Aricò A S. ChemSusChem, 2010, 3(12): 1390.

doi: 10.1002/cssc.201000223
[75]
Chi C, Katsui H, Goto T. Ceram. Int., 2017, 43(1): 1278.

doi: 10.1016/j.ceramint.2016.10.077
[76]
Lu X C, Xia G G, Lemmon J P, Yang Z G. J. Power Sources, 2010, 195(9): 2431.

doi: 10.1016/j.jpowsour.2009.11.120
[77]
Will F G. J. Electrochem. Soc., 1976, 123(6): 834.

doi: 10.1149/1.2132943
[78]
Flor G, Marini A, Massarotti V, Villa M. Solid State Ion., 1981, 2(3): 195.

doi: 10.1016/0167-2738(81)90179-X
[96]
Shin K H, Park J, Park S K, Nakhanivej P, Hwang S M, Kim Y, Park H S. J. Ind. Eng. Chem., 2019, 72: 250.

doi: 10.1016/j.jiec.2018.12.025
[97]
Liardet L, Hu X L. ACS Catal., 2018, 8(1): 644.

doi: 10.1021/acscatal.7b03198
[98]
Pletcher D, Li X H, Price S W T, Russell A E, Sönmez T, Thompson S J. Electrochimica Acta, 2016, 188: 286.

doi: 10.1016/j.electacta.2015.10.020
[99]
Mahmood J, Li F, Kim C, Choi H J, Gwon O, Jung S M, Seo J M, Cho S J, Ju Y W, Jeong H Y, Kim G, Baek J B. Nano Energy, 2018, 44: 304.

doi: 10.1016/j.nanoen.2017.11.057
[100]
Suh D H, Park S K, Nakhanivej P, Kim Y, Hwang S M, Park H S. J. Power Sources, 2017, 372: 31.

doi: 10.1016/j.jpowsour.2017.10.056
[101]
Kim C, Kim S, Kwon O, Kim J, Kim G. ChemElectroChem, 2019, 6(1): 2.

doi: 10.1002/celc.v6.1
[102]
Zhang Y J, Park J S, Senthilkumar S T, Kim Y. J. Power Sources, 2018, 400: 478.

doi: 10.1016/j.jpowsour.2018.08.044
[103]
Khan Z, Park S O, Yang J C, Park S, Shanker R, Song H K, Kim Y, Kwak S K, Ko H. J. Mater. Chem. A, 2018, 6(47): 24459.

doi: 10.1039/C8TA10327E
[104]
Dien Kha Tu N, Park S O, Park J, Kim Y, Kwak S K, Kang S J. ACS Appl. Energy Mater., 2020, 3(2): 1602.

doi: 10.1021/acsaem.9b02087
[105]
Kim S, Ji S, Yang H, Son H, Choi H, Kang J, Li O L. Appl. Catal. B Environ., 2022, 310: 121361.

doi: 10.1016/j.apcatb.2022.121361
No related articles found!