中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (5): 709-720 DOI: 10.7536/PC221014 Previous Articles   Next Articles

• Review •

High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure

Yan Bao1,2(), Jiachen Xu1, Ruyue Guo1, Jianzhong Ma1   

  1. 1 College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology,Xi’an 710021, China
    2 National Demonstration Center for Experinenced Light Chemical Engineering Education, Shaanxi University of Science & Technology,Xi’an 710021, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: baoyan@sust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22078188); Xianyang City Qin Chuangyuan Science and Technology Innovation Special Project(2021ZDZX-GY-0007)
Richhtml ( 66 ) PDF ( 752 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, with the development and popularization of Internet and artificial intelligence, the flexible pressure sensor with light, convenience and excellent electronic performance, as the core device of wearable electronic equipment, has a increasingly broad market. Flexible pressure sensors have attracted extensive attention in electronic skin, motion detection, medical monitoring and man-machine interface because of its flexibility, folding and excellent sensing performance. The construction of micro-nano structures is the key to improve the sensitivity and sensing performance of pressure sensors. Based on this, the sensing mechanism (piezoresistive, capacitive, piezoelectric, triboelectric) and key performance parameters (sensitivity, pressure response range, detection limit, response/recovery time, stability of circulation and linearity, etc.) of the high-sensitivity pressure sensors were summarized. Then, research progress of flexible pressure sensors using substrates to construct surface micro-nano structures (micro-convex structure, bramble structure and fold structure) and using conductive materials to construct micro-nano structures (micro-sphere structure, urchin structure and cellular structure) were compared and concluded. Furthermore, the application status of high-sensitivity flexible pressure sensors based on micro-nano structure in pulse detection, electronic skin, motion detection and man-machine interface was concluded. Finally, from the perspective of future application, the challenges and development direction of high sensitivity flexible pressure sensor are summarized.

Contents

1 Introduction

2 Sensing mechanism and key performance parameters of high sensitivity flexible pressure sensor

2.1 Sensing mechanism

2.2 Key performance parameters

3 Construction of high sensitivity flexible pressure sensor based on micro-nano structure of substrate materials

3.1 Micro-convex structure

3.2 Bramble structure

3.3 Fold structure

4 Construction of high sensitivity flexible pressure sensor based on micro-nano structure of conductive materials

5 Application of high sensitivity flexible pressure sensor based on micro-nano structure

6 Summary and outlook

Fig. 1 The sensing mechanism of different pressure sensors: (a) piezoresistive; (b) capacitive; (c) piezoelectric; (d) triboelectric
Table 1 Key performance parameters of flexible pressure sensor
Fig. 2 Resistance pressure sensor based on surface micro dome structure: (a) design drawing of micro dome structure; (b) contact diagram of micro dome structure under compression; (c) sensitivity curve[37]
Fig. 3 Sensitivity curve of pressure sensor based on micro dome CNTs/PDMS film: (a) preparation process of CNT/PDMS thin films for micro dome; (b) preparation process of CNT/PDMS thin films for micro dome; (c) comparison of sensing performance[38]
Fig. 4 Equivalent circuit and appearance photos of CNT/PDMS pressure sensor based on micro-cone structure[28]
Fig. 5 IOCA pressure sensor based on micro cone structure. (a) Schematic diagram of preparation process; (b) sensitivity fitting curve; (c) the sensing mechanism is shown in figure[42]
Fig. 6 Schematic diagram and sensing mechanism diagram of sponge pressure sensor[45]
Fig. 7 Capacitive pressure sensor based on pleated structure. (a~c) Sensing performance of wrinkle free, unilateral wrinkle and bilateral wrinkle pressure sensors under 5 kPa pressure; (d~f) response time of non fold, unilateral fold and bilateral fold pressure sensors; (g) schematic diagram of sensor preparation process[47]
Table 2 Performance of high sensitivity pressure sensor based on micro-nano structure
Fig. 8 Schematic diagram of conductive hollow carbon ball structure[60]
Fig. 9 Based on Fe2O3/C@SnO2 schematic diagram of pressure sensing mechanism of flexible sponge[64]
[1]
Li L, Zheng J H, Chen J, Luo Z B, Su Y, Tang W, Gao X, Li Y T, Cao C J, Liu Q H, Kang X Y, Wang L, Li H. Adv. Mater. Interfaces, 2020, 7(17): 2000743.

doi: 10.1002/admi.v7.17
[2]
Zong Y, Tan S, Ma J Z. Macromol. Rapid Commun., 2022, 43(8): 2100873.

doi: 10.1002/marc.v43.8
[3]
Guo R Y, Bao Y. Fine Chemicals, 2021, 38(04): 649.
(郭茹月, 鲍艳. 精细化工, 2021, 38(04): 649.).
[4]
Kang K, Park J, Kim K, Yu K J. Nano Res., 2021, 14(9): 3096.

doi: 10.1007/s12274-021-3490-0
[5]
Jason N N, Ho M D, Cheng W L. J. Mater. Chem. C, 2017, 5(24): 5845.

doi: 10.1039/C7TC01169E
[6]
Guo R Y, Bao Y, Zheng X, Zhang W B, Liu C, Chen J, Xu J C, Wang L X, Ma J Z. Adv. Mater.Function., 2023, 33(12), 2213283.
[7]
Asghar W, Li F L, Zhou Y L, Wu Y Z, Yu Z, Li S B, Tang D X, Han X T, Shang J, Liu Y W, Li R W. Adv. Mater. Technol., 2020, 5(2): 1900934.

doi: 10.1002/admt.v5.2
[8]
Wang Y J. Modern Chemical Research, 2018, (09): 122.
(王宇捷. 当代化工研究, 2018, (09): 122.).
[9]
Suresh Kumar N, Padma Suvarna R, Chandra Babu Naidu K, Banerjee P, Ratnamala A, Manjunatha H. Appl. Phys. A, 2020, 126(6): 445.

doi: 10.1007/s00339-020-03633-z
[10]
Lu G W, Chen F E, Wu X F, Qu L T, Zhang J X, Shi G Q. Chinese Science Bulletin, 2005, 50(15): 1545.
(鲁戈舞, 陈凤恩, 吴旭峰, 曲良体, 张家鑫, 石高全. 科学通报, 2005, 50(15): 1545.).
[11]
Wang H M, Li S, Wang Y L, Wang H M, Shen X Y, Zhang M C, Lu H J, He M S, Zhang Y Y. Adv. Mater., 2020, 32(11): 1908214.

doi: 10.1002/adma.v32.11
[12]
Jian M Q, Wang C Y, Wang Q, Wang H M, Xia K L, Yin Z, Zhang M C, Liang X P, Zhang Y Y. Sci. China Mater., 2017, 60(11): 1026.

doi: 10.1007/s40843-017-9077-x
[13]
Gao Y Y, Yan C, Huang H C, Yang T, Tian G, Xiong D, Chen N J, Chu X, Zhong S, Deng W L, Fang Y, Yang W Q. Adv. Funct. Mater., 2020, 30(11): 1909603.

doi: 10.1002/adfm.v30.11
[14]
Lyu Y, Gan S Y, Bao Y, Zhong L J, Xu J N, Wang W, Liu Z B, Ma Y M, Yang G F, Niu L. Membranes, 2020, 10(6): 128.

doi: 10.3390/membranes10060128
[15]
Zhang J W, Zhang Y, Li Y Y, Wang P. Polym. Rev., 2022, 62(1): 65.

doi: 10.1080/15583724.2021.1901737
[16]
Zhang J W, Zhang Y, Li Y Y, Ye X, Wang P, Xu Y K. ACS Appl. Electron. Mater., 2021, 3(7): 3177.

doi: 10.1021/acsaelm.1c00375
[17]
Su M, Li P, Liu X Q, Wei D P, Yang J. Nanomaterials, 2022, 12(9): 1495.

doi: 10.3390/nano12091495
[18]
Krause T, Meier M, Brunzendorf J. J. Loss Prev. Process. Ind., 2021, 71: 104523.

doi: 10.1016/j.jlp.2021.104523
[19]
He J, Zhang Y F, Zhou R H, Meng L R, Chen T, Mai W J, Pan C F. J. Materiomics, 2020, 6(1): 86.

doi: 10.1016/j.jmat.2020.01.009
[20]
Wu Y Z, Liu Y W, Zhou Y L, Man Q K, Hu C, Asghar W, Li F L, Yu Z, Shang J, Liu G, Liao M Y, Li R W. Sci. Robot., 2018, 3(22): eaat0429.

doi: 10.1126/scirobotics.aat0429
[21]
Zhou Y, Zhao L P, Tao W, Wang T S, Sun P, Liu F M, Yan X, Lu G Y. ACS Appl. Mater. Interfaces, 2022, 14(17): 19949.

doi: 10.1021/acsami.1c24257
[22]
Yu Q Y, Zhang P, Chen Y C. Micromachines, 2021, 12(10): 1219.

doi: 10.3390/mi12101219
[23]
Park D Y, Joe D J, Kim D H, Park H, Han J H, Jeong C K, Park H, Park J G, Joung B, Lee K J. Adv. Mater., 2017, 29(37): 1702308.

doi: 10.1002/adma.v29.37
[24]
Pierre Claver U, Zhao G. Adv. Eng. Mater., 2021, 23(5): 2001187.

doi: 10.1002/adem.v23.5
[25]
Shlomy I, Divald S, Tadmor K, Leichtmann-Bardoogo Y, Arami A, Maoz B M. ACS Nano, 2021, 15(7): 11087.

doi: 10.1021/acsnano.0c10141
[26]
Shao T Y, Wu J N, Zhang Y H, Cheng Y R, Zuo Z Q, Lv H K, Ying M L, Wong C P, Li Z. Adv. Mater. Technol., 2020, 5(5): 2000032.

doi: 10.1002/admt.v5.5
[27]
Peng S H, Blanloeuil P, Wu S Y, Wang C H. Adv. Mater. Interfaces, 2018, 5(18): 1800403.

doi: 10.1002/admi.v5.18
[28]
Ma C, Xu D, Huang Y C, Wang P Q, Huang J, Zhou J Y, Liu W F, Li S T, Huang Y, Duan X F. ACS Nano, 2020, 14(10): 12866.

doi: 10.1021/acsnano.0c03659
[29]
Dai H F. Master’s Dissertation of Changchun University of Technology, 2022.
(戴鸿飞. 长春工业大学硕士论文, 2022.).
[30]
Pan L M, Han L Y, Liu H X, Zhao J J, Dong Y, Wang X H. Chem. Eng. J., 2022, 450: 137929.

doi: 10.1016/j.cej.2022.137929
[31]
Lee S, Kim J, Roh H, Kim W, Chung S, Moon W, Cho K. Adv. Mater., 2022, 34(21): 2109545.

doi: 10.1002/adma.v34.21
[32]
Formica D, Schena E. Sensors, 2021, 21(2): 543.

doi: 10.3390/s21020543
[33]
Samoei V K, Jayatissa A H. Sens. Actuat. A Phys., 2020, 303: 111816.

doi: 10.1016/j.sna.2019.111816
[34]
Ruth S R A, Feig V R, Tran H, Bao Z N. Adv. Funct. Mater., 2020, 30(39): 2003491.

doi: 10.1002/adfm.v30.39
[35]
Pan W W, Han Z Y, Chang Y, Duan X X. Biosens. Bioelectron., 2020, 167: 112504.

doi: 10.1016/j.bios.2020.112504
[36]
Weng M C, Sun L Q, Qu S X, Chen L Z. Extreme Mech. Lett., 2020, 37: 100714.

doi: 10.1016/j.eml.2020.100714
[37]
Tang Z H, Xue S S, Li Y Q, Zhu Z C, Huang P, Fu S Y. ACS Appl. Mater. Interfaces, 2021, 13(40): 48009.

doi: 10.1021/acsami.1c12241
[38]
Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H. ACS Nano, 2014, 8(5): 4689.

doi: 10.1021/nn500441k
[39]
Khalili N, Shen X, Naguib H E. Soft Matter, 2018, 14(33): 6912.

doi: 10.1039/c8sm00897c pmid: 30095849
[40]
Cao Y D, Li T, Gu Y, Luo H, Wang S Q, Zhang T. Small, 2018, 14(16): 1703902.

doi: 10.1002/smll.v14.16
[41]
Lin M F, Cheng C, Yang C C, Hsiao W T, Yang C R. Org. Electron., 2021, 98: 106290.

doi: 10.1016/j.orgel.2021.106290
[42]
Lu Y W, He Y, Qiao J T, Niu X, Li X J, Liu H, Liu L. ACS Appl. Mater. Interfaces, 2020, 12(49): 55169.

doi: 10.1021/acsami.0c16456
[43]
Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho H J, Algadi H, Al-Sayari S, Kim D E, Lee T. Adv. Funct. Mater., 2015, 25(21): 3114.

doi: 10.1002/adfm.v25.21
[44]
Lu N S, Lu C, Yang S X, Rogers J. Adv. Funct. Mater., 2012, 22(19): 4044.

doi: 10.1002/adfm.v22.19
[45]
Hu Y F, Huang T Q, Zhang H J, Lin H J, Zhang Y, Ke L W, Cao W, Hu K, Ding Y, Wang X Y, Rui K, Zhu J X, Huang W. ACS Appl. Mater. Interfaces, 2021, 13(20): 23905.

doi: 10.1021/acsami.1c03615
[46]
Sharma S, Chhetry A, Maharjan P, Zhang S P, Shrestha K, Sharifuzzaman M, Bhatta T, Shin Y, Kim D, Lee S, Park J Y. Nano Energy, 2022, 95: 106970.

doi: 10.1016/j.nanoen.2022.106970
[47]
Baek S, Jang H, Kim S Y, Jeong H, Han S, Jang Y, Kim D H, Lee H S. RSC Adv., 2017, 7(63): 39420.

doi: 10.1039/C7RA06997A
[48]
Luo C, Liu N S, Zhang H, Liu W J, Yue Y, Wang S L, Rao J Y, Yang C X, Su J, Jiang X L, Gao Y H. Nano Energy, 2017, 41: 527.

doi: 10.1016/j.nanoen.2017.10.007
[49]
Peng Z Q, Zheng S J, Zhang X, Yang J L, Wu S Z, Ding C, Lei L, Chen L, Feng G Y. Micromachines, 2022, 13(5): 694.

doi: 10.3390/mi13050694
[50]
Zhang Y, Han F, Hu Y G, Xiong Y X, Gu H, Zhang G Q, Zhu P L, Sun R, Wong C P. Macromol. Chem. Phys., 2020, 221(11): 2000073.

doi: 10.1002/macp.v221.11
[51]
Zhang Z A, Gui X C, Hu Q M, Yang L L, Yang R L, Huang B F, Yang B R, Tang Z K. Adv. Electron. Mater., 2021, 7(7): 2100174.

doi: 10.1002/aelm.v7.7
[52]
Xia T C, Yu R, Yuan J, Yi C Q, Ma L J, Liu F, Cheng G J. Adv. Mater. Technol., 2021, 6(3): 2000984.

doi: 10.1002/admt.v6.3
[53]
Du D W, Ma X Y, An W X, Yu S H. Measurement, 2022, 201: 111645.

doi: 10.1016/j.measurement.2022.111645
[54]
Riazi H, Taghizadeh G, Soroush M. ACS Omega, 2021, 6(17): 11103.

doi: 10.1021/acsomega.0c05828
[55]
Bao Y, Zheng X, Guo R Y. Chemical Industry and Engineering Progress, 2022, 41(07): 3624.
(鲍艳, 郑茜, 郭茹月. 化工进展, 2022, 41(07): 3624.).
[56]
Zou Z N, Zhu C P, Li Y, Lei X F, Zhang W, Xiao J L. Sci. Adv., 2018, 4(2): eaaq0508.

doi: 10.1126/sciadv.aaq0508
[57]
Le Y, Chen J F, Wang W C. Chemical Industry and Engineering Progress, 2004,(06): 595.
(乐园, 陈建峰, 汪文川. 化工进展, 2004,(06): 595.).
[58]
Wu S X, Zhang X Z, Yu Y. Chemistry & Bioengineering, 2021, 38(12): 41.
(吴素心, 张雄志, 喻尧. 化学与生物工程, 2021, 38(12): 41.).
[59]
Ji B, Zhou Q, Wu J B, Gao Y B, Wen W J, Zhou B P. ACS Appl. Mater. Interfaces, 2020, 12(27): 31021.

doi: 10.1021/acsami.0c08910
[60]
Chu J, Cai J P. Nanoscale, 2020, 12(17): 9375.

doi: 10.1039/D0NR01192D
[61]
Bao Y, Li X Q. New Chem. Mater., 2018, 46(12): 42.
(鲍艳, 李欣倩. 化工新型材料, 2018, 46(12): 42.).
[62]
Wang Y J, Wang Y, Xu M T, Dai F Y, Li Z. ACS Sustainable Chem. Eng., 2022, 10(51): 17252.

doi: 10.1021/acssuschemeng.2c05540
[63]
Wang X M, Tao L Q, Yuan M, Wang Z P, Yu J B, Xie D L, Luo F, Chen X P, Wong C. Nat. Commun., 2021, 12: 1776.

doi: 10.1038/s41467-021-21958-y
[64]
Liu C, Cai J, Dang P Z, Li X H, Zhang D Y. ACS Appl. Mater. Interfaces, 2020, 12(10): 12101.

doi: 10.1021/acsami.0c00034
[65]
Wang G J, Lin Z H, Jin S H, Li M, Jing L Y. J. Energy Storage, 2022, 45: 103525.

doi: 10.1016/j.est.2021.103525
[66]
Yang Y, Chen L, He J, Hou X J, Qiao X J, Xiong J J, Chou X J. Adv. Mater. Technol., 2022, 7(1): 2100702.

doi: 10.1002/admt.v7.1
[67]
Wang X, Yang J, Feng Z P, Zhang G Q, Qiu J, Wu Y F, Yang J,. ACS Appl. Mater. Interfaces, 2021, 13(46): 55747.

doi: 10.1021/acsami.1c17318
[68]
Chen S, Song Y J, Xu F. ACS Appl. Mater. Interfaces, 2018, 10(40): 34646.

doi: 10.1021/acsami.8b13535
[69]
Park J, Lee Y, Ha M, Cho S, Ko H. J. Mater. Chem. B, 2016, 4(18): 2999.

doi: 10.1039/C5TB02483H
[70]
Chen H T, Miao L M, Su Z M, Song Y, Han M D, Chen X X, Cheng X L, Chen D M, Zhang H X. Nano Energy, 2017, 40: 65.

doi: 10.1016/j.nanoen.2017.08.001
[71]
Gao Z Y, Lou Z, Han W, Shen G Z. ACS Appl. Mater. Interfaces, 2020, 12(21): 24339.

doi: 10.1021/acsami.0c05119
[72]
Lei P, Bao Y. Materials Reports, 2022, 36(14): 82.
(雷鹏, 鲍艳. 材料导报, 2022, 36(14): 82.).
[73]
Shi Z Y, Meng L X, Shi X L, Li H P, Zhang J Z, Sun Q Q, Liu X Y, Chen J Z, Liu S R. Nano Micro Lett., 2022, 14(1): 141.

doi: 10.1007/s40820-022-00874-w
[74]
Chen B D, Li H Q, Zhang S F, Lai X J, Zeng X R, Wu X R, Cheng X T, Liu H. Compos. A Appl. Sci. Manuf., 2022, 162: 107171.

doi: 10.1016/j.compositesa.2022.107171
[75]
Liu C, Xu L, Kong L Y, Xu Y Q, Zhou W, Qiang Q P, Tian L L, Chen W B, Cai M S, Lang T C, Han T, Liu B T. J. Mater. Chem. C, 2022, 10(36): 13064.

doi: 10.1039/D2TC02326A
[76]
Zhao Z Q, Li Q J, Dong Y, Gong J X, Li Z, Qiao X R, Zhang J F. Energy Technol., 2021, 9(7): 2100166.

doi: 10.1002/ente.v9.7
[77]
Liu J L, Yang Y N, Peng J, Wang H C, Chen D, Liu Y J, Yang L N, Chen H N. Soft Robotics, 2022, 9(3): 518.

doi: 10.1089/soro.2020.0147
[78]
Cha Y, Seo J, Kim J S, Park J M. Smart Mater. Struct., 2017, 26(5): 057002.

doi: 10.1088/1361-665X/aa6b64
[79]
Lv Y H, Min L Z, Niu F X, Chen X Y, Zhao B, Liu Y, Pan K. Nanocomposites, 2022, 8(1): 81.

doi: 10.1080/20550324.2022.2054211
[1] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[2] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[3] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[4] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[5] Yaoxu Xiong, Yougen Hu, Pengli Zhu, Rong Sun, Ching-Ping Wong. Fabrication and Application of Flexible Pressure Sensors with Micro/Nano-Structures [J]. Progress in Chemistry, 2019, 31(6): 800-810.