中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (4): 526-542 DOI: 10.7536/PC220930 Previous Articles   Next Articles

• Review •

Chemical Synthesis of Peptides and Proteins

Xinyue Wang, Kang Jin()   

  1. Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University,Jinan 250012, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: jinkang@sdu.edu.cn
  • Supported by:
    Taishan Scholar Program in Shandong Province, the National Natural Science Foundation of China(22007059); Shandong Provincial Key Research and Development Program (Major Technological Innovation Project)(2021CXGC010501)
Richhtml ( 68 ) PDF ( 874 ) Cited
Export

EndNote

Ris

BibTeX

As the material basis of active substances and life activities in living organisms, peptides and proteins play vital roles in basic physiological processes such as signal transmission, energy utilization, immune response, etc. And they are closely related to the occurrence of a variety of diseases. An important prerequisite for studying their structure and biological function and developing related drugs is to obtain a certain number of high pure peptides and proteins. The sources of natural peptides and proteins mainly include tissues and organs of animals and plants, secondary metabolites of microorganisms, etc. Natural extraction, recombinant technology, and chemical synthesis are the main methods to obtain peptides and proteins. Chemical synthesis can conveniently introduce unnatural amino acids or specific types of post-translational modification groups at any site of peptides and proteins compared with the former two, such as glycosylation, phosphorylation, fluorophores, and photorelinking reaction groups, which has greatly promoted the application and development of peptides and proteins in the field of medicine research. This review comprehensively introduces the various chemical synthesis strategies of peptides and proteins, along with the basic principles, advantages and disadvantages, and application values, aiming to provide a novel sight for synthesizing peptides and proteins.

Fig.1 Basic procedures of Solid phase peptide synthesis
Table 1 Common resins used in Fmoc-SPPS
Table 2 Common coupling reagents
Fig.2 Hydrogen bonds contribute to aggregates of peptide
Table 3 Application scopes and advantages of difficult peptides synthesis strategies
Fig.3 (a)Pseudoproline removed conveniently during acidic global deprotection of peptides; (b)Normal trans-amide and cis-amide caused by pseudoproline, and the latter is preferred during cyclization of cyclic Peptides
Fig.4 (a) Mechanism of next amino acid introduction into N(Hmb)-peptidyl-resin; (b) Hmsb and Hmnb
Fig.5 (a) Synthesis of isopeptide using dipeptide unit; Mechanism of isopeptide to peptide through O/N acyl shift mediated by (b): pH and (c): photoirradiation[57]
Fig.6 Amino acids linked with PEG group
Fig.7 On-resin cyclization using the MeDbz Linker[67]
Table 4 Application scopes and advantages of peptide ligation methods
Fig.8 Mechanism of NCL
Fig.9 (a) Peptide hydrazide serves as thioester surrogate used in NCL[72]; (b) peptide hydrazide synthesis on 2-Cl-(Trt)-NHNH2 resin[73]; (c) generation of peptide thioester surrogate: acyl pyrazoles[72]
Fig.10 Synthesis of peptide crypto-thioesters: N-Hnb-Cys(StBu) and its Mechanism for transformation to peptide thioester during NCL[75]
Fig.11 (a) Using thiol-derived amino acids in NCL and further desulfurization[79]; (b) γ-thiol Ile, β-thiol Lys and γ-thiol Pro
Fig.12 Steps of DSL[18]
Fig.13 Mechanism of Ser/Thr ligation
Fig.14 (a) Synthesis of SAL ester by “n+1” strategy; (b) High hindrance of terminal AA contributes to the deactivation roles of the α-N-carbonyl in a peptidyl prolylester; (c) steps of CPL[93]
Fig.15 KAHA ligation: peptides ligate between an N-terminal peptide α-ketoacid and a C-terminal peptide hydroxylamine
Fig.16 (a) Poly-arginine tag and Poly-lysine tag; (b) synthesis of membrane proteins through a removable backbone modification-RBM Tag[103]; (c) membrane protein synthesis via reducible solubilizing tags (RSTs)[90]
Fig.17 Steps of Sortase-mediated protein Semisynthesis
[1]
Fischer E, Fourneau E. Ber. Dtsch. Chem. Ges., 1901, 34(2): 2868.

doi: 10.1002/cber.v34:2
[2]
Curtius T. J. Prakt. Chem., 1904, 70(1): 57.

doi: 10.1002/prac.19040700103
[3]
Fischer E. Ber. Dtsch. Chem. Ges., 1905, 38(1): 605.

doi: 10.1002/cber.v38:1
[4]
Vigneaud V D, Ressler C, Swan C J M, Roberts C W, Katsoyannis P G, Gordon S. J. Am. Chem. Soc., 1953, 75(19): 4879.

doi: 10.1021/ja01115a553
[5]
Schwyzer R, Sieber P. Nature, 1963, 199(4889): 172.
[6]
Merrifield B. Science, 1986, 232(4748): 341.

doi: 10.1126/science.3961484 pmid: 3961484
[7]
Merrifield R B. J. Am. Chem. Soc., 1963, 85(14): 2149.

doi: 10.1021/ja00897a025
[8]
Gong Y T, Du Y C, Huang W D, Chen C Q, Ge L J, Hu S Q, Jiang R Q, Zhu S Q, Niu J Y, Xu J C, Zhang W J, Chen L L, Li H X, Wang Y, Lu D P, Ji A X, Li C X, Shi F T, Ye Y H, Tang K L, Xing Q Y. Chin. Sci. Bull., 1965, 11: 941.
龚岳亭, 杜雨苍, 黄惟德, 陈常庆, 葛麟俊, 胡世全, 蒋荣庆, 朱尚权, 钮经义, 徐杰诚, 张伟君, 陈玲玲, 李鸿绪, 汪猷, 陆德培, 季爱雪, 李崇熙, 施溥涛, 叶蕴华, 汤卡罗, 邢其毅. 科学通报, 1965, 11: 941.).
[9]
Hattori K, Koike K, Okuda K, Hirayama T, Ebihara M, Takenaka M, Nagasawa H. Org. Biomol. Chem., 2016, 14(6): 2090.

doi: 10.1039/c5ob02505b pmid: 26779679
[10]
Zhang T, Song W, Zhao J, Liu J. Ind. Eng. Chem. Res., 2017, 56: 11697.

doi: 10.1021/acs.iecr.7b03299
[11]
Fuse S, Koinuma H, Kimbara A, Izumikawa M, Mifune Y, He H Y, Shin-ya K, Takahashi T, Doi T, J. Am. Chem. Soc., 2014, 136(34): 12011.
[12]
Zhao Z G, Mousa R, Metanis N. Chem. A Eur. J., 2022, 28(16): e202200279.
[13]
Grygiel T L R, Teplyakov A, Obmolova G, Stowell N, Holland R, Nemeth J F, Pomerantz S C, Kruszynski M, Gilliland G L. Biopolymers, 2010, 94(3): 350.

doi: 10.1002/bip.21390 pmid: 20091676
[14]
Chang C D, Meienhofer J. Int. J. Pept. Protein Res., 1978, 11(3): 246.

pmid: 649259
[15]
SCHNölzer M, Alewood P, Jones A, Alewood D, Kent S B H. Int. J. Pept. Protein Res., 1992, 40(3/4): 180.

doi: 10.1111/j.1399-3011.1992.tb00291.x
[16]
Yamamoto N, Tanabe Y, Okamoto R, Dawson P E, Kajihara Y. J. Am. Chem. Soc., 2008, 130(2): 501.

pmid: 18085777
[17]
Behrendt R, White P, Offer J. J. Pept. Sci., 2016, 22(1): 4.

doi: 10.1002/psc.2836 pmid: 26785684
[18]
Kulkarni S S, Watson E E, Premdjee B, Conde-Frieboes K W, Payne R J. Nat. Protoc., 2019, 14(7): 2229.

doi: 10.1038/s41596-019-0180-4 pmid: 31227822
[19]
Tang S, Zuo C, Huang D L, Cai X Y, Zhang L H, Tian C L, Zheng J S, Liu L. Nat. Protoc., 2017, 12(12): 2554.

doi: 10.1038/nprot.2017.129
[20]
Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8(12): 2483.

doi: 10.1038/nprot.2013.152
[21]
Wang S S. J. Am. Chem. Soc., 1973, 95(4): 1328.

pmid: 4687686
[22]
Chatzi K B O, Gatos D, Stavropoulos G. Int. J. Pept. Protein Res., 1991, 37(6): 513.

doi: 10.1111/j.1399-3011.1991.tb00769.x
[23]
Tan X L, Pan M, Zheng Y, Gao S, Liang L J, Li Y M. Chem. Sci., 2017, 8(10): 6881.

doi: 10.1039/C7SC02937C
[24]
Carbajo D, El-Faham A, Royo M, Albericio F. ACS Omega, 2019, 4(5): 8674.

doi: 10.1021/acsomega.9b00974 pmid: 31459957
[25]
Acosta G A, Royo M, de la Torre B G, Albericio F. Tetrahedron Lett., 2017, 58(28): 2788.

doi: 10.1016/j.tetlet.2017.06.008
[26]
Rink H. Tetrahedron Lett., 1987, 28(33): 3787.

doi: 10.1016/S0040-4039(00)96384-6
[27]
García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz L J, Gravel C, Furic R, CôtÉ S, Tulla-Puche J, Albericio F. J. Comb. Chem., 2006, 8(2): 213.

pmid: 16529516
[28]
Sheehan J C, Hess G P. J. Am. Chem. Soc., 1955, 77(4): 1067.

doi: 10.1021/ja01609a099
[29]
Leo Benoiton N, Chen F M F. J. Chem. Soc., Chem. Commun., 1981(11): 543.
[30]
Sheehan J, Cruickshank P, Boshart G. J. Org. Chem., 1961, 26(7): 2525.
[31]
SubirÃ3s-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Chem. Eur. J., 2009, 15(37): 9394.

doi: 10.1002/chem.v15:37
[32]
Coste J, Le-Nguyen D, Castro B. Tetrahedron Lett., 1990, 31(2): 205.

doi: 10.1016/S0040-4039(00)94371-5
[33]
Albericio F, Cases M, Alsina J, Triolo S A, Carpino L A, Kates S A. Tetrahedron Lett., 1997, 38(27): 4853.

doi: 10.1016/S0040-4039(97)01011-3
[34]
SubirÓs-Funosas R, El-Faham A, Albericio F. Org. Biomol. Chem., 2010, 8(16): 3665.

doi: 10.1039/c003719b
[35]
Carpino L A, Imazumi H, El-Faham A, Ferrer F J, Zhang C W, Lee Y, Foxman B M, Henklein P, Hanay C, Mügge C, Wenschuh H, Klose J, Beyermann M, Bienert M. Angewandte Chemie Int. Ed., 2002, 41(3): 441.

doi: 10.1002/1521-3773(20020201)41:3【-逻*辑*与-】lt;【-逻*辑*与-】gt;1.0.CO;2-9
[36]
Ehrlich A, Rothemund S, Brudel M, Beyermann M, Carpino L A, Bienert M. Tetrahedron Lett., 1993, 34(30): 4781.

doi: 10.1016/S0040-4039(00)74087-1
[37]
El-Faham A, Funosas R S, Prohens R, Albericio F. Chem. Eur. J., 2009, 15(37): 9404.

doi: 10.1002/chem.v15:37
[38]
Gutte B, Merrifield R B. J. Biol. Chem., 1971, 246(6): 1922.

pmid: 5102153
[39]
Kent S B H. Annu. Rev. Biochem., 1988, 57: 957.

pmid: 3052294
[40]
Bedford J, Hyde C, Johnson T, Jun W, Owen D, Quibell M, Sheppard R C. Int. J. Pept. Protein Res., 1992, 40(3/4): 300.

doi: 10.1111/j.1399-3011.1992.tb00305.x
[41]
Paradís-Bas M, Tulla-Puche J, Albericio F. Chem. Soc. Rev., 2016, 45(3): 631.

doi: 10.1039/c5cs00680e pmid: 26612670
[42]
Wöhr T, Wahl F, Nefzi A, Rohwedder B, Sato T, Sun X C, Mutter M. J. Am. Chem. Soc., 1996, 118(39): 9218.

doi: 10.1021/ja961509q
[43]
Coïc Y M, Le Lan C, Neumann J M, Jamin N, Baleux F. J. Peptide Sci., 2010, 16(2): 98.

doi: 10.1002/psc.1203
[44]
Noden M, Moreira R, Huang E, Yousef A, Palmer M, Taylor S D. J. Org. Chem., 2019, 84(9): 5339.

doi: 10.1021/acs.joc.9b00364
[45]
Abedini A, Raleigh D P. Org. Lett., 2005, 7(4): 693.

doi: 10.1021/ol047480+
[46]
Jolliffe K A. Aust. J. Chem., 2018, 71(10): 723.

doi: 10.1071/CH18292
[47]
Liu Y, Zhao X Y, Wang H B, Liu H L, Sui Z Y, Yan B F, Du Y G. J. Org. Chem., 2021, 86(1): 1065.

doi: 10.1021/acs.joc.0c02541 pmid: 33295775
[48]
Wang P, Aussedat B, Vohra Y, Danishefsky S J. Angew. Chem. Int. Ed., 2012, 51(46): 11571.

doi: 10.1002/anie.201205038
[49]
Zeng C, Sun B, Cao X F, Zhu H L, Oluwadahunsi O M, Liu D, Zhu H, Zhang J B, Zhang Q, Zhang G L, Gibbons C A, Liu Y P, Zhou J, Wang P G. Org. Lett., 2020, 22(21): 8349.

doi: 10.1021/acs.orglett.0c02971
[50]
Johnson T, Quibell M, Owen D, Sheppard R C. J. Chem. Soc., Chem. Commun., 1993(4): 369.
[51]
Li T L, Liu H, Li X C. Org. Lett., 2016, 18(22): 5944.

doi: 10.1021/acs.orglett.6b03056
[52]
Huang Y C, Guan C J, Tan X L, Chen C C, Guo Q X, Li Y M. Org. Biomol. Chem., 2015, 13(5): 1500.

doi: 10.1039/C4OB02260B
[53]
Abdel-Aal A B M, Papageorgiou G, Raz R, Quibell M, Burlina F, Offer J. J. Pept. Sci., 2016, 22(5): 360.

doi: 10.1002/psc.v22.5
[54]
Sohma Y, Sasaki M, Hayashi Y, Kimura T, Kiso Y. Chemical Communications, 2004, 124.
[55]
Sohma Y, Taniguchi A, Skwarczynski M, Yoshiya T, Fukao F, Kimura T, Hayashi Y, Kiso Y. Tetrahedron Lett., 2006, 47(18): 3013.

doi: 10.1016/j.tetlet.2006.03.017
[56]
Youhei S. Biopolymers, 2007, 88: 253.

pmid: 17236207
[57]
Taniguchi A, Skwarczynski M, Sohma Y, Okada T, Ikeda K, Prakash H, Mukai H, Hayashi Y, Kimura T, Hirota S, Matsuzaki K, Kiso Y. ChemBioChem, 2008, 9(18): 3055.

doi: 10.1002/cbic.200800503 pmid: 19025862
[58]
Hojo H, Takei T, Asahina Y, Okumura N, Takao T, So M, Suetake I, Sato T, Kawamoto A, Hirabayashi Y. Angew. Chem. Int. Ed., 2021, 60(25): 13900.

doi: 10.1002/anie.v60.25
[59]
Lu Y A, Felix A M. Int. J. Pept. Protein Res., 1994, 43(2): 127.

pmid: 8200730
[60]
Yang B, Gelfanov V M, Perez-Tilve D, DuBois B, Rohlfs R, Levy J, Douros J D, Finan B, Mayer J P, DiMarchi R D. J. Med. Chem., 2021, 64(8): 4697.

doi: 10.1021/acs.jmedchem.0c02069 pmid: 33821647
[61]
Wang C, Xiong M R, Yang C, Yang D, Zheng J J, Fan Y, Wang S, Gai Y K, Lan X L, Chen H, Zheng L, Huang K. J. Med. Chem., 2020, 63(24): 16028.

doi: 10.1021/acs.jmedchem.0c01913
[62]
Jing X S, Jin K. Med. Res. Rev., 2020, 40(2): 753.

doi: 10.1002/med.v40.2
[63]
Dunetz J R, Xiang Y Q, Baldwin A, Ringling J. Org. Lett., 2011, 13(19): 5048.

doi: 10.1021/ol201875q
[64]
Ollivier N, Toupy T, Hartkoorn R C, Desmet R, Monbaliu J C M, Melnyk O. Nat. Commun., 2018, 9: 2847.

doi: 10.1038/s41467-018-05264-8
[65]
Wong C T T, Lam H Y, Li X C. Tetrahedron, 2014, 70(42): 7770.

doi: 10.1016/j.tet.2014.05.080
[66]
Chow H Y, Zhang Y, Matheson E, Li X C. Chem. Rev., 2019, 119(17): 9971.

doi: 10.1021/acs.chemrev.8b00657 pmid: 31318534
[67]
Gless B H, Olsen C A. J. Org. Chem., 2018, 83(17): 10525.

doi: 10.1021/acs.joc.8b01237
[68]
Payne R J, Wong C H. Chem. Commun., 2010, 46(1): 21.

doi: 10.1039/B913845E
[69]
Ma W J, Deng Y Q, Xu Z J, Liu X B, Chapla D G, Moremen K W, Wen L Q, Li T H. J. Am. Chem. Soc., 2022, 144(20): 9057.

doi: 10.1021/jacs.2c01819
[70]
Dawson P E, Muir T W, Clark-Lewis I, Kent S B H. Science, 1994, 266(5186): 776.

pmid: 7973629
[71]
Nakamura T, Shigenaga A, Sato K, Tsuda Y, Sakamoto K, Otaka A. Chem. Commun., 2014, 50(1): 58.

doi: 10.1039/C3CC47228K
[72]
Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50(33): 7645.

doi: 10.1002/anie.201100996
[73]
Tian X B, Li J, Huang W. Tetrahedron Lett., 2016, 57(38): 4264.

doi: 10.1016/j.tetlet.2016.07.101
[74]
Flood D T, Hintzen J C J, Bird M J, Cistrone P A, Chen J S, Dawson P E. Angew. Chem. Int. Ed., 2018, 57(36): 11634.

doi: 10.1002/anie.v57.36
[75]
Terrier V P, Adihou H, Arnould M, Delmas A F, Aucagne V. Chem. Sci., 2016, 7(1): 339.

doi: 10.1039/c5sc02630j pmid: 29861986
[76]
Lelièvre D, Terrier V P, Delmas A F, Aucagne V. Org. Lett., 2016, 18(5): 920.

doi: 10.1021/acs.orglett.5b03612
[77]
Yan L Z, Dawson P E. J. Am. Chem. Soc., 2001, 123(4): 526.

pmid: 11456564
[78]
Wan Q, Danishefsky S. Angew. Chem. Int. Ed., 2007, 46(48): 9248.

doi: 10.1002/(ISSN)1521-3773
[79]
Pasunooti K K, Yang R L, Banerjee B, Yap T, Liu C F. Org. Lett., 2016, 18(11): 2696.

doi: 10.1021/acs.orglett.6b01160 pmid: 27218276
[80]
Wang S Y, Zhou Q Q, Li Y X, Wei B C, Liu X L, Zhao J, Ye F R, Zhou Z N, Ding B, Wang P. J. Am. Chem. Soc., 2022, 144(3): 1232.

doi: 10.1021/jacs.1c10324
[81]
Loibl S F, Harpaz Z, Seitz O. Angew. Chem. Int. Ed., 2015, 54(50): 15055.

doi: 10.1002/anie.201505274
[82]
Dao Y K, Han L, Wang H X, Dong S W. Org. Lett., 2019, 21(9): 3265.

doi: 10.1021/acs.orglett.9b00980
[83]
Ding H, Shigenaga A, Sato K, Morishita K, Otaka A. Org. Lett., 2011, 13(20): 5588.

doi: 10.1021/ol202316v pmid: 21916452
[84]
Yin H L, Zheng M J, Chen H, Wang S Y, Zhou Q Q, Zhang Q, Wang P. J. Am. Chem. Soc., 2020, 142(33): 14201.

doi: 10.1021/jacs.0c04994
[85]
Liczner C, Hanna C C, Payne R J, Wilds C J. Chem. Sci., 2022, 13(2): 410.

doi: 10.1039/D1SC04937B
[86]
Zhang Y F, Xu C, Lam H Y, Lee C L, Li X C. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(17): 6657.

doi: 10.1073/pnas.1221012110
[87]
Wong C T T, Li T, Lam H Y, Zhang Y, Li X. Front. Chem., 2014, 2: 1.
[88]
Chen D L, Laam Po K H, Blasco P, Chen S, Li X C. Org. Lett., 2020, 22(12): 4749.

doi: 10.1021/acs.orglett.0c01544
[89]
Wei T Y, Liu H, Chu B Z, Blasco P, Liu Z, Tian R J, Li D X, Li X C. Cell Chem. Biol., 2021, 28(5): 722.

doi: 10.1016/j.chembiol.2021.01.007
[90]
Liu J M, Wei T Y, Tan Y, Liu H, Li X C. Chem. Sci., 2022, 13(5): 1367.
[91]
Lee C L, Liu H, Wong C T T, Chow H Y, Li X C. J. Am. Chem. Soc., 2016, 138(33): 10477.

doi: 10.1021/jacs.6b04238
[92]
Newberry R W, Raines R T. Acc. Chem. Res., 2017, 50(8): 1838.

doi: 10.1021/acs.accounts.7b00121
[93]
Tan Y, Li J S, Jin K, Liu J M, Chen Z Y, Yang J, Li X C. Angew. Chem. Int. Ed., 2020, 59(31): 12741.

doi: 10.1002/anie.202003652 pmid: 32343022
[94]
Bode J W, Fox R M, Baucom K D. Angew. Chem. Int. Ed., 2006, 45(8): 1248.

doi: 10.1002/(ISSN)1521-3773
[95]
Pusterla I, Bode J W. Angew. Chem. Int. Ed., 2012, 51(2): 513.

doi: 10.1002/anie.201107198 pmid: 22125261
[96]
Baldauf S, Ogunkoya A O, Boross G N, Bode J W. J. Org. Chem., 2020, 85(3): 1352.

doi: 10.1021/acs.joc.9b02271 pmid: 31840512
[97]
Kumarswamyreddy N, Reddy D N, Robkis D M, Kamiya N, Tsukamoto R, Kanaoka M M, Higashiyama T, Oishi S, Bode J W. RSC Chem. Biol., 2022, 3(6): 721.

doi: 10.1039/D2CB00039C
[98]
Murar C E, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode J W. Angew. Chem. Int. Ed., 2020, 59(22): 8425.

doi: 10.1002/anie.v59.22
[99]
Rohrbacher F, Wucherpfennig T G, Bode J W. Top. Curr. Chem., 2014: 1.
[100]
Wallin E, Von Heijne G. Protein Sci., 1998, 7(4): 1029.

doi: 10.1002/pro.5560070420 pmid: 9568909
[101]
Wang L, Zhang J G, Wang D L, Song C. PLoS Comput. Biol., 2022, 18(3): e1009972.

doi: 10.1371/journal.pcbi.1009972
[102]
Paradís-Bas M, Albert-Soriano M, Tulla-Puche J, Albericio F. Org. Biomol. Chem., 2014, 12(37): 7194.

doi: 10.1039/c4ob01354a pmid: 25162452
[103]
Zheng J S, He Y, Zuo C, Cai X Y, Tang S, Wang Z A, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2016, 138(10): 3553.

doi: 10.1021/jacs.6b00515
[104]
Chen Z, Cole P A. Curr. Opin. Chem. Biol., 2015, 28: 115.

doi: 10.1016/j.cbpa.2015.07.001 pmid: 26196731
[105]
Agouridas V, El Mahdi O, Melnyk O. J. Med. Chem., 2020, 63(24): 15140.

doi: 10.1021/acs.jmedchem.0c01082 pmid: 33236900
[106]
Qiao Y C, Yu G, Kratch K C, Wang X A, Wang W W, Leeuwon S Z, Xu S Q, Morse J S, Liu W R. J. Am. Chem. Soc., 2020, 142(15): 7047.

doi: 10.1021/jacs.0c00252
[107]
Henager S H, Chu N, Chen Z, Bolduc D, Dempsey D R, Hwang Y, Wells J, Cole P A. Nat. Methods, 2016, 13(11): 925.

doi: 10.1038/nmeth.4004 pmid: 27669326
[108]
Jia X Y, Kwon S, Wang C I A, Huang Y H, Chan L Y, Tan C C, Rosengren K J, Mulvenna J P, Schroeder C I, Craik D J. J. Biol. Chem., 2014, 289(10): 6627.

doi: 10.1074/jbc.M113.539262
[109]
Thompson R E, Muir T W. Chem. Rev., 2020, 120(6): 3051.

doi: 10.1021/acs.chemrev.9b00450 pmid: 31774265
[110]
Siman P, Brik A. Org. Biomol. Chem., 2012, 10(30): 5684.

doi: 10.1039/c2ob25149c
[111]
Li F X, Zhang Q Z, Li S J, Lin G, Huo X Y, Lan Y, Yang Z. Org. Lett., 2021, 23(9): 3421.

doi: 10.1021/acs.orglett.1c00881
[112]
Ye F R, Zhao J, Xu P, Liu X L, Yu J, Shangguan W, Liu J Z, Luo X S, Li C, Ying T L, Wang J, Yu B, Wang P. Angew. Chem. Int. Ed., 2021, 60(23): 12610.

doi: 10.1002/anie.v60.23
[113]
Zhao J, Liu J Z, Liu X N, Cao Q, Zhao H B, Liu L Z, Ye F R, Wang C, Shao H, Xue D X, Tao H C, Li B, Yu B, Wang P. Chin. J. Chem., 2022, 40(7): 787.

doi: 10.1002/cjoc.v40.7
[114]
Adamo A, Beingessner R L, Behnam M, Chen J, Jamison T F, Jensen K F, Monbaliu J C M, Myerson A S, Revalor E M, Snead D R, Stelzer T, Weeranoppanant N, Wong S Y, Zhang P. Science, 2016, 352(6281): 61.

doi: 10.1126/science.aaf1337
[1] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.