中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (6): 637-648 DOI: 10.7536/PC170349 Previous Articles   Next Articles

• Review •

The Amphipathy Adjustment of Graphene Oxide and Graphene Quantum Dots and Their Application in Pickering Emulsion Polymerization

Linfeng Wei1, Jianzhong Ma1*, Wenbo Zhang2*, Yan Bao1   

  1. 1. Key Laboratory of Leather Cleaner Production, China National Light Industry, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China;
    2. Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC170349 E-mail:majz@sust.edu.cn;zhangwenbo@sust.edu.cn
  • Supported by:
    The work was supported by the Science and Technology Coordinating Innovative Engineering Project in Shaanxi Province (No. 2015KTCL01-11) and the Scientific Research Initiation Foundation of Shaanxi University of Science & Technology(No. 2016BJ-28).
PDF ( 1775 ) Cited
Export

EndNote

Ris

BibTeX

Graphene oxide (GO) and graphene quantum dots (GQDs) are difficult to disperse in the polymer homogeneously. Pickering emulsion polymerization can effectively improve the dispersity of GO and GQDs in the polymer matrix, so the performances of composite material are improved. This article summarizes the preparation and structure of GO and GQDs, and expounds the influence of the GO size, ionic strength, pH, GO and GQDs structure designing, monomer polarity and other factors for the adjustment of amphiphilicity of GO and GQDs as well as the Pickering emulsion polymerization. The research progress of GO and GQDs used for improving the function of composite by Pickering emulsion polymerization is summarized. The ability for GO and GQDs to act as stabilizer for Pickering emulsions is related to the interfacial tension of liquid-liquid interfaces and liquid-solid interfaces and whether GO and GQDs can be adsorbed onto the liquid-liquid interfaces thermodynamically. All of the size, ionic strength, pH and structure designing have an effect on the liquid-solid interfacial tension. Hence, monomer polarity can decide the liquid-liquid and liquid-solid interfacial tension. The GO and GQDs can be modified by modification, reduction and other chemical methods, which can endow the polymer with excellent properties such as conductivity, thermal conductivity and magnetic responsivity. At last, the propects of GO and GQDs stabilizing Pickering emulsion are proposed.

Contents
1 Introduction
2 Graphene oxide
2.1 The preparation of GO
2.2 The structure of GO
2.3 Research progress of GO as Pickering emulsion stabilizer
3 Graphene quantum dots
3.1 The preparation of GQDs
3.2 The structure of GQDs
3.3 Research progress of GQDs as Pickering emulsion stabilizer
4 Conclusion

CLC Number: 

[1] Chan I J, Ko J, Yin Z, Kim Y J, Kim Y S. Ind. Eng. Chem. Res., 2016, 55:9433.
[2] Nayak R K, Mahato K K, Routara B C, Ray B C. J. Appl. Polym. Sci., 2016, 133:44274.
[3] Zhao Y H, Zhang Y F, Bai S L. Composites Part A, 2016, 85:148.
[4] Zhang W, Ma J, Gao D, Zhou Y, Li C, Zha J, Zhang J. Prog. Org. Coat., 2016, 94:9.
[5] Kumar P, Yu S, Shahzad F, Hong S M, Kim Y H, Chong M K. Carbon, 2016, 101:120.
[6] Liu C, Yan H, Lv Q, Li S, Niu S. Carbon, 2016, 102:145.
[7] Liu C, Yan H, Chen Z, Yuan L, Liu T. J. Mater. Chem. A, 2015, 3:10559.
[8] Wang X, Hu Y, Song L, Yang H, Xing W, Lu H. J. Mater. Chem., 2011, 21:4222.
[9] Patole A S, Patole S P, Jung S Y, Yoo J B, An J H, Kim T H. Eur. Polym. J., 2012, 48:252.
[10] Pickering S U. J. Chem. Soc. Trans., 1907, 91:2001.
[11] Chen M, Wu L, Zhou S, You B. Macromolecules, 2010, 37:9613.
[12] Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J J. Nanoscale, 2013, 5:4015.
[13] Kyu K J, Bae S, Yi Y, Jin P M, Jin K S, Myoung N, Lee C L, Hee H B, Hyeok P J. Sci. Rep., 2015, 5:11032.
[14] Kovalchuk A, Huang K, Xiang C, Martí A A, Tour J M. ACS Appl. Mater. Interfaces, 2015, 7:26063.
[15] Ooi P C, Lin J, Kim T W, Li F. Org. Electron., 2016, 32:115.
[16] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[17] Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J. J. Am. Chem. Soc., 2010, 132:8180.
[18] Brodie B C. Philos. Trans. R. Soc. London, 2009, 149:249.
[19] Hyon S H, Ikada Y. US 4663358, 1987.
[20] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80:1339.
[21] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem. Mater., 2007, 19:4396.
[22] Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nature Nanotech., 2008, 3:101.
[23] Singh V, Joung D, Lei Z, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56:1178.
[24] Liu X, Suk J W, Boddeti N G, Cantley L, Wang L, Gray J M, Hall H J, Bright V M, Rogers C T, Dunn M L. Adv. Mater., 2014, 26:1571.
[25] Vinodgopal K, Neppolian B, Salleh N, Lightcap I V, Grieser F, Ashokkumar M, Ding T T, Kamat P V. Colloids Surf. A, 2012, 409:81.
[26] Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G. Carbon, 2012, 50:4738.
[27] Hofmann U, Holst R. Ber. Dtsch. Chem. Ges., 1939, 72:754.
[28] Ruess G. Monats. Chem., 1947, 76:381.
[29] Scholz W, Boehm H P. Z. Anorg. Allg. Chem., 1969, 369:327.
[30] Nakajima T, Mabuchi A, Hagiwara R. Carbon, 1988, 26:357.
[31] Lerf A, He H, Forster M, Klinowski J. J. Phys. Chem. B, 1998, 102:4477.
[32] Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I. Chem. Mater., 2006, 18:2740.
[33] Zhang L, Yu J, Yang M, Xie Q, Peng H, Liu Z. Nat. Commun., 2013, 4:1443.
[34] Man S H C, Yusof N Y M, Michael R W, Thickett S C, Zetterlund P B. J. Polym. Sci., Part A:Polym. Chem., 2013, 51:5153.
[35] He Y, Wu F, Sun X, Li R, Guo Y, Li C, Zhang L, Xing F, Wang W, Gao J. ACS Appl. Mater. Interfaces, 2013, 5:4843.
[36] Yang H, Kang D J, Ku K H, Cho H H, Park C H, Lee J, Lee D C, Ajayan P M, Kim B J. ACS Macro Lett., 2014, 3:985.
[37] Song X, Yang Y, Liu J, Zhao H. Langmuir, 2011, 27:1186.
[38] Xie P, Ge X, Fang B, Li Z, Liang Y, Yang C. Colloid Polym. Sci., 2013, 291:1631.
[39] Man S H C, Thickett S C, Whittaker M R, Zetterlund P B. J. Polym. Sci., Part A:Polym. Chem., 2012, 51:47.
[40] Man S H C, Ly D, Whittaker M R, Thickett S C, Zetterlund P B. Polymer, 2014, 55:3490.
[41] Yoon K Y, An S J, Chen Y, Lee J H, Bryant S L, Ruoff R S, Huh C, Johnston K P. J. Colloid Interf. Sci., 2013, 403:1.
[42] Shih C J, Lin S, Sharma R, Strano M S, Blankschtein D. Langmuir, 2012, 28:235.
[43] Yin G, Zheng Z, Wang H, Du Q, Zhang H. J. Colloid Interf. Sci., 2013, 394:192.
[44] Tessonnier J P, Barteau M A. Langmuir, 2012, 28:6691.
[45] Dao T D, Erdenedelger G, Jeong H M. Polymer, 2014, 55:4709.
[46] Wu H, Yi W, Chen Z, Wang H, Du Q. Carbon, 2015, 93:473.
[47] Fei X, Xia L, Chen M, Wei W, Luo J, Liu X. Materials, 2016, 9:731.
[48] Huang Y, Wang X, Jin X, Wang T. J. Therm. Anal. Calorim., 2014, 117:755.
[49] Lin K Y, Yang H, Petit C, Lee W D. J. Colloid Interf. Sci., 2015, 438:296.
[50] Thickett S C, Zetterlund P B. J. Colloid Interf. Sci., 2015, 442:67.
[51] Sun Z, Feng T, Russell T P. Langmuir, 2013, 29:13407.
[52] Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B. ACS Nano, 2010, 4:2300.
[53] Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A. Adv. Mater., 2012, 24:5333.
[54] Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X, Gao G. Nano Lett., 2012, 12:844.
[55] Dong Y, Guo C X, Chi Y, Li C M. J. Mater. Chem., 2012, 22:8764.
[56] Shinde D B, Pillai V K. Chemistry, 2012, 18:12522.
[57] Shin Y, Lee J, Yang J, Park J, Lee K, Kim S, Park Y, Lee H. Small, 2014, 10:866.
[58] Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R. Chem. Commun., 2011, 47:6858.
[59] Kwon W, Kim Y H, Lee C L, Lee M, Choi H C, Lee T W, Rhee S W. Nano Lett., 2014, 14:1306.
[60] Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Zheng B, Wu H, Guo S, Zhang J. ACS Nano, 2012, 6:6592.
[61] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Science, 2007, 320:356.
[62] Sun J, Yang S, Wang Z, Shen H, Xu T, Sun L, Li H, Chen W, Jiang X, Ding G. Part. Part. Syst. Char., 2014, 32:434.
[63] Sun H, Ji H, Ju E, Guan Y, Ren J, Qu X. Chem. -Eur. J., 2015, 21:3791.
[64] Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng K S, Chi M L, Zeng S, Hao J. ACS Nano, 2012, 6:5102.
[65] Lu J, Pei S E Y, Gan C K, Wu P, Loh K P. Nature Nanotech., 2011, 6:247.
[66] Dan Q, Min Z, Zhang L, Zhao H, Xie Z, Jing X, Haddad R E, Fan H, Sun Z. Sci. Rep., 2015, 4:5294.
[67] Xu W, Fei T, Wang W, Jiao C, Min W, Zhao J X. J. Mater. Chem. C, Mater. Opt. Electron. Devices., 2013, 1:4676.
[68] Hao Y N, Guo H L, Tian L, Kang X. RSC Adv., 2015, 5:43750.
[69] Wang L, Li W, Wu B, Li Z, Wang S, Liu Y, Pan D, Wu M. Chem. Eng. J., 2016, 300:75.
[70] Dong H, Dai W, Ju H, Lu H, Wang S, Xu L, Zhou S F, Zhang Y, Zhang X. ACS Appl. Mater. Interfaces, 2015, 7:11015.
[71] Mandal T K, Hou Y, Gao Z, Ning H, Yang W, Gao M. Adv. Sci., 2016, 3:1600217.
[72] Liu F, Jang M H, Ha H D, Kim J H, Cho Y H, Seo T S. Adv. Mater., 2013, 25:3657.
[73] Cao L, Meziani M J, Sahu S, Sun Y P. Acc. Chem. Res., 2013, 46:171.
[74] Cho H H, Yang H, Kang D J, Kim B J. ACS Appl. Mater. Interfaces, 2015, 7:8615.
[75] Zeng M, Wang X, Yu Y H, Zhang L, Shafi W, Huang X, Cheng Z. J. Nanomater., 2016, 2016:1.
[76] Yang H, Kang H K, Shin J M, Lee J, Chan H P, Cho H H, Jang S G, Kim B J. Chem. Mater., 2016, 28:830.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[7] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[8] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[9] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[10] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[11] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[12] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[13] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[14] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[15] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.