中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 787-800 DOI: 10.7536/PC210437 Previous Articles   Next Articles

• Review •

Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications

Zhenxing Li1, Zhiwang Luo1, Ping Wang1, Zhenqiang Yu2, Erqiang Chen3, Helou Xie1()   

  1. 1 Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University,Xiangtan 411105, China
    2 School of Chemistry and Environmental Engineering, Shenzhen University,Shenzhen 518060, China
    3 College of Chemistry and Molecular Engineering, Peking University,Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Helou Xie
  • Supported by:
    National Natural Science Foundation of China(21975215)
Richhtml ( 37 ) PDF ( 621 ) Cited
Export

EndNote

Ris

BibTeX

Luminescent liquid crystalline polymers (LLCPs), combining the ordering, stability, mechanical properties of the liquid crystalline polymer with the luminescent properties of chromophores, show broad applications. In order to obtain high-efficiency LLCPs, various LLCPs with different structures have been successfully designed and synthesized, including main-chain, side-chain, mesogen-jacketed LLCPs and LLCP network, etc. Meanwhile, interaction of the molecular structure, liquid crystalline phase structure and optical physical properties, has also been carefully investigated. In this paper, the latest progress of LLCPs is summarized, including the molecular design and synthesis, structure and properties, and their applications. At last, a brief outlook on the future development in this field is presented.

Contents

1 Introduction

2 Molecular design of luminescent liquid crystalline polymers

2.1 Main-chain luminescent liquid crystalline polymers

2.2 Side-chain luminescent liquid crystalline polymers

2.3 Mesogen-jacketed luminescent liquid crystalline polymers

3 Applications of luminescent liquid crystalline polymers

3.1 Polarized luminescence

3.2 Anti-counterfeiting

3.3 Optical information storage

4 Conclusions and outlook

Fig. 1 (a) Chemical structures of P1-P6. (b) Effects of europium ions on phase transition and decomposition temperatures of P1-P6, where Tg, ΔT, Ti and Td represent the glass transition temperature, mesophase temperature ranges, mesophase-isotropic phase transition temperatures and decomposition temperature, respectively[28]. Copyright 2016, Taylor & Francis
Fig. 2 (a) Chemical structures of P7-P12. (b) XRD images of P8. (c) PLM images of P8. (d) XRD images of P12. (e) PLM images of P12[31]. Copyright 2011, American Chemical Society
Fig. 3 (a) Chemical structures of P13-P20. (b) Solid state fluorescence quantum yield of P13-P16[36]. (Copyright 2018, The Royal Society of Chemistry) and P17-P20[35]. (Copyright 2019, The Royal Society of Chemistry)
Fig. 4 (a) Chemical structures of P21~P26. (b) XRD profiles after thermal annealing. (c) Schematic illustration of structure model of Smectic and ΦH phases[37]. Copyright 2020, The Royal Society of Chemistry
Fig. 5 (a) Molecular structures of P27-P31. (b) Effect of spacer length on columnar dimensions and two-dimensional inter-columnar correlation lengths, insets images are column cross section[38]. Copyright 2021, Wiley-VCH
Fig. 6 (a) Chemical structures of P32[39] (Copyright 2014, The Royal Society of Chemistry), P33 and P34; (b) birefringence, phase structures, and fluorescence properties of P33 (x = 0.8) thin film upon UV irradiation and thermal treatment, respectively[40]. Copyright 2018, American Chemical Society
Fig. 7 (a) Chemical structures of the copolymers P35, P36 and P37. (b) XRD patterns of the three copolymers. (c) PLM images of the three copolymers at high temperatures[41]. Copyright 2021, Wiley-VCH
Fig. 8 (a) Chemical structures of P38~P43. (b) Representative PLM textures of P38 and P43. (c) The relationship of P38~P43 between the quantum yields and the spacer length[44]. Copyright 2017, American Chemical Society
Fig. 9 (a) Chemical structures of P44~P49, where R and M represent the corresponding groups, and the red lines indicate the positions to which the groups are connected. (b) Representative PLM textures of P44~P47[45] (Copyright 2019, American Chemical Society) and representative PLM textures of P48 and P49. (c) The fluorescence intensity spectra of P48 and P49 before and after annealing, respectively[46]. Copyright 2019, The Royal Society of Chemistry
Fig. 10 (a) Chemical structure of P50. (b) Representative PLM textures of SmC* in P50. (c) XRD profiles of the mixtures containing different contents of PT-Chol and 5CB[47]. Copyright 2020, American Chemical Society
Fig. 11 (a) Chemical structure of RTP polymers P51; (b) molecular model of P51 in columnar LC phase; (c) XRD pattern and reconstructed relative electron density map of P51[48]. Copyright 2019, American Chemical Society
Fig. 12 (a) Chemical structures of P52-x and P53-x, where red dotted line indicates the direction of hydrogen bonding. (b) The XRD profiles of P52-x at room temperature[49]. Copyright 2019, American Chemical Society. (c) The XRD profiles of P53-x at room temperature after annealing. (d) Fluorescent images of P53-x test strips under 365 nm UV light after fuming with different solutions for 5 s: (1) blank, (2) ethanol, (3) aqueous ammonia, (4) phenol, (5) acetic acid, (6) formic acid, (7) hydrofluoric acid, (8) trifluoroacetic acid, (9) hydrochloric acid[29]. Copyright 2020, The Royal Society of Chemistry
Fig. 13 (a) Chemical structures of monomers M1~M3. (b) PLM images of the uniaxial oriented luminescent liquid crystal polymer network and XRD patterns with the X-ray beam along the x-direction[50]. Copyright 2020, The Royal Society of Chemistry. (c) Schematic diagram of the photoalignment and photo-curing process of the LCP film[51]. Copyright 2019, American Chemical Society
Fig. 14 (a) Chemical structures of monomer M4 and Crosslinker M5. (b) Schematic diagram of ADMET polymerization. (c) PLM images of the liquid polymer network measured at room temperature[52]. Copyright 2018, American Chemical Society
Fig. 15 (a) PL spectra of the free-standing film with the RD parallel and perpendicular to the polarizer axis. (b) The PL intensities of the free-standing film at 526 nm with the different polarization angles[50]. Copyright 2020, The Royal Society of Chemistry. (c) Plot of glum values vs. the different contents of PT-Chol. (d) CPL spectra and glum of PT-Chol-30% + 5CB[47]. Copyright 2020, American Chemical Society
Fig. 16 (a) QR code prepared by the photoalignment technology and photoisomerization for anti-counterfeiting[51]. Copyright 2019, American Chemical Society. (b) Fluorescence images of the original film and that after being treated with TFA, fluorescence images without polarizer (i) and parallel (ii) and perpendicular (iii) to the polarizer axis, respectively[50]. Copyright 2020, The Royal Society of Chemistry. (c) Photograph and luminescent image of QR code based on up-conversion luminescent technology[54]. Copyright 2017, Wiley-VCH
Fig. 17 (a) Two-dimensional fluorescent pattern prepared by P47[45]. Copyright 2019, American Chemical Society. (b) Fluorescence pictures of P24 film irradiated with 365 nm UV light and then 254 nm[37]. Copyright 2020, The Royal Society of Chemistry. (c) Procedures of writing and erasing multicolor luminescent images with different masks[29]. Copyright 2020, The Royal Society of Chemistry
[1]
Lu Y Q, Li Y. Light. Sci. Appl., 2021, 10: 122.

doi: 10.1038/s41377-021-00567-w
[2]
Pastoor S, Wöpking M. Displays, 1997, 17(2): 100.

doi: 10.1016/S0141-9382(96)01040-2
[3]
De J, Yang W Y, Bala I, Gupta S P, Yadav R A K, Dubey D K, Chowdhury A, Jou J H, Pal S K. ACS Appl. Mater. Interfaces, 2019, 11(8): 8291.

doi: 10.1021/acsami.8b18749
[4]
Farinola G M, Ragni R. Chem. Soc. Rev., 2011, 40(7): 3467.

doi: 10.1039/c0cs00204f
[5]
Sagara Y, Kato T. Angew. Chem. Int. Ed., 2011, 50(39): 9128.

doi: 10.1002/anie.201100914
[6]
Akagi K. Bull. Chem. Soc. Jpn., 2019, 92(9): 1509.

doi: 10.1246/bcsj.20190092
[7]
Han J M, Guo S, Lu H, Liu S J, Zhao Q, Huang W. Adv. Opt. Mater., 2018, 6(17): 1800538.

doi: 10.1002/adom.201800538
[8]
San Jose B A, Matsushita S, Moroishi Y, Akagi K. Macromolecules, 2011, 44(16): 6288.

doi: 10.1021/ma201229g
[9]
Schadt M. Liq. Cryst., 1993, 14(1): 73.

doi: 10.1080/02678299308027305
[10]
Yamane S, Sagara Y, Mutai T, Araki K, Kato T. J. Mater. Chem. C, 2013, 1(15): 2648.

doi: 10.1039/c3tc00861d
[11]
Zhang T, Chen H, Ma X, Tian H. Ind. Eng. Chem. Res., 2017, 56(11): 3123.

doi: 10.1021/acs.iecr.7b00149
[12]
Martínez-Abadía M, GimÉnez R, Ros M B. Adv. Mater., 2018, 30: 1704161.

doi: 10.1002/adma.201704161
[13]
Galyametdinov Y G, Knyazev A A, Dzhabarov V I, Cardinaels T, Driesen K, Görller-Walrand C, Binnemans K. Adv. Mater., 2008, 20(2): 252.

doi: 10.1002/adma.200701714
[14]
Grell M, Bradley D D C, Inbasekaran M, Woo E P. Adv. Mater., 1997, 9(10): 798.

doi: 10.1002/adma.19970091006
[15]
Kozhevnikov V, Donnio B, Bruce D. Angew. Chem. Int. Ed., 2008, 47(33): 6286.

doi: 10.1002/anie.200802101 pmid: 18615415
[16]
Misaki M, Ueda Y, Nagamatsu S, Yoshida Y, Tanigaki N, Yase K. Macromolecules, 2004, 37(18): 6926.

doi: 10.1021/ma049051x
[17]
Chen G, Li W B, Zhou T R, Peng Q, Zhai D, Li H X, Yuan W Z, Zhang Y M, Tang B Z. Adv. Mater., 2015, 27(30): 4496.

doi: 10.1002/adma.201501981
[18]
Jakubiak R, Collison C J, Wan W C, Rothberg L J, Hsieh B R. J. Phys. Chem. A, 1999, 103(14): 2394.

doi: 10.1021/jp9839450
[19]
Wang P, Collison C J, Rothberg L J. J. Photochem. Photobiol. A Chem., 2001, 144(1): 63.

doi: 10.1016/S1010-6030(01)00518-4
[20]
Dong Y Q, Lam J W Y, Tang B Z. J. Phys. Chem. Lett., 2015, 6(17): 3429.

doi: 10.1021/acs.jpclett.5b01090
[21]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115(21): 11718.

doi: 10.1021/acs.chemrev.5b00263 pmid: 26492387
[22]
Zhang F X, Ma Y S, Chi Y H, Yu H H, Li Y N, Jiang T Y, Wei X F, Shi J M. Sci. Rep., 2018, 8: 8208.

doi: 10.1038/s41598-018-26502-5
[23]
Zhelev Z, Ohba H, Bakalova R. J. Am. Chem. Soc., 2006, 128(19): 6324.

doi: 10.1021/ja061137d
[24]
Koo J, Lim S I, Lee S H, Kim J S, Yu Y T, Lee C R, Kim D Y, Jeong K U. Macromolecules, 2019, 52(4): 1739.

doi: 10.1021/acs.macromol.8b02513
[25]
Geng Y H, Culligan S W, Trajkovska A, Wallace J U, Chen S H. Chem. Mater., 2003, 15(2): 542.

doi: 10.1021/cm0208859
[26]
Yasuda T, Ooi H, Morita J, Akama Y, Minoura K, Funahashi M, Shimomura T, Kato T. Adv. Funct. Mater., 2009, 19(3): 411.

doi: 10.1002/adfm.200801268
[27]
Zabulica A, Perju E, Bruma M, Marin L. Liq. Cryst., 2014, 41(2): 252.

doi: 10.1080/02678292.2013.852258
[28]
Yao B, Cong Y H, Zhang B Y. Liq. Cryst., 2016, 43(9): 1190.

doi: 10.1080/02678292.2016.1162860
[29]
Tao L, Luo Z W, Lan K, Wang P, Guan Y, Shen Z H, Xie H L. Polym. Chem., 2020, 11(39): 6288.

doi: 10.1039/D0PY00907E
[30]
Yao B, Lin P C, Sun H, Wang S F, Luo C C, Li Z, Du X H, Ding Y, Xu Y, Wan H R, Zhu W Y. Adv. Optical Mater., 2021, 9(5): 2001434.

doi: 10.1002/adom.202001434
[31]
Yuan W Z, Yu Z Q, Tang Y H, Lam J W Y, Xie N, Lu P, Chen E Q, Tang B Z. Macromolecules, 2011, 44(24): 9618.

doi: 10.1021/ma2021979
[32]
Finkelmann H, Rehage G. Makromol. Chem., Rapid Commun., 1980, 1(1): 31.
[33]
Craig A A, Imrie C T. J. Mater. Chem., 1994, 4(11): 1705.

doi: 10.1039/jm9940401705
[34]
Duran R, Guillon D, Gramain P, Skoulios A. Makromol. Chem., Rapid Commun., 1987, 8(4): 181.
[35]
Yuan Y J, He L F, Li J D, Zhang H L. Polym. Chem., 2019, 10(21): 2706.

doi: 10.1039/C9PY00339H
[36]
Yuan Y J, Li J D, He L F, Liu Y W, Zhang H L. J. Mater. Chem. C, 2018, 6(26): 7119.

doi: 10.1039/C8TC01641K
[37]
Wu Y J, Zhang S S, Pei J W, Chen X F. J. Mater. Chem. C, 2020, 8(19): 6461.

doi: 10.1039/D0TC00069H
[38]
Mu B, Zhang Z L, Zhao Y, Hao X N, Tian W. Chin. J. Chem., 2021, 39(7): 2009.

doi: 10.1002/cjoc.202100051
[39]
Wang S J, Zhao R Y, Yang S, Yu Z Q, Chen E Q. Chem. Commun., 2014, 50(61): 8378.

doi: 10.1039/C4CC03113J
[40]
Zhu Y L, Zheng M Q, Tu Y Y, Chen X F. Macromolecules, 2018, 51(9): 3487.

doi: 10.1021/acs.macromol.8b00347
[41]
Li X S, Wu Y, Zhao Y R, Yu Z Q. Adv. Optical Mater., 2021, 9(6): 2001893.

doi: 10.1002/adom.202001893
[42]
Zhou Q F, Zhu X L, Wen Z Q. Macromolecules, 1989, 22(1): 491.

doi: 10.1021/ma00191a094
[43]
Zhou Q F, Li H M, Feng X D. Macromolecules, 1987, 20(1): 233.

doi: 10.1021/ma00167a042
[44]
Guo Y, Shi D, Luo Z W, Xu J R, Li M L, Yang L H, Yu Z Q, Chen E Q, Xie H L. Macromolecules, 2017, 50(24): 9607.

doi: 10.1021/acs.macromol.7b01605
[45]
Zhu J C, Han T, Guo Y, Wang P, Xie H L, Meng Z G, Yu Z Q, Tang B Z. Macromolecules, 2019, 52(10): 3668.

doi: 10.1021/acs.macromol.9b00221
[46]
Zhu J C, Guan Y, Luo Z W, Li Z X, Huang H H, Wang P, Shen Z H, Xie H L. Polym. Chem., 2019, 10(46): 6342.

doi: 10.1039/C9PY01290G
[47]
Luo Z W, Tao L, Zhong C L, Li Z X, Lan K, Feng Y, Wang P, Xie H L. Macromolecules, 2020, 53(22): 9758.

doi: 10.1021/acs.macromol.0c02246
[48]
Zhang Y F, Wang Y C, Yu X S, Zhao Y, Ren X K, Zhao J F, Wang J, Jiang X Q, Chang W Y, Zheng J F, Yu Z Q, Yang S, Chen E Q. Macromolecules, 2019, 52(6): 2495.

doi: 10.1021/acs.macromol.9b00171
[49]
Tao L, Li M L, Yang K P, Guan Y, Wang P, Shen Z H, Xie H L. ACS Appl. Mater. Interfaces, 2019, 11(16): 15051.

doi: 10.1021/acsami.9b01476
[50]
Tao L, Lan K, Zhong C L, Zhou Y J, Wang P, Fan F, Shen Z H, Xie H L. J. Mater. Chem. C, 2020, 8(46): 16561.

doi: 10.1039/D0TC04406G
[51]
He Y R, Li J T, Li J, Zhu C, Guo J B. ACS Appl. Polym. Mater., 2019, 1(4): 746.

doi: 10.1021/acsapm.8b00276
[52]
Liu L, Wang M, Guo L X, Sun Y, Zhang X Q, Lin B P, Yang H. Macromolecules, 2018, 51(12): 4516.

doi: 10.1021/acs.macromol.8b00677
[53]
Chen Y D, Lu P, Yuan Y J, Zhang H L. J. Mater. Chem. C, 2020, 8(39): 13632.

doi: 10.1039/D0TC03276J
[54]
Ye S M, Teng Y X, Juan A, Wei J, Wang L Y, Guo J B. Adv. Opt. Mater., 2017, 5(4): 1600956.

doi: 10.1002/adom.201600956
[1] Meng Wang, He Song, Yifei Zhu. Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(12): 2588-2603.
[2] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.
[3] Ping Wang, Qiaofeng Yang, Chuanzhuang Zhao*. Molecular Design and Intelligent Material Construction of Light-Responsive Microgel [J]. Progress in Chemistry, 2017, 29(7): 750-756.
[4] Wang Wenqian, Chen Linfeng, Wen Yongqiang*, Zhang Xueji, Song Yanlin, Jiang Lei. Mesoporous Silica Nanoparticle-Based Controlled-Release System [J]. Progress in Chemistry, 2013, 25(05): 677-691.
[5] Liu Dan, Wang Tao, Liu Xinxing, Wang Chaoyang, Tong Zhen. Intelligent Cell Detachment Materials Based on Poly(N-Isopropylacrylamide) [J]. Progress in Chemistry, 2011, 23(11): 2353-2359.
[6] jianzhuang chen Kun CUI Shu Yuan Zhang MA Zhi. Recent Progress in the Design, Synthesis and Application of the Main-chain-end Functional Polyolefin [J]. Progress in Chemistry, 2008, 20(11): 1740-1750.
[7] Qian Renyuan,Chen Shousi,Song Wenhui. Recent Advances in the Observation of Disclinations of Main-chain Nematic Polymers [J]. Progress in Chemistry, 1996, 8(01): 1-.