中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1723-1733 DOI: 10.7536/PC220414 Previous Articles   Next Articles

• Review •

Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers

Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi()   

  1. College of Chemistry and Chemical Engineering, Yunnan Normal University,Kunming 650500, China
  • Received: Revised: Online: Published:
  • Contact: Yunmei Bi
  • Supported by:
    National Natural Science Foundation of China(21564017)
Richhtml ( 32 ) PDF ( 292 ) Cited
Export

EndNote

Ris

BibTeX

Linear-dendritic block copolymers (LDBCs) are composed of a linear polymer and dendrimers (dendrons). They not only combine the characteristics of the two types of polymers, but also have unique structures and properties. Furthermore, stimuli-responsive LDBCs can be generated through the selection and structural modification of their linear chains and dendrons. Stimuli-responsive LDBCs have attracted much attention in recent years because of combining the ability to respond to a specific stimulus and different polymeric architectures for a broad range of applications, including drug delivery, gene therapy and materials science. Among them, enzyme responsive LDBCs are able to specifically respond to endogenous enzymes. Compared with the polymers that are able to only respond to exogenous stimuli such as temperature, light, etc, enzyme responsive LDBCs have high selectivity and better biocompatibility. Therefore, they are more suitable for application in in vivo as biomedical materials. Amphiphilic enzyme responsive LDBCs are capable of self-assembling in aqueous solution into nano-aggregates and disassembling to release payloads upon enzymatic stimuli. Additionally, the self-assembly and enzyme responsive disassembly properties of amphiphilic enzyme responsive LDBCs can be adjusted by changing the enzyme-responsive groups, linear chains and dendrons of LDBCs. Due to their unique enzyme response properties and excellent biocompatibility, enzyme responsive LDBCs have broad application prospects in drug delivery, biomedical imaging, etc. Herein, this review summarizes the synthetic approaches of enzyme responsive LDBCs, the effect of the structures such as the length and structure of linear chain, and hydrophobicity of dendrons of the LDBCs on their self-assembly properties and enzyme-responsive properties. The applications of these copolymers are also introduced. Finally, the research prospect of enzyme responsive LDBCs are proposed.

Contents

1 Introduction

2 Synthetic approaches for enzyme responsive linear-dendritic block copolymers (LDBCs)

2.1 The divergent approach

2.2 The convergent approach

2.3 The coupling approach

3 Effect of LDBCs structures and enzyme concentration on the properties of enzyme responsive LDBCs

3.1 The effect of different enzyme responsive groups in the LDBCs

3.2 The effect of linear chain length of the LDBCs

3.3 The effect of linear chain structure and type of the LDBCs

3.4 The effect of hydrophobicity of dendrons in the LDBCs

3.5 The effect of enzyme concentration

4 Application of enzyme responsive LDBCs

4.1 As a drug carrier

4.2 Application in the field of fluorescent imaging probes

5 Conclusion and outlook

Fig. 1 Structures of enzyme responsive LDBCs[11,22,23]
Fig. 2 Synthesis of enzyme responsive LDBCs PNVP-b-dendr(Phe-Lys)n (n =1~3) by a chain-first approach[11]
Fig. 3 Synthesis of enzyme responsive LDBCs (bis-MPA-Gn-b-PHEG (n = 1, 2) ) by a dendron-first approach[23]
Fig. 4 Synthesis of enzyme responsive LDBCs by a coupling approach[35]
Table 1 Enzyme responsive groups in LDBCs
Fig. 5 Mechanism of disassembly of LDBCs micelles upon enzymatic activation[22]
Fig. 6 Effect of linear and V-shaped hydrophilic blocks on enzyme responsive disassembly properties of LDBC micelles[36]
Fig. 7 Enzyme-responsive release of LDBCs micelles loaded with hydrophobic small molecules in a covalent or non-covalent manner[52]
[1]
Wang L L, Zhao H, Chen D Z. Chinese Polymer Bulleti, 2007(1): 19.
王莉莉, 赵辉, 谌东中. 高分子通报, 2007(1): 19.).
[2]
Wurm F, Frey H. Prog. Polym. Sci., 2011, 36(1): 1.

doi: 10.1016/j.progpolymsci.2010.07.009
[3]
Fan X H, Zhao Y L, Xu W, Li L B. Mater. Sci. Eng. C, 2016, 62: 943.

doi: 10.1016/j.msec.2016.01.044
[4]
Blasco E, Piñol M, Oriol L. Macromol. Rapid Commun., 2014, 35(12): 1160.

doi: 10.1002/marc.201470041
[5]
Ge Z S, Luo S Z, Liu S Y. J. Polym. Sci. A Polym. Chem., 2006, 44(4): 1357.

doi: 10.1002/pola.21261
[6]
Bi Y M, Yan C X, Shao L D, Wang Y F, Ma Y C, Tang G. J. Polym. Sci. A Polym. Chem., 2013, 51(15): 3240.

doi: 10.1002/pola.26716
[7]
Chen L L, Chen T, Fang W X, Wen Y, Lin S L, Lin J P, Cai C H. Biomacromolecules, 2013, 14(12): 4320.

doi: 10.1021/bm401215w
[8]
Huang D, Wang Y Q, Yang F, Shen H, Weng Z Q, Wu D C. Polym. Chem., 2017, 8(43): 6675.

doi: 10.1039/C7PY01556A
[9]
del Barrio J, Oriol L, Alcalá R, Saánchez C. Macromolecules, 2009, 42(15): 5752.

doi: 10.1021/ma9003133
[10]
Blasco E, Barrio J D, Sánchez-Somolinos C, Piñol M, Oriol L. Polym. Chem., 2013, 4(7): 2246.

doi: 10.1039/c2py21025h
[11]
Wei J W, Lin F, You D, Qian Y Y, Wang Y J, Bi Y M. Polymers, 2019, 11(10): 1625.

doi: 10.3390/polym11101625
[12]
Qian Y Y, Wei J W, Wang Y J, You D, Lin F, Yue W Z, Bi Y M. Polym. Adv. Technol., 2020, 31(11): 2797.

doi: 10.1002/pat.5006
[13]
Zelzer M, Todd S J, Hirst A R, McDonald T O, Ulijn R V. Biomater. Sci., 2013, 1(1): 11.

doi: 10.1039/C2BM00041E
[14]
Wang H X, Xiong Y T, Qing G Y, Sun T L. Progress in Chemistry, 2017, 29(04): 348.
王宏喜, 熊雨婷, 卿光焱, 孙涛垒. 化学进展, 2017, 29(04): 348.).
[15]
Bruchard M, Mignot G, Derangère V, Chalmin F, Chevriaux A, VÉgran F, Boireau W, Simon B, Ryffel B, Connat J L, Kanellopoulos J, Martin F, RÉbÉ C, Apetoh L, Ghiringhelli F. Nat. Med., 2013, 19(1): 57.

doi: 10.1038/nm.2999 pmid: 23202296
[16]
Ferber S, Baabur-Cohen H, Blau R, Epshtein Y, Kisin-Finfer E, Redy O, Shabat D, Satchi-Fainaro R. Cancer Lett., 2014, 352(1): 81.

doi: 10.1016/j.canlet.2014.02.022
[17]
Murphy G, Nagase H. Mol. Aspects Med., 2008, 29(5): 290.

doi: 10.1016/j.mam.2008.05.002
[18]
Kessenbrock K, Plaks V, Werb Z. Cell, 2010, 141(1): 52.

doi: 10.1016/j.cell.2010.03.015 pmid: 20371345
[19]
Zhang J W, Gao J, Chen M S, Yang Z M. Antioxid. Redox Signal., 2014, 20(14): 2179.

doi: 10.1089/ars.2013.5701
[20]
Zhuang J M, Seçinti H, Zhao B, Thayumanavan S. Angew. Chem. Int. Ed., 2018, 57(24): 7111.

doi: 10.1002/anie.201803029
[21]
Wang H B, Wu Y, Liu G Y, Du Z L, Cheng X. Macromol. Chem. Phys., 2016, 217(18): 2004.

doi: 10.1002/macp.201600269
[22]
Harnoy A J, Rosenbaum I, Tirosh E, Ebenstein Y, Shaharabani R, Beck R, Amir R J. J. Am. Chem. Soc., 2014, 136(21): 7531.

doi: 10.1021/ja413036q pmid: 24568366
[23]
Qian Y Y, You D, Lin F, Wei J W, Wang Y J, Bi Y M. Polym. Chem., 2019, 10(1): 94.

doi: 10.1039/C8PY01231H
[24]
CalderÓn M, Graeser R, Kratz F, Haag R. Bioorg. Med. Chem. Lett., 2009, 19(14): 3725.

doi: 10.1016/j.bmcl.2009.05.058
[25]
Olsen J V, Ong S E, Mann M. Mol. Cell. Proteom., 2004, 3(6): 608.

doi: 10.1074/mcp.T400003-MCP200
[26]
Emrick T, Hayes W, FrÉchet J M J. J. Polym. Sci. A Polym. Chem., 1999, 37(20): 3748.
[27]
Romberg B, Metselaar J M, de Vringer T, Motonaga K, den Bosch J J K V, Oussoren C, Storm G, Hennink W E. Bioconjugate Chem., 2005, 16(4): 767.

pmid: 16029017
[28]
Gitsov I. J. Polym. Sci. A Polym. Chem., 2008, 46(16): 5295.

doi: 10.1002/pola.22828
[29]
Choi J W, Cho B K. J. Polym. Sci. A Polym. Chem., 2011, 49(11): 2468.

doi: 10.1002/pola.24678
[30]
Kim J H, Lee E, Park J S, Kataoka K, Jang W D. Chem. Commun., 2012, 48(30): 3662.

doi: 10.1039/c2cc17205d
[31]
Kade M J, Burke D J, Hawker C J. J. Polym. Sci. A Polym. Chem., 2010, 48(4): 743.

doi: 10.1002/pola.23824
[32]
Yu B, Chan J W, Hoyle C E, Lowe A B. J. Polym. Sci. A Polym. Chem., 2009, 47(14): 3544.

doi: 10.1002/pola.23436
[33]
Franc G, Kakkar A K. Chem. Eur. J., 2009, 15(23): 5630.

doi: 10.1002/chem.200900252
[34]
Sanyal A. Macromol. Chem. Phys., 2010, 211(13): 1417.

doi: 10.1002/macp.201000108
[35]
Slor G, Olea A R, Pujals S, Tigrine A, de la Rosa V R, Hoogenboom R, Albertazzi L, Amir R J. Biomacromolecules, 2021, 22(3): 1197.

doi: 10.1021/acs.biomac.0c01708
[36]
Segal M, Ozery L, Slor G, Wagle S S, Ehm T, Beck R, Amir R J. Biomacromolecules, 2020, 21(10): 4076.

doi: 10.1021/acs.biomac.0c00882
[37]
Harnoy A J, Buzhor M, Tirosh E, Shaharabani R, Beck R, Amir R J. Biomacromolecules, 2017, 18(4): 1218.

doi: 10.1021/acs.biomac.6b01906 pmid: 28267318
[38]
Segal M, Avinery R, Buzhor M, Shaharabani R, Harnoy A J, Tirosh E, Beck R, Amir R J. J. Am. Chem. Soc., 2017, 139(2): 803.

doi: 10.1021/jacs.6b10624
[39]
Cai H, Tan P, Chen X T, Kopytynski M, Pan D Y, Zheng X L, Gu L, Gong Q Y, Tian X H, Gu Z W, Zhang H, Chen R J, Luo K. Adv. Mater., 2022, 34(8): 2108049.
[40]
Song W J, Wei J W, Li L D, Qian Y Y, Wang Y J, Bi Y M. Polym. Int., 2022, 71(3): 317.

doi: 10.1002/pi.6332
[41]
Raghupathi K R, Azagarsamy M A, Thayumanavan S. Chem. Eur. J., 2011, 17(42): 11752.
[42]
Knop K, Hoogenboom R, Fischer D, Schubert U. Angewandte Chemie Int. Ed., 2010, 49(36): 6288.

doi: 10.1002/anie.200902672
[43]
Armstrong J K, Hempel G, Koling S, Chan L S, Fisher T, Meiselman H J, Garratty G. Cancer, 2007, 110(1): 103.

pmid: 17516438
[44]
Barz M, Luxenhofer R, Zentel R, Vicent M J. Polym. Chem., 2011, 2(9): 1900.

doi: 10.1039/c0py00406e
[45]
Yin L G, Dalsin M C, Sizovs A, Reineke T M, Hillmyer M A. Macromolecules, 2012, 45(10): 4322.

doi: 10.1021/ma300218n
[46]
Wan D C, Satoh K, Kamigaito M, Okamoto Y. Macromolecules, 2005, 38(25): 10397.
[47]
Nakabayashi K, Mori H. Eur. Polym. J., 2013, 49(10): 2808.

doi: 10.1016/j.eurpolymj.2013.07.006
[48]
Kang H U, Yu Y C, Shin S J, Kim J, Youk J H. Macromolecules, 2013, 46(4): 1291.

doi: 10.1021/ma302372h
[49]
Drenth J, Jansonius J N, Koekoek R, Swen H M, Wolthers B G. Nature, 1968, 218(5145): 929.

doi: 10.1038/218929a0
[50]
Wei D H, Huang X Q, Liu J J, Tang M S, Zhan C G. Biochemistry, 2013, 52(30): 5145.

doi: 10.1021/bi400629r
[51]
D'Emanuele A, Attwood D. Adv. Drug Deliv. Rev., 2005, 57(15): 2147.

doi: 10.1016/j.addr.2005.09.012
[52]
Rosenbaum I, Harnoy A J, Tirosh E, Buzhor M, Segal M, Frid L, Shaharabani R, Avinery R, Beck R, Amir R J. J. Am. Chem. Soc., 2015, 137(6): 2276.

doi: 10.1021/ja510085s pmid: 25607219
[53]
Cheng Z Z, Zhang N, Zhang W S, Tang B. Chinese Journal of Analytical Chemistry, 2006, 34(9): 7.
陈蓁蓁, 张宁, 张文申, 唐波. 分析化学, 2006, 34(9): 7.).
[54]
Prodi L. J. Cheminf., 2005, 29(1): 20.
[55]
Mancin F, Rampazzo E, Tecilla P, Tonellato U. Chem. Eur. J., 2006, 12(7): 1844.

doi: 10.1002/chem.200500549
[56]
Martinez-Manez R, Sancenon F. Chem. Rev., 2003, 103(11): 4419.

doi: 10.1021/cr010421e
[57]
Buzhor M, Harnoy A J, Tirosh E, Barak A, Schwartz T, Amir R J. Chem. Eur. J., 2015, 21(44): 15633.
[1] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[2] Tianxi He, Qionglin Liang, Jiu Wang, Guoan Luo. Microfluidic Fabrication of Liposomes as Drug Carriers [J]. Progress in Chemistry, 2018, 30(11): 1734-1748.
[3] Han Donglin, Qi Hongzhao, Zhao Jin, Long Lixia, Ren Yu, Yuan Xubo. Enhancement of Intra-Tumor Penetration and Distribution of Nano-Drug Carriers [J]. Progress in Chemistry, 2016, 28(9): 1397-1405.
[4] Liao Rongqiang, Liu Manshuo, Liao Xiali, Yang Bo. Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers [J]. Progress in Chemistry, 2015, 27(1): 79-90.
[5] Liu Peng, Shao Xueguang, Cai Wensheng*. Application of Pesudorotaxanes/Rotaxanes in Drug Carriers [J]. Progress in Chemistry, 2013, 25(05): 692-697.
[6] Zhang Jianjun, Gao Yuan, Sun Wanjin. Albumin as Drug Carriers [J]. Progress in Chemistry, 2011, 23(8): 1747-1754.
[7] He Junhui1**, Chen Hongmin1,2,Zhang Lin3. Inorganic Hollow Micro/Nanospheres [J]. Progress in Chemistry, 2007, 19(10): 1488-1494.
[8] Lei Yonglin**,Huo Jichuan,Duan Xiaohui,Ye Xu,Sun Chengcai. The Relations Between Carbocyanine Structures and Properties and Its Quantum Chemical Theoretic Calculation [J]. Progress in Chemistry, 2007, 19(06): 878-883.
[9] Li Xiaoran,Yuan Xiaoyan**. Poly(Ethylene Glycol)-Poly(Lactic Acid) Copolymers for Drug Carriers [J]. Progress in Chemistry, 2007, 19(06): 973-981.