中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (1): 168-176 DOI: 10.7536/PC220615 Previous Articles   Next Articles

• Review •

Dielectric Polymer Materials for Energy Storage Film Capacitors

Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang(), Zhenhua Jiang   

  1. College of Chemistry, Jilin University,Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: zhangyunhe@jlu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51973080); National Natural Science Foundation of China(92066104)
Richhtml ( 52 ) PDF ( 764 ) Cited
Export

EndNote

Ris

BibTeX

High power density, high charge-discharge efficiency, and long service life are important reasons why polymer film capacitors can be widely used in electric vehicles, smart grids and other electrical and electronic fields. Among them, dielectric polymer materials endow film capacitors with more possibilities due to their light weight, high breakdown strength, and easy large-scale processing. However, the low dielectric constant of dielectric polymers which results in the low energy density of the prepared capacitors, fails the material meeting the requirements of miniaturization and lightening of equipment. This paper summarizes the basic principles and performance parameters of dielectrics and film capacitors, and focuses on the introduction of dielectric polymer materials with energy storage as the main research direction, mainly including polymer-based nanocomposite dielectric polymers, dipole glass polymer materials, cross-linked dielectric polymers and multi-component all-organic dielectric polymers. Finally, we summarize the multiple challenges and potential opportunities faced by dielectric polymers in the process of fabricating energy storage capacitors with excellent performance.

Contents

1 Introduction

2 Polymer-based nanocomposites

2.1 0D inorganic particle and its surface treatment

2.2 1D and 2D inorganic fillers and their orientations

3 Dipolar glass polymers

4 Cross-linked dielectric polymers

5 Multicomponent dielectric polymers

5.1 Multi-layered multicomponent dielectric polymers

5.2 Blends

6 Conclusion and outlook

Fig. 1 Schematic illustration for the preparation of strawberry-like BT-PDA-Ag hybrid nanoparticles[30]
Fig. 2 (a) Dielectric constant and loss of the PI nanocomposites, and (b) Weibull breakdown strength, (c) discharged energy density and charge-discharge efficiency, (d) comparison of the discharged energy density and charge-discharge efficiency, (e) simulated current density distribution as a function of Al2O3, HfO2, and TiO2 filler content and the applied electric field at 150℃[43]
Fig. 3 The breakdown simulation results of nanocomposites filled with 10 vol% (a, b) NPs and (c, d) NFs, and (e) the evolution of breakdown phase volume fraction[50]
Fig. 4 (a) The enhancement of energy density over pure polymer matrix in nanocomposites with different configurations, (b) discharged energy density and efficiency for nanocomposites with different configurations[55]
Fig. 5 (a) Chemical Structure of SO2-PPO. Bipolar D-E loops at varied temperatures of (b) discharge energy densities, (c) discharge efficiencies as a function of the poling field[65]
Fig. 6 Schematic illustration of the effect of biphenyl groups on the dielectric properties of polymers[68]
Fig. 7 (a) Synthetic route of the phenylethynyl-terminated PEI oligomers, The digital photos of (b) 10%PEPA-PEI and (c) c-10%PEPA-PEI films cured under O2-320℃-2 h[74]
Fig. 8 (a) Schematic illustration of the dielectric energy-storage characteristics of the asymmetric LTN structure, (b) Two-parameter Weibull distribution plots, (c, d) discharged energy density Ud and (e) efficiency η of pure PEI, pure P(VDF-HFP), PEI-P(VDF-HFP) bilayer composite and asymmetric trilayer composites under varied electric fields[81]
Fig. 9 Chemical synthetic route and dipole formation mechanism of PNB-DxTy[85]
[1]
Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M. Science, 2006, 313(5785): 334.

doi: 10.1126/science.1127798
[2]
Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q. Adv. Mater., 2018, 30(49): 1870378.

doi: 10.1002/adma.201870378
[3]
Tan D Q. Adv. Funct. Mater., 2020, 30(18): 1808567.

doi: 10.1002/adfm.201808567
[4]
Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M. Sci. Adv., 2020, 6(4): eaax6622.

doi: 10.1126/sciadv.aax6622
[5]
Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H. Prog. Mater. Sci., 2012, 57(4): 660.

doi: 10.1016/j.pmatsci.2011.08.001
[6]
Huang X Y, Jiang P K. Adv. Mater., 2015, 27(3): 546.

doi: 10.1002/adma.201401310
[7]
Prateek, Thakur V K, Gupta R K. Chem. Rev., 2016, 116(7): 4260.

doi: 10.1021/acs.chemrev.5b00495 pmid: 27040315
[8]
Pan H, Kursumovic A, Lin Y H, Nan C W, Macmanus-Driscoll J L. Nanoscale, 2020, 12(38): 19582.

doi: 10.1039/D0NR05709F
[9]
Meng N, Ren X T, Santagiuliana G, Ventura L, Zhang H, Wu J Y, Yan H X, Reece M J, Bilotti E. Nat. Commun., 2019, 10: 4535.

doi: 10.1038/s41467-019-12391-3 pmid: 31628311
[10]
Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X. Adv. Mater., 2017, 29(20): 1601727.

doi: 10.1002/adma.201601727
[11]
Qiao Y L, Yin X D, Zhu T Y, Li H, Tang C B. Prog. Polym. Sci., 2018, 80: 153.

doi: 10.1016/j.progpolymsci.2018.01.003
[12]
Chen S, Meng G D, Kong B, Xiao B, Wang Z D, Jing Z, Gao Y S, Wu G L, Wang H, Cheng Y H. Chem. Eng. J., 2020, 387: 123662.

doi: 10.1016/j.cej.2019.123662
[13]
Augustine D, Mathew D, Nair C P R. Polymer, 2015, 60: 308.

doi: 10.1016/j.polymer.2015.01.055
[14]
Wu S, Li W P, Lin M R, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang Q M. Adv. Mater., 2013, 25(12): 1734.

doi: 10.1002/adma.201204072
[15]
Zhu Y, Ma C H, Han H J, Sun R Y, Liao X J, Xie M R. Polym. Chem., 2019, 10(19): 2447.

doi: 10.1039/C9PY00151D
[16]
Gür T M. Energy Environ. Sci., 2018, 11(10): 2696.

doi: 10.1039/C8EE01419A
[17]
Shen Y, Lin Y, Li M, Nan C W. Adv. Mater., 2007, 19(10): 1418.

doi: 10.1002/adma.200602097
[18]
Mao Y P, Mao S Y, Ye Z G, Xie Z X, Zheng L S. J. Appl. Phys., 2010, 108(1): 014102.

doi: 10.1063/1.3443582
[19]
Jylhä L, Sihvola A. J. Phys. D: Appl. Phys., 2007, 40(16): 4966.

doi: 10.1088/0022-3727/40/16/032
[20]
Yang Y Y, Zhao Y S, Liu J, Nie Z K, Ma J, Hua M T, Zhang Y C, Cai X F, He X M. ACS Mater. Lett., 2020, 2(5): 453.
[21]
Xie L Y, Huang X Y, Wu C, Jiang P K. J. Mater. Chem., 2011, 21(16): 5897.

doi: 10.1039/c0jm04574h
[22]
Yang K, Huang X Y, Xie L Y, Wu C, Jiang P K, Tanaka T. Macromol. Rapid Commun., 2012, 33(22): 1921.

doi: 10.1002/marc.201200361
[23]
Yang K, Huang X Y, Huang Y H, Xie L Y, Jiang P K. Chem. Mater., 2013, 25(11): 2327.

doi: 10.1021/cm4010486
[24]
Zhu M, Huang X Y, Yang K, Zhai X, Zhang J, He J L, Jiang P K. ACS Appl. Mater. Interfaces, 2014, 6(22): 19644.

doi: 10.1021/am504428u
[25]
Li J J, Claude J, Norena-Franco L E, Seok S I, Wang Q. Chem. Mater., 2008, 20(20): 6304.

doi: 10.1021/cm8021648
[26]
Xie L Y, Huang X Y, Huang Y H, Yang K, Jiang P K. ACS Appl. Mater. Interfaces, 2013, 5(5): 1747.

doi: 10.1021/am302959n
[27]
Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R, Perry J W. Adv. Mater., 2007, 19(7): 1001.

doi: 10.1002/adma.200602422
[28]
Xie L Y, Huang X Y, Huang Y H, Yang K, Jiang P K. J. Phys. Chem. C, 2013, 117(44): 22525.

doi: 10.1021/jp407340n
[29]
Huang Y H, Huang X Y, Schadler L S, He J L, Jiang P K. ACS Appl. Mater. Interfaces, 2016, 8(38): 25496.

doi: 10.1021/acsami.6b06650
[30]
Yang K, Huang X Y, He J L, Jiang P K. Adv. Mater. Interfaces, 2015, 2(17): 1500361.

doi: 10.1002/admi.201500361
[31]
Wang L W, Huang X Y, Zhu Y K, Jiang P K. Phys. Chem. Chem. Phys., 2018, 20(7): 5001.

doi: 10.1039/C7CP07990G
[32]
Ho J, Jow T R. IEEE, 2012, 19(3): 990.
[33]
Min Y S, Cho Y J, Hwang C S. Chem. Mater., 2005, 17(3): 626.

doi: 10.1021/cm048649g
[34]
Smith R, Liang C, Landry M, Nelson J, Schadler L. IEEE Trans. Dielect. Electr. Insul., 2008, 15(1): 187.

doi: 10.1109/T-DEI.2008.4446750
[35]
Huan T D, Boggs S, Teyssedre G, Laurent C, Cakmak M, Kumar S, Ramprasad R. Prog. Mater. Sci., 2016, 83: 236.

doi: 10.1016/j.pmatsci.2016.05.001
[36]
Xu J W, Wong C P. Appl. Phys. Lett., 2005, 87(8): 082907.

doi: 10.1063/1.2032597
[37]
Li Z, Fredin L A, Tewari P, DiBenedetto S A, Lanagan M T, Ratner M A, Marks T J. Chem. Mater., 2010, 22(18): 5154.

doi: 10.1021/cm1009493
[38]
Fredin L A, Li Z, Ratner M A, Lanagan M T, Marks T J. Adv. Mater., 2012, 24(44): 5946.

doi: 10.1002/adma.201202183
[39]
Rahimabady M, Mirshekarloo M S, Yao K, Lu L. Phys. Chem. Chem. Phys., 2013, 15(38): 16242.

doi: 10.1039/c3cp52267a pmid: 23999532
[40]
Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y. Chem. Eng. J., 2021, 420: 127614.

doi: 10.1016/j.cej.2020.127614
[41]
Tchoul M N, Fillery S P, Koerner H, Drummy L F, Oyerokun F T, Mirau P A, Durstock M F, Vaia R A. Chem. Mater., 2010, 22(5): 1749.

doi: 10.1021/cm903182n
[42]
Guo N, DiBenedetto S A, Tewari P, Lanagan M T, Ratner M A, Marks T J. Chem. Mater., 2010, 22(4): 1567.

doi: 10.1021/cm902852h
[43]
Ai D, Li H, Zhou Y, Ren L L, Han Z B, Yao B, Zhou W, Zhao L, Xu J M, Wang Q. Adv. Energy Mater., 2020, 10(16): 1903881.

doi: 10.1002/aenm.201903881
[44]
Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W. J. Mater. Chem., 2012, 22(32): 16491.

doi: 10.1039/c2jm32579a
[45]
Tang H X, Lin Y R, Sodano H A. Adv. Energy Mater., 2012, 2(4): 469.

doi: 10.1002/aenm.201100543
[46]
Tang H X, Sodano H A. Nano Lett., 2013, 13(4): 1373.

doi: 10.1021/nl3037273
[47]
Liu Y, Zhang C, Huang B Y, Wang X, Li Y L, Wang Z M, Lai W C, Zhang X J, Liu X Y. J. Mater. Chem. C, 2018, 6(9): 2370.

doi: 10.1039/C7TC05434C
[48]
Li Q, Han K, Gadinski M R, Zhang G Z, Wang Q. Adv. Mater., 2014, 26(36): 6244.

doi: 10.1002/adma.201402106
[49]
Li Q, Zhang G Z, Liu F H, Han K, Gadinski M R, Xiong C X, Wang Q. Energy Environ. Sci., 2015, 8(3): 922.

doi: 10.1039/C4EE02962C
[50]
Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y. Adv. Mater., 2018, 30(2): 1704380.

doi: 10.1002/adma.201704380
[51]
Zhang X, Chen W W, Wang J J, Shen Y, Gu L, Lin Y H, Nan C W. Nanoscale, 2014, 6(12): 6701.

doi: 10.1039/c4nr00703d pmid: 24816573
[52]
Zhang X, Shen Y, Zhang Q H, Gu L, Hu Y H, Du J W, Lin Y H, Nan C W. Adv. Mater., 2015, 27(5): 819.

doi: 10.1002/adma.201404101
[53]
Pan Z B, Yao L M, Zhai J W, Shen B, Liu S H, Wang H T, Liu J H. J. Mater. Chem. A, 2016, 4(34): 13259.

doi: 10.1039/C6TA05233A
[54]
Xie B, Zhang H B, Zhang Q, Zang J D, Yang C, Wang Q P, Li M Y, Jiang S L. J. Mater. Chem. A, 2017, 5(13): 6070.

doi: 10.1039/C7TA00513J
[55]
Zhang X, Jiang J Y, Shen Z H, Dan Z K, Li M, Lin Y H, Nan C W, Chen L Q, Shen Y. Adv. Mater., 2018, 30(16): 1707269.

doi: 10.1002/adma.201707269
[56]
Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q. Adv. Mater., 2019, 31(23): 1900875.

doi: 10.1002/adma.201900875
[57]
Wei J J, Zhang Z B, Tseng J K, Treufeld I, Liu X B, Litt M H, Zhu L. ACS Appl. Mater. Interfaces, 2015, 7(9): 5248.

doi: 10.1021/am508488w
[58]
Thakur Y, Dong R, Lin M R, Wu S, Cheng Z X, Hou Y, Bernholc J, Zhang Q M. Nano Energy, 2015, 16: 227.

doi: 10.1016/j.nanoen.2015.06.021
[59]
Ma R, Sharma V, Baldwin A F, Tefferi M, Offenbach I, Cakmak M, Weiss R, Cao Y, Ramprasad R, Sotzing G A. J. Mater. Chem. A, 2015, 3(28): 14845.

doi: 10.1039/C5TA01252J
[60]
Treufeld I, Wang D H, Kurish B A, Tan L S, Zhu L. J. Mater. Chem. A, 2014, 2(48): 20683.

doi: 10.1039/C4TA03260H
[61]
Wang D H, Kurish B A, Treufeld I, Zhu L, Tan L S. J. Polym. Sci. A Polym. Chem., 2015, 53(3): 422.

doi: 10.1002/pola.27445
[62]
Wang Y X, Huang X Y, Li T, Wang Z W, Li L Q, Guo X J, Jiang P K. J. Mater. Chem. A, 2017, 5(39): 20737.

doi: 10.1039/C7TA06005J
[63]
Wei J J, Ju T X, Huang W, Song J L, Yan N, Wang F Y, Shen A Q, Li Z P, Zhu L. Polymer, 2019, 178: 121688.

doi: 10.1016/j.polymer.2019.121688
[64]
Bendler J T, Boyles D A, Edmondson C A, Filipova T, Fontanella J J, Westgate M A, Wintersgill M C. Macromolecules, 2013, 46(10): 4024.

doi: 10.1021/ma4002269
[65]
Zhang Z B, Wang D H, Litt M H, Tan L S, Zhu L. Angew. Chem. Int. Ed., 2018, 57(6): 1528.

doi: 10.1002/anie.201710474
[66]
Zhu Y F, Zhang Z B, Litt M H, Zhu L. Macromolecules, 2018, 51(16): 6257.

doi: 10.1021/acs.macromol.8b00923
[67]
Bonardd S, Alegría Á, Saldías C, Leiva Á, Kortaberria G. Polymer, 2020, 203: 122765.

doi: 10.1016/j.polymer.2020.122765
[68]
Xu H R, He G H, Chen S, Chen S N, Qiao R, Luo H, Zhang D. Macromolecules, 2021, 54(17): 8195.

doi: 10.1021/acs.macromol.1c00778
[69]
Xu H R, Chen S, Chen S N, Qiao R, Li H, Luo H, Zhang D. ACS Appl. Energy Mater., 2021, 4(3): 2451.

doi: 10.1021/acsaem.0c02962
[70]
Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q. Nature, 2015, 523(7562): 576.

doi: 10.1038/nature14647
[71]
Xu W H, Liu J, Chen T W, Jiang X Y, Qian X S, Zhang Y, Jiang Z H, Zhang Y H. Small, 2019, 15(28): 1970148.

doi: 10.1002/smll.201970148
[72]
Li H, Gadinski M R, Huang Y Q, Ren L L, Zhou Y, Ai D, Han Z B, Yao B, Wang Q. Energy Environ. Sci., 2020, 13(4): 1279.

doi: 10.1039/C9EE03603B
[73]
Liu Y N, Chen J, Jiang X S, Jiang P K, Huang X Y. ACS Appl. Energy Mater., 2020, 3(6): 5198.

doi: 10.1021/acsaem.9b02521
[74]
Zhang Y, Liu Z, Zhu L X, Liu J, Zhang Y H, Jiang Z H. CCS Chem., 2020, 2(5): 1169.

doi: 10.31635/ccschem.020.201900111
[75]
MacKey M, Schuele D E, Zhu L, Flandin L, Wolak M A, Shirk J S, Hiltner A, Baer E. Macromolecules, 2012, 45(4): 1954.

doi: 10.1021/ma202267r
[76]
Tseng J K, Yin K Z, Zhang Z B, Mackey M, Baer E, Zhu L. Polymer, 2019, 172: 221.

doi: 10.1016/j.polymer.2019.03.076
[77]
Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W. Adv. Funct. Mater., 2014, 24(21): 3172.

doi: 10.1002/adfm.201303684
[78]
Wang Y F, Chen J, Li Y, Niu Y J, Wang Q, Wang H. J. Mater. Chem. A, 2019, 7(7): 2965.

doi: 10.1039/C8TA11392K
[79]
Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H. Adv. Mater., 2015, 27(42): 6658.

doi: 10.1002/adma.201503186
[80]
Pan Z B, Liu B H, Zhai J W, Yao L M, Yang K, Shen B. Nano Energy, 2017, 40: 587.

doi: 10.1016/j.nanoen.2017.09.004
[81]
Sun L, Shi Z C, He B L, Wang H L, Liu S, Huang M H, Shi J, Dastan D, Wang H. Adv. Funct. Mater., 2021, 31(35): 2100280.

doi: 10.1002/adfm.202100280
[82]
Thakur Y, Zhang B, Dong R, Lu W C, Iacob C, Runt J, Bernholc J, Zhang Q M. Nano Energy, 2017, 32: 73.

doi: 10.1016/j.nanoen.2016.12.021
[83]
Yuan C, Zhou Y, Zhu Y J, Liang J J, Wang S J, Peng S M, Li Y S, Cheng S, Yang M C, Hu J, Zhang B, Zeng R, He J L, Li Q. Nat. Commun., 2020, 11: 3919.

doi: 10.1038/s41467-020-17760-x
[84]
He G H, Liu Z J, Wang C, Chen S, Luo H, Zhang D. ACS Sustainable Chem. Eng., 2021, 9(24): 8156.

doi: 10.1021/acssuschemeng.1c01392
[85]
Ma L, Zhang Q, Cui C H, Zhong Q Y, Chen X X, Li Z, Mariappan A, Cheng Y L, Zhang Z C, Zhang Y F. Chem. Mater., 2020, 32(21): 9355.

doi: 10.1021/acs.chemmater.0c03295
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[7] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[8] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[9] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[10] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[11] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[12] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[13] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[14] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[15] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.