中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (1): 157-167 DOI: 10.7536/PC220628 Previous Articles   Next Articles

• Review •

Controlled Growth of MOFs in Emulsion

Xiaozhu Zhao1, Wen Li1, Xuerui Zhao1, Naipu He1,2(), Chao Li1, Xuehui Zhang1   

  1. 1 School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University,Lanzhou 730070, China
    2 Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: henaipu@mail.lzjtu.cn
  • Supported by:
    Science and Technology Programs of Gansu Province(20YF8GA032)
Richhtml ( 88 ) PDF ( 822 ) Cited
Export

EndNote

Ris

BibTeX

Metal organic frameworks (MOFs), which are formed by self-assembly of metal ions and organic ligands, are porous crystal materials with controllable morphology. Meanwhile, the emulsification of surfactants plays a key role in the formation of emulsion. The morphologies of micelles by self-assembly of surfactant controls the final morphology of the target materials. Therefore, micelles in emulsion are employed as reaction templates to modulate the morphology of MOFs. In the current review, the formation mechanism and characteristics of traditional emulsion, inverse microemulsion, surfactant-free emulsion and Pickering emulsion are briefly introduced. The progress in controllable growth of MOFs in emulsions is reviewed in detail. In particular, it is an ideal strategy for constructing MOFs composites by using surfactant-free emulsion method and Pickering emulsion method.

Contents

1 Introduction

2 Controllable growths of MOFs in traditional emulsions

3 Controllable growths of MOFs in inverse micro emulsion

4 Controllable growths of MOFs in surfactant-free emulsion

5 Controllable growths of MOFs in Pickering emulsion

6 Conclusion and outlook

Table 1 Controlled Growth of MOFs in Different Emulsion
Emulsion MOFs Base stock Morphological Pore size Application ref
Traditional emulsion/Surface growth on
micelle template
HKUST-1 Cu(NO3)2/
H3BTC/H2O/EtOH/CTAB/TMB
Hierarchically micro-/
mesoporous MOFs
Meso-micro pores, tunable pore size: 3.8~31.0 nm Heterogeneous catalysis 24
HKUST-1 Cu(NO3)2/H3BTC/
H2O/EtOH/HPW/
CTAB
Hierarchically micro-/
mesoporous MOFs, bimodal micro-/mesoporous hexagonal variant
Meso-micro pores, wide mesopores of 5 nm
separated by microporous
walls
Selective catalysis 25
HKUST-1 Cu(NO3)2/H3BTC/
DMF/CTAB/CA
Hierarchically micro-/
mesoporous MOFs
Meso-micro pores, wide mesopores of 19.6 nm, wide micropores of
0.86 nm
Bulky molecule capture, heterogeneous catalysis 26
Cu-(5-OH-
BDC)-C16
Cu(NO3)2/5-
OH-BDC/H2O/CTAC
2D hexagonal symmetry, highly ordered hexagonal meso-structure Meso-micro pores Heterogeneous
catalysis, controlled
drug release
28
Reverse microemulsion/
Interior growth in
micelle template
Gd(BDC)1.5(H2O)2 GdCl3/BDC/CTAB/ isooctane/1-
hexanol/H2O
Nanorods of fairly uniform shape and size
100~125 nm in length by 40 nm in diameter
Micropores Target-specific
multimodal imaging contrast agents
32
[Gd(1,2,
4-BTC)
(H2O)3]·H2O
GdCl3/BDC/CTAB/isooctane/1-
hexanol/H2O
Irregularly shaped
crystalline nanoplates
~100 nm in diameter, an average thickness of 35 nm
Micropores Target-
specificmultimodal imaging contrast agents
32
Mn(BDC)(H2O)2 MnCl2/[NMeH3]2
(BDC)/CTAB/1-
hexanol/
n-heptane/H2O
Nanorods of fairly uniform shape and size
750 nm to several μm in length, 50~100 nm
in diameters
Micropores Targeted delivery of other imaging and therapeutic agents 33
Mn3(BTC)2
(H2O)6
Microwave heating
MnCl2/Na3BTC/
CTAB/1-hexanol
/isooctane/H2O
An unusual spiral rod morphology of fairly uniform shape and size, 1~2 μm in length, 50~100 nm
in diameter
Micropores Target-specific MR imaging 33
ZIF-8
ZIF-67
Zn(NO3)2/2-MI/
CTAB/n-hexanol/n-heptane/H2O
Nanoparticles, the mean particle size of ZIF-8 was
2.3 nm, the ZIF-67 has the mean particle size of 2.7 nm
Micropores Gas storage 34
ZIF-8 Zn(NO3)2/2-MI/
CTAB/1-hexanol/heptane/H2O
Spherical particle, the mean particle was 100 nm Micropores Gas storage,
heterogeneous catalysis
35
ZIF-8 Zn(NO3)2/2-MI/
CTAB/n-hexanol/n-heptane/H2O
Lamellar MOFs@polymer networks, regular spherical nanoparticles, 100 nm
in dimeter
Micropores CO2 adsorption 36
ZIF-8
ZIF-67
Zn(NO3)2/2-MI/
H2O/BmimPF6/TX-100
Cu(NO3)2/H3BTC/
Nanoparticles, size < 2.3 nm, narrow distribution < 0.5 nm Micropores Biomedical imaging 38
HKUST-1 H2O/ethanol/BmimPF6/TX-100 Spherical nanoparticles, the mean particle size was
1.6 nm (σ = 0.4)
Micropores
La-MOFs La(NO3)3/BTC/H2O/BmimPF6/TX-100 Micellar particles:
spherical, lamellar,
and cylindrical
Micropores Sensing, controlled drug release 41
Surfactant-free emulsion /Surface growth on
polymer template
ZIF-8 Zn(NO3)2/2-MI/
H2O/1-octanol /PVP
Hollow MOFs Nanospheres with average diameters around 130 nm, the shell thickness increased from 20 nm to 50 nm Pore aperture of ZIF-8 =
3.4 Å
Heterogeneous catalysis 43
MIL-88A FeCl3/Tributylamine /1-Octanol/H2O/ PVA/Fumaric acid micro-fluidic System Uniform spherical shape with tunable size, 450 μm in diameter and 2 μm in shell thickness, Micropores, micropores
size: less than 1 nm
Enzyme and
nanoparticle encapsulation
44
ZIF-8 Zn(NO3)2/2-MI/
APS/H2O/TEA /DMAPMA
ZIF-8@PDMAPMA
nanoparticle, spherical
nanospheres, polyhedron
cube morphology, 100~
400 nm
Micropores Drug loading 45
Cu3(BTC)2 Cu(NO3)2/
H3BTC/H2O/
EtOH/CH3COOH/ Pluronic F127
Discrete octahedral,
nanocrystals, 100~200 nm
Mesopore diameter=4.0 nm Gas storage,
catalysis, sensing, and drug delivery.
46
Cu2(HBTB)2 Cu(NO3)2/
H3BTB/H2O/
EtOH/CH3COOH/ Pluronic F127
Flower-like nanosheets, thickness of the lamellar stacking = 40~60 nm Mesopore diameter =
3.9 nm
UiO-66-NH2 ZrO(NO3)2·2H2O/
BDC-NH2/toluene/H2O/P123/
F127/NaClO4/H2O/AA
Bowl-like mesoporous
nanoparticles, dendritic
nanospheres, walnut-shaped
nanoparticles, nanosheet
with surface folds,
nano disk
Pore aperture = 0.8 nm, 1.1 nm Heterogeneous
regeneration of
the coenzymes
47
ZIF-8 Zn(NO3)2/2-MI/
catalase/H2O
Cruciate flower The average pore diameter was 12.24 nm Enzyme immobilization 48
Pickering emulsion/Surface growth on
solid template
ZIF-8 HIPE
Zn(NO3)2/2-MI/
H2O/CNCs/dodecane
Microspheres,
micropores/ mesopores, the
wall thickness of
microsphere was 2.0~
2.5 μm
Micropores Dye adsorption 53
Cu3(BTC)2 Cu(NO3)2/H3BTC/
n-octanol/H2O/GO
Regular octahedron, columnar
100~200 nm, columnar rod with a length of 1~2 μm
Macropores CO2 adsorption 54
ZIF-8 HIPE
Zn(NO3)2/2-MI/
H2O/oleic acid/ZIF-8
Foam-like structure
containing well-separated
macro-porous cavities, ZIF-8 nanoparticle shape or size = 120 nm
Macroporous size: 17 μm, micropores size: less than 1 nm Gas separation,
pollutant removal
56
ZIF-8 HIPE
Zn(NO3)2/
2-MI/H2O/ cyclohexane/ZIF-8
(200 nm)
Hierarchical microporous
MOF monoliths, nanoZIF-8:
rhombic dodecahedron size = 200 nm, 3D ZIF-8 monoliths void walls were coated with close-packed ZIF-8
nanoparticles.
Micropores in the ZIF-8 framework: 0.64 and 0.90 nm, 3D ZIF-8 monoliths void size of around 50 μm Oil-water separation, selective catalysis 57
Fig. 1 Schematic illustration of controllable growths of MOFs in traditional emulsion
Fig. 2 (a) Preparation of hierarchical mesoporous MOFs crystals by cooperative micellar template system. (b) TEM images of the mesoMOFs at two different levels of magnification[26]. Copyright 2012, ACS
Fig. 3 Schematic illustration of controllable growth of MOFs in inverse microemulsion
Fig. 4 (A) Schematic representation of the growth process of metal-organic frameworks by ionic liquid reverse microemulsion method. (B) TEM image (a) of NZIF-8 (b) of NZIF-67 (d) of NHKUST-1 synthesized in ILME-1, TEM image (c) of NHKUST-1 synthesized in ILME-2.[38]. Copyright 2017, ACS
Fig. 5 Shape and size controlled synthesis of La-MOFs nanocrystals with the assistance of ionic liquid microemulsions[41]. Copyright 2013, ACS
Fig. 6 Schematic illustration of controllable growth of MOFs in surfactant-free emulsion
Fig.7 (A) ZIF-8 nanospheres with controllable shell thickness synthesized by emulsion-based interfacial approach. (B) SEM (a-c) of hollow ZIF-8 nanospheres and TEM (d-i) images of hollow ZIF-8 nanospheres obtained from 2-MI with different concentrations when the concentration of Zn2+ was constant[43]. Copyright 2014, ACS
Fig. 8 (A) Schematic illustration for the growth process of hierarchical Zr-based MOFs with different architectures by using the surfactant-free emulsion template strategy. (B) Structural characterizations of Zr-based MOFs with various architectures. SEM (a~e) and TEM (f~j)[47]. Copyright 2022, ACS
Fig. 9 Preparation of MOFs/particle composites by Pickering emulsion template method
Fig. 10 Schematic illustration of Pickering emulsion template synthesis approach of the MOFs/graphene oxide composite[54]. Copyright 2015, ACS
Fig. 11 (a~e) SEM images of 3D ZIF-8 monoliths, (f) SEM images of surface of the void wall of 3D ZIF-8 monoliths[57]. Copyright 2021, ACS
[1]
Zhang Z H, Fang H, Xue D X, Bai J F. ACS Appl. Mater. Interfaces, 2021, 13(37): 44956.

doi: 10.1021/acsami.1c13757
[2]
Moghadam G, Abdi J, Banisharif F, Khataee A, Kosari M. J. Mol. Liq., 2021, 341: 117323.

doi: 10.1016/j.molliq.2021.117323
[3]
He Z G, Liu Y Q, Wang J L, Lv Y J, Xu Y, Jia S Y. J. Clean. Prod., 2021, 321: 128947.

doi: 10.1016/j.jclepro.2021.128947
[4]
Xing W D, Ma Z F, Wang C, Lu J, Gao J, Yu C, Lin X Y, Li C X, Wu Y L. Sep. Purif. Technol., 2021, 278: 119624.

doi: 10.1016/j.seppur.2021.119624
[5]
Sun Y M, Jiang X D, Liu Y W, Liu D, Chen C, Lu C Y, Zhuang S Z, Kumar A, Liu J Q. J. Inorg. Biochem., 2021, 225: 111599.

doi: 10.1016/j.jinorgbio.2021.111599
[6]
Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. CrystEngComm, 2013, 15(9): 1794.

doi: 10.1039/c2ce26847g
[7]
Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. Chem. Lett., 2012, 41(10): 1337.

doi: 10.1246/cl.2012.1337
[8]
Sindoro M, Yanai N, Jee A Y, Granick S. Acc. Chem. Res., 2014, 47(2): 459.

doi: 10.1021/ar400151n
[9]
Wang W J, Sun Z H, Chen S C, Qian J F, He M Y, Chen Q. Appl. Organomet. Chem., 2021, 35(8): e6288.
[10]
Qiu L G, Li Z Q, Wu Y, Wang W, Xu T, Jiang X. Chem. Commun., 2008,(31): 3642.
[11]
Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Chem. Commun., 2013, 49(72): 7884.

doi: 10.1039/c3cc43028f
[12]
Cong S L, Yang Y F, Li K S, He F, Liu J, Yuan H, Wang X Q, Zhang R L, Chu J, Gong M, Wu B H, Xiong S X, Zhou A N. ACS Appl. Electron. Mater., 2022, 4(1): 233.

doi: 10.1021/acsaelm.1c00973
[13]
Cabrera-Munguia D A, LeÓn-Campos M I, Claudio-Rizo J A, Solís-Casados D A, Flores-Guia T E, Cano Salazar L F. Bull. Mater. Sci., 2021, 44(4): 1.

doi: 10.1007/s12034-020-02288-z
[14]
Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J R, Koros W J, Jones C W, Nair S. Science, 2014, 345(6192): 72.

doi: 10.1126/science.1251181
[15]
CarnÉ-Sánchez A, Imaz I, Cano-Sarabia M, Maspoch D. Nature. Chem., 2013, 5(3): 203.

doi: 10.1038/nchem.1569
[16]
Valtchev V, Tosheva L. Chem. Rev., 2013, 113(8): 6734.

doi: 10.1021/cr300439k
[17]
Huo J, Marcello M, Garai A, Bradshaw D. Adv. Mater., 2013, 25(19): 2717.

doi: 10.1002/adma.201204913
[18]
Ujiiye-Ishii K, Kwon E, Kasai H, Nakanishi H, Oikawa H. Cryst. Growth Des., 2008, 8(2): 369.

doi: 10.1021/cg700708g
[19]
Lovell P A, Schork F J. Biomacromolecules, 2020, 21(11): 4396.

doi: 10.1021/acs.biomac.0c00769
[20]
Anjali T G, Basavaraj M G. Langmuir, 2019, 35(1): 3.

doi: 10.1021/acs.langmuir.8b01139
[21]
Li C, Li Q, Kaneti Y V, Hou D, Yamauchi Y, Mai Y Y. Chem. Soc. Rev., 2020, 49(14): 4681.

doi: 10.1039/D0CS00021C
[22]
Bradley L C, Stebe K J, Lee D. J. Am. Chem. Soc., 2016, 138(36): 11437.

doi: 10.1021/jacs.6b05633 pmid: 27548642
[23]
Guan B Y, Yu L, Lou X W D. J. Am. Chem. Soc., 2016, 138(35): 11306.

doi: 10.1021/jacs.6b06558
[24]
Qiu L G, Xu T, Li Z Q, Wang W, Wu Y, Jiang X, Tian X Y, Zhang L D. Angew. Chem. Int. Ed., 2008, 47(49): 9487.

doi: 10.1002/anie.200803640
[25]
Wee L H, Wiktor C, Turner S, Vanderlinden W, Janssens N, Bajpe S R, Houthoofd K, van Tendeloo G, de Feyter S, Kirschhock C E A, Martens J A. J. Am. Chem. Soc., 2012, 134(26): 10911.

doi: 10.1021/ja302089w
[26]
Sun L B, Li J R, Park J, Zhou H C. J. Am. Chem. Soc., 2012, 134(1): 126.

doi: 10.1021/ja209698f
[27]
Bradshaw D, Garai A, Huo J. Chem. Soc. Rev., 2012, 41(6): 2344.

doi: 10.1039/c1cs15276a pmid: 22182916
[28]
Li Y T, Zhang D J, Guo Y N, Guan B Y, Tang D H, Liu Y L, Huo Q S. Chem. Commun., 2011, 47(27): 7809.

doi: 10.1039/c1cc12479j
[29]
Landfester K, Willert M, Antonietti M. Macromolecules, 2000, 33(7): 2370.

doi: 10.1021/ma991782n
[30]
Capek I. Adv. Colloid Interface Sci., 2004, 110(1/2): 49.

doi: 10.1016/j.cis.2004.02.003
[31]
Xia T F, Zhu F L, Jiang K, Cui Y J, Yang Y, Qian G D. Dalton Trans., 2017, 46(23): 7549.

doi: 10.1039/C7DT01604B
[32]
Rieter W J, Taylor K M L, An H Y, Lin W L, Lin W B. J. Am. Chem. Soc., 2006, 128(28): 9024.

doi: 10.1021/ja0627444
[33]
Taylor K M L, Rieter W J, Lin W B. J. Am. Chem. Soc., 2008, 130(44): 14358.

doi: 10.1021/ja803777x
[34]
Sun W Z, Zhai X S, Zhao L. Chem. Eng. J., 2016, 289: 59.

doi: 10.1016/j.cej.2015.12.076
[35]
Yin H M, Li L Q, Li J J, Feng S, Guo Y, Wang J Q. Mod. Chem. Ind., 2018(10): 175.
(殷慧敏, 李良清, 李佳佳, 丰洒, 郭宇, 王金渠. 现代化工, 2018(10): 175.).
[36]
He N P, Li C, Zhao X Z, Li Y H, Zhang X H, Qiao Y Y. Polym. Adv. Technol., 2022, 33(3): 750.

doi: 10.1002/pat.5552
[37]
Rogers R D, Seddon K R. Science, 2003, 302(5646): 792.

doi: 10.1126/science.1090313 pmid: 14593156
[38]
Zheng W Z, Hao X L, Zhao L, Sun W Z. Ind. Eng. Chem. Res., 2017, 56(20): 5899.

doi: 10.1021/acs.iecr.7b00694
[39]
Bai T T, Ge R L, Gao Y N, Chai J L, Slattery J M. Phys. Chem. Chem. Phys., 2013, 15(44): 19301.

doi: 10.1039/c3cp53441c
[40]
Meng Y L, Li Z, Chen J, Xia C G. Prog. Chem., 2011, 23: 2442.
(孟雅莉, 李臻, 陈静, 夏春谷. 化学进展, 2011, 23: 2442.).
[41]
Shang W T, Kang X C, Ning H, Zhang J L, Zhang X G, Wu Z H, Mo G, Xing X Q, Han B X. Langmuir, 2013, 29(43): 13168.

doi: 10.1021/la402882a
[42]
Davis K A, Matyjaszewski K. Adv. Polym. Sci., 2002, 159.
[43]
Yang Y F, Wang F W, Yang Q H, Hu Y L, Yan H, Chen Y Z, Liu H R, Zhang G Q, Lu J L, Jiang H L, Xu H X. ACS Appl. Mater. Interfaces, 2014, 6(20): 18163.

doi: 10.1021/am505145d
[44]
Jeong G Y, Ricco R, Liang K, Ludwig J, Kim J O, Falcaro P, Kim D P. Chem. Mater., 2015, 27(23): 7903.

doi: 10.1021/acs.chemmater.5b02847
[45]
Li Y H, Qiao Y Y, Li C, He N P, Wen J, Zhao X Z, Zhang X H, Li B Y. Acta Polym. Sin., 2021,(9): 1174.
(李禹红, 乔瑶雨, 李超, 何乃普, 闻静, 赵晓竹, 张学辉, 黎白钰. 高分子学报, 2021,(9): 1174.).
[46]
Pham M H, Vuong G T, Fontaine F G, Do T O. Cryst. Growth Des., 2012, 12(6): 3091.

doi: 10.1021/cg300297p
[47]
Li K, Zhao Y C, Yang J, Gu J L. Nat. Commun., 2022, 13: 1879.

doi: 10.1038/s41467-022-29535-7
[48]
Cui J D, Feng Y X, Lin T, Tan Z L, Zhong C, Jia S R. ACS Appl. Mater. Interfaces, 2017, 9(12): 10587.

doi: 10.1021/acsami.7b00512
[49]
Li C, He N P, Zhao X Z, Zhang X H, Li W, Zhao X R, Qiao Y Y. ChemistrySelect, 2022, 7(4): e202103927.
[50]
Wang S Z, McGuirk C M, Ross M B, Wang S Y, Chen P C, Xing H, Liu Y, Mirkin C A. J. Am. Chem. Soc., 2017, 139(29): 9827.

doi: 10.1021/jacs.7b05633
[51]
Herzig E M, White K A, Schofield A B, Poon W C K, Clegg P S. Nature Mater., 2007, 6(12): 966.

doi: 10.1038/nmat2055
[52]
He Y J, Qi S T, Zhao S Y. Prog. Chem., 2007, 19: 1443.
(贺拥军, 齐随涛, 赵世永. 化学进展, 2007, 19: 1443.).
[53]
Ma J, Hu J, Tang Y, Gu H X, Jiang M, Zhang J M. J. Colloid Interface Sci., 2020, 572: 160.

doi: 10.1016/j.jcis.2020.03.076
[54]
Bian Z J, Xu J, Zhang S P, Zhu X M, Liu H L, Hu J. Langmuir, 2015, 31(26): 7410.

doi: 10.1021/acs.langmuir.5b01171
[55]
Zhu H, Zhang Q, Zhu S P. Chem. Eur. J., 2016, 22(26): 8751.

doi: 10.1002/chem.201600313
[56]
Jin P, Tan W L, Huo J, Liu T T, Liang Y, Wang S Y, Bradshaw D. J. Mater. Chem. A, 2018, 6(41): 20473.

doi: 10.1039/C8TA06766J
[57]
Sun Y, Zhu Y, Zhang S M, Binks B P. Langmuir, 2021, 37(28): 8435.

doi: 10.1021/acs.langmuir.1c00757
[58]
Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5700.

doi: 10.1039/c4cs00106k pmid: 24811425
[59]
Fan X X, Wang W, Li W, Zhou J W, Wang B, Zheng J, Li X G. ACS Appl. Mater. Interfaces, 2014, 6(17): 14994.

doi: 10.1021/am5028346
[1] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[2] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[3] Shiwei Tian, Guoliang Mao, Jiayu Zhang, Na Li, Mengyuan Jiang, Wei Wu. Switchable Pickering Emulsion System [J]. Progress in Chemistry, 2020, 32(4): 434-453.
[4] Shuang Guo, Zhiqiang Chen, Xiaofei Ren, Yongmin Zhang*, Xuefeng Liu*. CO2-Responsive Emulsion Systems [J]. Progress in Chemistry, 2017, 29(7): 695-705.
[5] Linfeng Wei, Jianzhong Ma, Wenbo Zhang, Yan Bao. The Amphipathy Adjustment of Graphene Oxide and Graphene Quantum Dots and Their Application in Pickering Emulsion Polymerization [J]. Progress in Chemistry, 2017, 29(6): 637-648.
[6] Yang Pinghui, Sun Wei, Hu Si, Chen Zhongren. Self-Assembly of Nanoparticles at Interfaces [J]. Progress in Chemistry, 2014, 26(07): 1107-1119.
[7] Yi Chenglin, Yang Yiqun, Jiang Jinqiang, Liu Xiaoya, Jiang Ming. Research and Application of Particle Emulsifiers [J]. Progress in Chemistry, 2011, 23(01): 65-79.
[8] Yang Fei Wang Jun Lan Qiang Sun Dejun Li Chuanxian. Research Progress on Pickering Emulsions [J]. Progress in Chemistry, 2009, 21(0708): 1418-1426.
[9] Huang Weian1*,Lan Qiang2,Zhang Yan2. Colloid Particles Adsorption and Interfacial Assembly at the Fluids Interface [J]. Progress in Chemistry, 2007, 19(0203): 212-219.
Viewed
Full text


Abstract

Controlled Growth of MOFs in Emulsion