中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 433-444 DOI: 10.7536/PC220812 Previous Articles   Next Articles

• Review •

Research Progress and Application of Flexible Thermoelectric Materials

Dong Baokun, Zhang Ting(), He Fan   

  1. College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology,Beijing 102617,China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: zting@bipt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51501014); 2021 Beijing Undergraduates Research Training Program(2021J00057); 2022 National Undergraduates Research Training Program of China
Richhtml ( 67 ) PDF ( 1262 ) Cited
Export

EndNote

Ris

BibTeX

Thermoelectric materials, as one new kind of energy materials, can realize the direct conversion of thermal and electrical energy, which have important applications in power generation and refrigeration. Compared with traditional thermoelectric materials, flexible thermoelectric materials demonstrate excellent application prospects in wearable devices and flexible electronics fields, due to the advantages of being bendable, a lightweight and environmentally friendly. At present, how to further improve the performance of flexible thermoelectric materials is the focus, especially the collaborative optimization of flexibility andthermoelectric properties. In this paper, we have reviewed the research progress of polymer-based flexible thermoelectric materials, carbon-based flexible thermoelectric materials and inorganic semiconductor flexible thermoelectric materials, introduced their characteristics, performance optimization and preparation methods, and summarized the applications of flexible thermoelectric materials in the fields of electronics, medicine and industry. Also, based on the shortcomings of flexible thermoelectric materials, the future research directions are prospected.

Contents

1 Introduction

2 Types of flexible thermoelectric materials and their thermoelectric properties

2.1 Polymer-based flexible thermoelectric materials

2.2 Carbon-based flexible thermoelectric materials

2.3 Inorganic semiconductor flexible thermoelectric materials

3 Preparation method of flexible thermoelectric materials

3.1 Physical vapor deposition

3.2 In-situ polymerization

3.3 Electrospinning

3.4 High temperature melting method

4 Applications of flexible thermoelectric materials

5 Conclusion and outlook

Fig. 1 ZT values of different FTE materials (conductive polymers[21?~23], carbon nanotubes[24?~26], inorganic films[27?~29], inorganic bulks[30?~32]) reported in recent years
Fig. 2 (a)Flexibility of PEDOT:PSS bulky papers;(b)Electrical properties of flexible PEDOT:PSS bulky paper doped with different substances[21];Seekbeck coefficient (c) and ZT value (d) of SnSe nanosheets/PEDOT:PSS composites with various of SnSe nanosheet contents at room temperature[36]
Fig. 3 (a)Schematic diagram of bending (a) and stretching (b) of PPy/SWCNT flexible composite films;thermoelectric properties of PPy/SWCNT flexible composite films after bending (c) and stretching (d)[43]
Fig. 4 Crystal structures of α-Ag2S[57]
Fig. 5 (a)The flexibility-ZT value phase diagram of silver chalcogenides;(b)Temperature dependence of ZT value of Ag2S-based FTE materials;(c)Flexibility of Ag2S0.5Se0.5;(d)FTE device fabricated by Ag2S0.5 Se 0.5 30
Fig. 6 Crystal structures of β-InSe (a) and γ-InSe (b)[68];(c)deformability of different materials;(d)flexibility of β-InSe single crystals[64]
Fig. 7 (a)Compositionperformance phase diagram of AgCu(Se,S,Te)pseudoternary solid solutions;(b)temperature dependence of ZT value of AgCuSe-based FTE materials;(c)flexibility of AgCuSe0.22S0.08Te0.7;(d)FTE device fabricated by AgCuSe0.22S0.08 Te 0.7 73
Fig. 8 (a)Schematic diagram of electrospinning[83];(b,c)FTE nanofibers prepared by electrospinning[84]
[1]
Bell L E. Science, 2008, 321(5895): 1457.

doi: 10.1126/science.1158899 pmid: 18787160
[2]
Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J. Nature, 2011, 473(7345): 66.

doi: 10.1038/nature09996
[3]
Thirugnanasambandam M, Iniyan S, Goic R. Renew. Sustain. Energy Rev., 2010, 14(1): 312.

doi: 10.1016/j.rser.2009.07.014
[4]
Swarnkar N. JETIR, 2019, 6(5): 131.
[5]
Vining C B. Nat. Mater., 2009, 8(2): 83.

doi: 10.1038/nmat2361
[6]
Shi X, Chen L, Uher C. Int. Mater. Rev., 2016, 61(6): 379.

doi: 10.1080/09506608.2016.1183075
[7]
He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder G J. Adv. Mater., 2014, 26(23): 3974.

doi: 10.1002/adma.201400515
[8]
Zheng X F, Liu C X, Yan Y Y, Wang Q. Renew. Sustain. Energy Rev., 2014, 32: 486.

doi: 10.1016/j.rser.2013.12.053
[9]
Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke D R. Chem. Mater., 2013, 25(15): 2911.

doi: 10.1021/cm400893e
[10]
Du Y, Xu J Y, Paul B, Eklund P. Appl. Mater. Today, 2018, 12: 366.
[11]
Zhang X, Zhao L D. J. Materiomics, 2015, 1(2): 92.

doi: 10.1016/j.jmat.2015.01.001
[12]
Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J. Angew. Chem. Int. Ed., 2016, 55(24): 6826.

doi: 10.1002/anie.v55.24
[13]
Yang J, Xi L L, Qiu W J, Wu L H, Shi X, Chen L D, Yang J H, Zhang W Q, Uher C, Singh D J. Npj Comput. Mater., 2016, 2: 15015.

doi: 10.1038/npjcompumats.2015.15
[14]
Hasan M N, Wahid H, Nayan N, Mohamed Ali M S. Int. J. Energy Res., 2020, 44(8): 6170.

doi: 10.1002/er.v44.8
[15]
Zhang G Q, Kirk B, Jauregui L A, Yang H R, Xu X F, Chen Y P, Wu Y. Nano Lett., 2012, 12(1): 56.

doi: 10.1021/nl202935k
[16]
Gelbstein Y, Dashevsky Z, Dariel M P. Phys. B Condens. Matter, 2005, 363(1/4): 196.

doi: 10.1016/j.physb.2005.03.022
[17]
Bathula S, Jayasimhadri M, Dhar A. Mater. Des., 2015, 87: 414.

doi: 10.1016/j.matdes.2015.08.017
[18]
Wang Y, Yang L, Shi X L, Shi X, Chen L D, Dargusch M S, Zou J, Chen Z G. Adv. Mater., 2019, 31(29): 1807916.
[19]
Zhang L, Shi X L, Yang Y L, Chen Z G. Mater. Today, 2021, 46: 62.

doi: 10.1016/j.mattod.2021.02.016
[20]
Wu P Q, He Z M, Yang M, Xu J H, Li N, Wang Z M, Li J, Ma T, Lu X, Zhang H, Zhang T. Int. J. Thermophys., 2021, 42(8): 111.

doi: 10.1007/s10765-021-02860-7
[21]
Mengistie D A, Chen C H, Boopathi K M, Pranoto F W, Li L J, Chu C W. ACS Appl. Mater. Interfaces, 2015, 7(1): 94.

doi: 10.1021/am507032e
[22]
Kim G H, Shao L, Zhang K, Pipe K P. Nat. Mater., 2013, 12(8): 719.

doi: 10.1038/nmat3635 pmid: 23644522
[23]
Huang D Z, Yao H Y, Cui Y T, Zou Y, Zhang F J, Wang C, Shen H G, Jin W L, Zhu J, Diao Y, Xu W, Di C A, Zhu D B. J. Am. Chem. Soc., 2017, 139(37): 13013.

doi: 10.1021/jacs.7b05344
[24]
Zhao W Y, Fan S F, Xiao N, Liu D Y, Tay Y Y, Yu C, Sim D, Hng H H, Zhang Q C, Boey F, Ma J, Zhao X B, Zhang H, Yan Q Y. Energy Environ. Sci., 2012, 5(1): 5364.

doi: 10.1039/C1EE01931G
[25]
Wang H, Hsu J H, Yi S I, Lae Kim S, Choi K, Yang G, Yu C. Adv. Mater., 2015, 27(43): 6855.

doi: 10.1002/adma.201502950
[26]
MacLeod B A, Stanton N J, Gould I E, Wesenberg D, Ihly R, Owczarczyk Z R, Hurst K E, Fewox C S, Folmar C N, Holman Hughes K, Zink B L, Blackburn J L, Ferguson A J. Energy Environ. Sci., 2017, 10(10): 2168.

doi: 10.1039/C7EE01130J
[27]
Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y L. Sci. Rep., 2016, 6: 33135.

doi: 10.1038/srep33135 pmid: 27615036
[28]
Jin Q, Jiang S, Zhao Y, Wang D, Qiu J H, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K P, Gao N, Liu C, Cheng H M, Jiang X. Nat. Mater., 2019, 18(1): 62.

doi: 10.1038/s41563-018-0217-z
[29]
Jiang C, Ding Y F, Cai K F, Tong L, Lu Y, Zhao W Y, Wei P. ACS Appl. Mater. Interfaces, 2020, 12(8): 9646.

doi: 10.1021/acsami.9b21069
[30]
Liang J S, Wang T, Qiu P F, Yang S Q, Ming C, Chen H Y, Song Q F, Zhao K P, Wei T R, Ren D D, Sun Y Y, Shi X, He J, Chen L D. Energy Environ. Sci., 2019, 12(10): 2983.

doi: 10.1039/C9EE01777A
[31]
Liang J S, Qiu P F, Zhu Y, Huang H, Gao Z Q, Zhang Z, Shi X, Chen L D. Research, 2020, 2020: 6591981.
[32]
He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G. Sci. Adv., 2020, 6(15): eaaz8423.
[33]
Yao Q, Wang Q, Wang L M, Wang Y, Sun J, Zeng H R, Jin Z Y, Huang X L, Chen L D. J. Mater. Chem. A, 2014, 2(8): 2634.

doi: 10.1039/C3TA14008C
[34]
Park J, Lee Y R, Kim M, Kim Y, Tripathi A, Kwon Y W, Kwak J, Woo H Y. ACS Appl. Mater. Interfaces, 2020, 12(1): 1110.

doi: 10.1021/acsami.9b17009
[35]
Zhang Q, Sun Y M, Xu W, Zhu D B. Adv. Mater., 2014, 26(40): 6829.

doi: 10.1002/adma.v26.40
[36]
Ju H, Kim J. ACS Nano, 2016, 10(6): 5730.

doi: 10.1021/acsnano.5b07355
[37]
See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Nano Lett., 2010, 10(11): 4664.

doi: 10.1021/nl102880k
[38]
Zhang Y H, Heo Y J, Park M, Park S J. Polymers, 2019, 11(1): 167.

doi: 10.3390/polym11010167
[39]
Yun J S, Choi S, Im S H. Carbon Energy, 2021, 3(5): 667.

doi: 10.1002/cey2.v3.5
[40]
Dey A, Bajpai O P, Sikder A K, Chattopadhyay S, Shafeeuulla Khan M A. Renew. Sustain. Energy Rev., 2016, 53: 653.

doi: 10.1016/j.rser.2015.09.004
[41]
Wang L M, Yao Q, Bi H, Huang F Q, Wang Q, Chen L D. J. Mater. Chem. A, 2015, 3(13): 7086.

doi: 10.1039/C4TA06422D
[42]
Xiang J L, Drzal L T. Polymer, 2012, 53(19): 4202.

doi: 10.1016/j.polymer.2012.07.029
[43]
Liang L R, Gao C Y, Chen G M, Guo C Y. J. Mater. Chem. C, 2016, 4(3): 526.

doi: 10.1039/C5TC03768A
[44]
Du Y, Shi Y L, Meng Q F, Shen S Z. Synth. Met., 2020, 261: 116318.

doi: 10.1016/j.synthmet.2020.116318
[45]
Xu Q, Qu S Y, Ming C, Qiu P F, Yao Q, Zhu C X, Wei T R, He J, Shi X, Chen L D. Energy Environ. Sci., 2020, 13(2): 511.

doi: 10.1039/C9EE03776D
[46]
Qu S Y, Ming C, Qiu P F, Xu K Q, Xu Q, Yao Q, Lu P, Zeng H R, Shi X, Chen L D. Energy Environ. Sci., 2021, 14(12): 6586.

doi: 10.1039/D1EE02552J
[47]
Sevinçli H, Cuniberti G. Phys. Rev. B, 2010, 81(11): 113401.
[48]
Ni X X, Liang G, Wang J S, Li B W. Appl. Phys. Lett., 2009, 95(19): 192114.
[49]
Chang P H, Bahramy M S, Nagaosa N, Nikoli©#263; B K. Nano Lett., 2014, 14(7): 3779.

doi: 10.1021/nl500755m
[50]
Kong D Y, Zhu W, Guo Z P, Deng Y. Energy, 2019, 175: 292.

doi: 10.1016/j.energy.2019.03.060
[51]
Hu H P, Xia K Y, Zhu T J, Zhao X B. Chinese Journal of Rare Metals, 2020, 45(5): 513.
(胡惠平, 夏凯阳, 朱铁军, 赵新兵. 稀有金属, 2020, 45(5): 513.).
[52]
You J C, Zhan S B, Wen J, Ma Y W, Zhu Z S. Optik, 2020, 217: 164900.

doi: 10.1016/j.ijleo.2020.164900
[53]
Hong G S, Robinson J T, Zhang Y J, Diao S, Antaris A L, Wang Q B, Dai H J. Angew. Chem. Int. Ed., 2012, 51(39): 9818.

doi: 10.1002/anie.201206059
[54]
Alharthi S S, Alzahrani A, Razvi M A N, Badawi A, Althobaiti M G. J. Inorg. Organomet. Polym. Mater., 2020, 30(10): 3878.

doi: 10.1007/s10904-020-01519-4
[55]
Hwang I, Seol M, Kim H, Yong K. Appl. Phys. Lett., 2013, 103(2): 023902.

doi: 10.1063/1.4813445
[56]
Hebb M H. J. Chem. Phys., 1952, 20(1): 185.

doi: 10.1063/1.1700165
[57]
Shi X, Chen H Y, Hao F, Liu R H, Wang T, Qiu P F, Burkhardt U, Grin Y, Chen L D. Nat. Mater., 2018, 17(5): 421.

doi: 10.1038/s41563-018-0047-z
[58]
Jin M, Bai X D, Zhang R L, Zhou L N, Li R B. J. Inorg. Mater., 2022, 37(1): 101.

doi: 10.15541/jim20200653
[59]
Wang T, Chen H Y, Qiu P F, Shi X, Chen L D. Acta Phys. Sin., 2019, 68(9): 090201.

doi: 10.7498/aps
[60]
Ferhat M, Nagao J. J. Appl. Phys., 2000, 88(2): 813.

doi: 10.1063/1.373741
[61]
Pei Y Z, Heinz N A, Snyder G J. J. Mater. Chem., 2011, 21(45): 18256.

doi: 10.1039/c1jm13888j
[62]
Bindi L, Pingitore N E. Mineral. Mag., 2013, 77(1): 21.

doi: 10.1180/minmag.2013.077.1.03
[63]
Bindi L, Stanley C J, Spry P G. Mineral. Petrol., 2015, 109(4): 413.

doi: 10.1007/s00710-015-0384-4
[64]
Wei T R, Jin M, Wang Y C, Chen H Y, Gao Z Q, Zhao K P, Qiu P F, Shan Z W, Jiang J, Li R B, Chen L D, He J, Shi X. Science, 2020, 369(6503): 542.

doi: 10.1126/science.aba9778
[65]
Han G, Chen Z G, Drennan J, Zou J. Small, 2014, 10(14): 2747.

doi: 10.1002/smll.201400104
[66]
Zheng Q, Liang C Y, Jiang J Y, Li S F. Phys. Status Solidi RRL Rapid Res. Lett., 2022, 16(3): 2100418.
[67]
Dai Y J, Zhao S X, Han H, Yan Y F, Liu W H, Zhu H, Li L, Tang X, Li Y, Li H, Zhang C J. Front. Mater., 2022, 8: 816821.
[68]
Grimaldi I, Gerace T, Pipita M M, Perrotta I D, Ciuchi F, Berger H, Papagno M, Castriota M, PacilÉ D. Solid State Commun., 2020, 311: 113855.
[69]
Mosca D H, Mattoso N, Lepienski C M, Veiga W, Mazzaro I, Etgens V H, Eddrief M. J. Appl. Phys., 2002, 91(1): 140.

doi: 10.1063/1.1423391
[70]
Shi H N, Wang D Y, Xiao Y, Zhao L D. Aggregate, 2021, 2(4): e92.
[71]
Hong M, Chen Z G, Zou J. Chin. Phys. B, 2018, 27(4): 048403.
[72]
Zhang B, Wu H, Peng K L, Shen X C, Gong X N, Zheng S K, Lu X, Wang G Y, Zhou X Y. Chin. Phys. B, 2021, 30(7): 078101.
[73]
Yang Q Y, Yang S Q, Qiu P F, Peng L M, Wei T R, Zhang Z, Shi X, Chen L D. Science, 2022, 377(6608): 854.

doi: 10.1126/science.abq0682
[74]
Shi D T, Wang R P, Wang G X, Li C, Shen X, Nie Q H. Vacuum, 2017, 145: 347.

doi: 10.1016/j.vacuum.2017.09.007
[75]
Shen S F, Zhu W, Deng Y, Zhao H Z, Peng Y C, Wang C J. Appl. Surf. Sci., 2017, 414: 197.

doi: 10.1016/j.apsusc.2017.04.074
[76]
Singkaselit K, Sakulkalavek A, Sakdanuphab R. Adv. Nat. Sci: Nanosci. Nanotechnol., 2017, 8(3): 035002.
[77]
Goncalves L M, Alpuim P, Min G, Rowe D M, Couto C, Correia J H. Vacuum, 2008, 82(12): 1499.

doi: 10.1016/j.vacuum.2008.03.076
[78]
Goncalves L M, Alpuim P, Rolo A G, Correia J H. Thin Solid Films, 2011, 519(13): 4152.

doi: 10.1016/j.tsf.2011.01.395
[79]
Goncalves L M, Couto C, Alpuim P, Rolo A G, Völklein F, Correia J H. Thin Solid Films, 2010, 518(10): 2816.

doi: 10.1016/j.tsf.2009.08.038
[80]
Wang Y Y, Cai K F, Shen S, Yao X. Synth. Met., 2015, 209: 480.

doi: 10.1016/j.synthmet.2015.08.034
[81]
Chatterjee K, Mitra M, Kargupta K, Ganguly S, Banerjee D. Nanotechnology, 2013, 24(21): 215703.
[82]
Bhardwaj N, Kundu S C. Biotechnol. Adv., 2010, 28(3): 325.

doi: 10.1016/j.biotechadv.2010.01.004 pmid: 20100560
[83]
Masoumi S, O’Shaughnessy S, Pakdel A. Nano Energy, 2022, 92: 106774.
[84]
Li J Y, Dong C S, Hu J L, Liu J, Liu Y C. ACS Appl. Electron. Mater., 2021, 3(8): 3641.

doi: 10.1021/acsaelm.1c00547
[85]
Akram R, Khan J S, Qamar Z, Rafique S, Hussain M, Kayani F B. J. Mater. Sci., 2022, 57(5): 3309.

doi: 10.1007/s10853-021-06750-z
[86]
Kim S J, We J H, Cho B J. Energy Environ. Sci., 2014, 7(6): 1959.

doi: 10.1039/c4ee00242c
[87]
Yabuki H, Yonezawa S, Eguchi R, Takashiri M. Sci. Rep., 2020, 10: 17031.

doi: 10.1038/s41598-020-73808-4
[88]
Patil N S, Sargar A M, Mane S R, Bhosale P N. Mater. Chem. Phys., 2009, 115(1): 47.

doi: 10.1016/j.matchemphys.2008.11.026
[89]
Zhang T, Li K W, Zhang J, Chen M, Wang Z, Ma S Y, Zhang N, Wei L. Nano Energy, 2017, 41: 35.

doi: 10.1016/j.nanoen.2017.09.019
No related articles found!