中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 2012-2023 DOI: 10.7536/PC211103 Previous Articles   Next Articles

• Review •

Photodeformable Composite Materials Based on Liquid Crystalline Polymers

Shuai Huang1,2(), Yu Tao1,2, Yinliang Huang1,2   

  1. 1 Institute of Advanced Materials, Southeast University,Nanjing 211189, China
    2 College of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: huangshuai1991@seu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52003050); Jiangsu Provincial Natural Science Foundation(BK20200343); “Zhishan” Scholars Programs of Southeast University
Richhtml ( 17 ) PDF ( 294 ) Cited
Export

EndNote

Ris

BibTeX

Deformable liquid crystalline polymers have attracted a lot of research interests in recent years, because of the great potentials in the development of intelligent soft systems such as artificial muscles, soft robots and smart optical devices. However, the response of conventional liquid crystalline polymers is based on thermal control methods, which limits the applications due to the low thermal conductivity of the polymer matrix and the high dependence on external heating devices. In contrast, the light control method has shown many advantages, including non-contact, remote in-situ, and precise manipulation capabilities, which could contribute to developing diverse unrestricted and remotely operable smart soft devices. Recently, there have been many important advances in the development of photodeformable liquid crystalline polymers fabricated by introducing organic or/and inorganic light-responsive components as functional additives. Among them, the multiple functions of the introduced components can be easily combined with the orientational deformation behavior of the liquid crystalline polymer through the interaction among the functional module, the liquid crystal phase and the polymer matrix. Here, this review focuses on the design strategy, manufacturing method and working principle of the photo-manipulatable liquid crystalline polymer composite systems incorporated with light-sensitive components. Moreover, the possible applications and future development are briefly summarized at the end of the review.

Contents

1 Introduction

2 Organic dyes/photoresponsive liquid crystalline polymer composites

2.1 Composites based on photothermal dyes

2.2 Composites based on photochemical molecules

3 Inorganic nanomaterials/photoresponsive liquid crystalline polymer composites

3.1 Composites doped with nanoparticles

3.2 Composites doped with nanorods/nanotubes

3.3 Composites doped with nanosheets

4 Conclusion and outlook

Fig. 1 Mechanism for the directional macroscopic deformation of bulk liquid crystalline materials, and the changes in their polymer backbone configuration during the order-disorder phase transition
Fig. 2 The chemical structure of the mesogenic near-infrared dye and liquid crystal actuator with synergic photoluminescence and deformation that is applied in a bionic device[16]. Copyright 2021, Wiley-VCH
Fig. 3 (a) Crawling, (b) climbing, (c) bending, and (d) twisting motions of the liquid crystalline polymer actuators doped with neutral nickel dithiolene complexes[54]. Copyright 2018, Wiley-VCH
Fig. 4 Wrinkled liquid crystalline polymer microparticles enhance the photomechanical behaviors of the polymer dispersed liquid crystal-like films[71]. Copyright 2011, Wiley-VCH
Fig. 5 A liquid crystalline polymer composite system that can oscillate like the dolphin kick[72]. Copyright 2019, Wiley-VCH
Fig. 6 The bilayer soft actuator that shows manipulatable bending and twisting modes induced by 365 nm ultraviolet light and 808 nm NIR light, respectively[74]. Copyright 2016, The Authors
Fig. 7 (a) The liquid crystalline polymer composite film doped with the up-conversion nano-phosphor NaYF4:Yb/Tm (~70 nm), which exhibit rapid and reversible deformation under the irradiation of 980 nm NIR light[81]. Copyright 2011, American Chemical Society. (b) The photodeformation of the liquid crystalline polymer film doped with the triplet-triplet annihilation dual-dye system driven by low-power NIR light[82]. Copyright 2013, American Chemical Society
Fig. 8 (a) An inchworm walker (fabricated by a carbon nanotube-liquid crystalline polymer composite/silicone bilayer film) crawling up the wood substrate[93]. Copyright 2013, Wiley-VCH. (b) Preparation of an oriented crosslinked carbon nanotube/liquid crystalline polymer nanocomposite film using two carbon nanotube sheet-covered glass slides as the liquid crystal cell[99]. Copyright 2012, Wiley-VCH
Fig. 9 Schematic illustration of NIR-Vis-UV light-responsive actuator films made of graphene oxide/polymer dispersed liquid crystal nanocomposite[105]. Copyright 2015, American Chemical Society
Fig. 10 Diverse smart soft robotic devices based on the liquid crystalline polymer composites. (a) A Mobius device that can rotate continuously.[52] Copyright 2021, The Authors. (b) An untether soft robots that can transport cargos.[108] Copyright 2020, The Authors (c) An artificial aquatic polyp-like device that can wirelessly attracts, grasps, and releases objects.[107] Copyright 2020, the Authors. (d) A light-powered ultralight tensegrity robot with high deformability and load capacity.[109] Copyright 2019, Wiley-VCH
[1]
Li X, Ma S D, Hu J, Ni Y, Lin Z Q, Yu H F. J. Mater. Chem. C, 2019, 7(3): 622.

doi: 10.1039/C8TC05186K
[2]
Kuang M X, Wang J X, Jiang L. Chem. Soc. Rev., 2016, 45(24): 6833.

doi: 10.1039/C6CS00562D
[3]
Teyssier J, Saenko S V, van der Marel D, Milinkovitch M C. Nat. Commun., 2015, 6: 6368.

doi: 10.1038/ncomms7368 pmid: 25757068
[4]
Yang J J, Zhang X F, Zhang X, Wang L, Feng W, Li Q. Adv. Mater., 2021, 33(14): 2004754.

doi: 10.1002/adma.202004754
[5]
Walther A. Adv. Mater., 2020, 32(20): 1905111.

doi: 10.1002/adma.201905111
[6]
Wang L, Urbas A M, Li Q. Adv. Mater., 2020, 32(41): 1801335.

doi: 10.1002/adma.201801335
[7]
Wang M, Ma D Y, Wang C J. Prog. Chem., 2020, 32: 1452.
( 王猛, 马丹阳, 王成杰. 化学进展, 2020, 32: 1452.).

doi: 10.7536/PC200335
[8]
Huang S, Shen Y K, Bisoyi H K, Tao Y, Liu Z C, Wang M, Yang H, Li Q. J. Am. Chem. Soc., 2021, 143(32): 12543.

doi: 10.1021/jacs.1c03661
[9]
Yu H F, Ikeda T. Adv. Mater., 2011, 23(19): 2149.

doi: 10.1002/adma.201100131
[10]
Huang S, Chen Y X, Ma S D, Yu H F. Angew. Chem. Int. Ed., 2018, 57(38): 12524.

doi: 10.1002/anie.201807379
[11]
Chen L, Bisoyi H K, Huang Y L, Huang S, Wang M, Yang H, Li Q. Angew. Chem. Int. Ed., 2021, 60(30): 16394.

doi: 10.1002/anie.202105278
[12]
Huang S, Huang Y L, Li Q. Small Struct., 2021, 2(9): 2100038.

doi: 10.1002/sstr.202100038
[13]
Chen L, Chu D, Cheng Z G, Wang M, Huang S. Polymer, 2020, 208: 122962.

doi: 10.1016/j.polymer.2020.122962
[14]
Wu Y H, Yang Y, Qian X J, Chen Q M, Wei Y, Ji Y. Angew. Chem. Int. Ed., 2020, 59(12): 4778.

doi: 10.1002/anie.201915694
[15]
Chen Q M, Yang Y, Wei Y, Ji Y. Acta Polym. Sin., 2019, 50(5): 451.
( 陈巧梅, 杨洋, 危岩, 吉岩. 高分子学报, 2019, 50(5): 451.).
[16]
Huang Y L, Bisoyi H K, Huang S, Wang M, Chen X M, Liu Z Y, Yang H, Li Q. Angew. Chem. Int. Ed., 2021, 60(20): 11247.

doi: 10.1002/anie.202101881
[17]
Yu H F. Prog. Polym. Sci., 2014, 39(4): 781.

doi: 10.1016/j.progpolymsci.2013.08.005
[18]
Xue P, Bisoyi H K, Chen Y H, Zeng H, Yang J J, Yang X, Lv P F, Zhang X M, Priimagi A, Wang L, Xu X H, Li Q. Angew. Chem. Int. Ed., 2021, 60(7): 3390.

doi: 10.1002/anie.202014533
[19]
Pang X L, Qin L, Xu B, Liu Q, Yu Y L. Adv. Funct. Mater., 2020, 30(32): 2002451.

doi: 10.1002/adfm.202002451
[20]
Dong L L, Zhao Y. Mater. Chem. Front., 2018, 2(11): 1932.

doi: 10.1039/C8QM00363G
[21]
White T J. J. Polym. Sci. B Polym. Phys., 2018, 56(9): 695.

doi: 10.1002/polb.24576
[22]
Sydney Gladman A, Matsumoto E A, Nuzzo R G, Mahadevan L, Lewis J A. Nat. Mater., 2016, 15(4): 413.

doi: 10.1038/nmat4544 pmid: 26808461
[23]
Lu H F, Wang M, Chen X M, Lin B P, Yang H. J. Am. Chem. Soc., 2019, 141(36): 14364.

doi: 10.1021/jacs.9b06757
[24]
Gelebart A H, Jan Mulder D, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B, Broer D J. Nature, 2017, 546(7660): 632.

doi: 10.1038/nature22987
[25]
Wang Z J, Cai S Q. J. Mater. Chem. B, 2020, 8(31): 6610.

doi: 10.1039/D0TB00754D
[26]
Lu X L, Zhang H, Fei G X, Yu B, Tong X, Xia H S, Zhao Y. Adv. Mater., 2018, 30(14): 1706597.

doi: 10.1002/adma.201706597
[27]
Lv J A, Liu Y Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016, 537(7619): 179.

doi: 10.1038/nature19344
[28]
Liu Q, Liu Y Y, Lv J A, Chen E Q, Yu Y L. Adv. Intell. Syst., 2019, 1(6): 1900060.

doi: 10.1002/aisy.201900060
[29]
Shahsavan H, Salili S M, Jákli A, Zhao B X. Adv. Mater., 2017, 29(3): 1604021.

doi: 10.1002/adma.201604021
[30]
Wang Y P, Yang X B, Chen Y F, Wainwright D K, Kenaley C P, Gong Z Y, Liu Z M, Liu H, Guan J, Wang T M, Weaver J C, Wood R J, Wen L. Sci. Robot., 2017, 2(10): eaan8072.

doi: 10.1126/scirobotics.aan8072
[31]
Liu D Q, Liu L, Onck P R, Broer D J. Proc. Natl. Acad. Sci., 2015, 112: 3880.

doi: 10.1073/pnas.1419312112
[32]
Liu D Q, Broer D J. Angew. Chem. Int. Ed., 2014, 53(18): 4542.

doi: 10.1002/anie.201400370
[33]
Bisoyi H K, Li Q. Acc. Chem. Res., 2014, 47(10): 3184.

doi: 10.1021/ar500249k
[34]
Ohzono T, Suzuki K, Yamaguchi T, Fukuda N. Adv. Opt. Mater., 2013, 1(5): 374.

doi: 10.1002/adom.201300128
[35]
Mehta K, Peeketi A R, Liu L, Broer D, Onck P, Annabattula R K. Appl. Phys. Rev., 2020, 7(4): 041306.

doi: 10.1063/5.0014619
[36]
Kotikian A, Truby R L, Boley J W, White T J, Lewis J A. Adv. Mater., 2018, 30(10): 1870063.

doi: 10.1002/adma.201870063
[37]
Ube T, Ikeda T. Angew. Chem. Int. Ed., 2014, 53(39): 10290.

doi: 10.1002/anie.201400513
[38]
Petsch S, Rix R, Khatri B, Schuhladen S, Müller P, Zentel R, Zappe H. Sens. Actuat. A Phys., 2015, 231: 44.

doi: 10.1016/j.sna.2014.10.014
[39]
Zheng Z G, Li Y N, Bisoyi H K, Wang L, Bunning T J, Li Q. Nature, 2016, 531(7594): 352.

doi: 10.1038/nature17141
[40]
Wang L, Li Q. Chem. Soc. Rev., 2018, 47(3): 1044.

doi: 10.1039/C7CS00630F
[41]
Yamada M, Kondo M, Mamiya J I, Yu Y L, Kinoshita M, Barrett C, Ikeda T. Angew. Chem. Int. Ed., 2008, 47(27): 4986.

doi: 10.1002/anie.200800760
[42]
Zeng H, Wani O M, Wasylczyk P, Kaczmarek R, Priimagi A. Adv. Mater., 2017, 29(30): 1701814.

doi: 10.1002/adma.201701814
[43]
Hu J, Wang W Z, Yu H F. Adv. Intell. Syst., 2019, 1(8): 1900050.

doi: 10.1002/aisy.201900050
[44]
Cresta V, Romano G, Kolpak A, Zalar B, Domenici V. Polymers, 2018, 10(7): 773.

doi: 10.3390/polym10070773
[45]
Ji Y, Marshall J E, Terentjev E M. Polymers, 2012, 4(1): 316.

doi: 10.3390/polym4010316
[46]
Verpaalen R C P, Engels T, Schenning A P H J, Debije M G. ACS Appl. Mater. Interfaces, 2020, 12(35): 38829.

doi: 10.1021/acsami.0c10802
[47]
Bisoyi H K, Urbas A M, Li Q. Adv. Opt. Mater., 2018, 6(15): 1800458.

doi: 10.1002/adom.201800458
[48]
Gelebart A H, Vantomme G, Meijer E W, Broer D J. Adv. Mater., 2017, 29(18): 1606712.

doi: 10.1002/adma.201606712
[49]
Gelebart A H, Mulder D J, Vantomme G, Schenning A P H J, Broer D J. Angew. Chem. Int. Ed., 2017, 56(43): 13436.

doi: 10.1002/anie.201706793 pmid: 28834188
[50]
Spence G T, Hartland G V, Smith B D. Chem. Sci., 2013, 4(11): 4240.

doi: 10.1039/c3sc51978c
[51]
Guo L X, Liu M H, Sayed S M, Lin B P, Keller P, Zhang X Q, Sun Y, Yang H. Chem. Sci., 2016, 7(7): 4400.

doi: 10.1039/C6SC00758A
[52]
Nie Z Z, Zuo B, Wang M, Huang S, Chen X M, Liu Z Y, Yang H. Nat. Commun., 2021, 12: 2334.

doi: 10.1038/s41467-021-22644-9
[53]
Liu L, Liu M H, Deng L L, Lin B P, Yang H. J. Am. Chem. Soc., 2017, 139(33): 11333.

doi: 10.1021/jacs.7b06410 pmid: 28786668
[54]
Ge F J, Yang R, Tong X, Camerel F, Zhao Y. Angew. Chem. Int. Ed., 2018, 57(36): 11758.

doi: 10.1002/anie.201807495
[55]
Liu W, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016, 49(11): 4023.

doi: 10.1021/acs.macromol.6b00640
[56]
Liu Y L, Ai K L, Liu J H, Deng M, He Y Y, Lu L H. Adv. Mater., 2013, 25(9): 1353.

doi: 10.1002/adma.201204683
[57]
Li Z, Yang Y, Wang Z H, Zhang X Y, Chen Q M, Qian X J, Liu N, Wei Y, Ji Y. J. Mater. Chem. A, 2017, 5(14): 6740.

doi: 10.1039/C7TA00458C
[58]
Tian H M, Wang Z J, Chen Y L, Shao J Y, Gao T, Cai S Q. ACS Appl. Mater. Interfaces, 2018, 10(9): 8307.

doi: 10.1021/acsami.8b00639
[59]
Lan R C, Sun J, Shen C, Huang R, Zhang Z P, Zhang L Y, Wang L, Yang H. Adv. Mater., 2020, 32(14): 1906319.

doi: 10.1002/adma.201906319
[60]
Wang H, Bisoyi H K, Li B X, McConney M E, Bunning T J, Li Q. Angew. Chem. Int. Ed., 2020, 59(7): 2684.

doi: 10.1002/anie.201913977 pmid: 31802595
[61]
Li Y N, Wang M F, White T J, Bunning T J, Li Q. Angew. Chem. Int. Ed., 2013, 52(34): 8925.

doi: 10.1002/anie.201303786
[62]
Lin S Y, Gutierrez-Cuevas K G, Zhang X F, Guo J B, Li Q. Adv. Funct. Mater., 2021, 31(7): 2007957.

doi: 10.1002/adfm.202007957
[63]
Kondo M. Polym. J., 2020, 52(9): 1027.
[64]
Yu Y L, Nakano M, Ikeda T. Nature, 2003, 425(6954): 145.

doi: 10.1038/425145a
[65]
Li M H, Keller P, Li B, Wang X, Brunet M. Adv. Mater., 2003, 15(78): 569.

doi: 10.1002/adma.200304552
[66]
Ryabchun A, Bobrovsky A, Stumpe J, Shibaev V. Macromol. Rapid Commun., 2012, 33(11): 991.

doi: 10.1002/marc.201100837
[67]
Yang R, Zhao Y. Angew. Chem. Int. Ed., 2017, 56(45): 14202.

doi: 10.1002/anie.201709528
[68]
Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Nat. Mater., 2004, 3(5): 307.

pmid: 15107840
[69]
Kumar K, Knie C, BlÉger D, Peletier M A, Friedrich H, Hecht S, Broer D J, Debije M G, Schenning A P H J. Nat. Commun., 2016, 7: 11975.

doi: 10.1038/ncomms11975
[70]
Pang X L, Xu B, Qing X, Wei J, Yu Y L. Macromol. Rapid Commun., 2018, 39(1): 1700237.

doi: 10.1002/marc.201700237
[71]
Yu H F, Dong C, Zhou W M, Kobayashi T, Yang H. Small, 2011, 7(21): 3039.

doi: 10.1002/smll.201101098
[72]
Ma S D, Li X, Huang S, Hu J, Yu H F. Angew. Chem. Int. Ed., 2019, 58(9): 2655.

doi: 10.1002/anie.201811808
[73]
Verpaalen R C P, Pilz da Cunha M, Engels T A P, Debije M G, Schenning A P H J. Angew. Chem. Int. Ed., 2020, 59(11): 4532.

doi: 10.1002/anie.201915147 pmid: 31922315
[74]
Wang M, Lin B P, Yang H. Nat. Commun., 2016, 7: 13981.

doi: 10.1038/ncomms13981
[75]
Anisotropic Nanomaterials: Preparation, Properties and Applications. Eds.: Li Q. Springer, 2015.
[76]
Wang L, Bisoyi H K, Zheng Z G, Gutierrez-Cuevas K G, Singh G, Kumar S, Bunning T J, Li Q. Mater. Today, 2017, 20(5): 230.

doi: 10.1016/j.mattod.2017.04.028
[77]
Yuan Z K, Xiao X F, Li J, Zhao Z, Yu D S, Li Q. Adv. Sci., 2018, 5(2): 1700626.

doi: 10.1002/advs.201700626
[78]
Jain P K, Huang X H, El-Sayed I H, El-Sayed M A. Acc. Chem. Res., 2008, 41(12): 1578.

doi: 10.1021/ar7002804
[79]
WÓjcik M M, WrÓbel J, Jańczuk Z Z, Mieczkowski J, GÓrecka E, Choi J, Cho M, Pociecha D. Chem. Eur. J., 2017, 23(37): 8912.

doi: 10.1002/chem.201700723
[80]
Zhang J D, Wang J, Zhao L N, Yang W L, Bi M, Wang Y C, Niu H Y, Li Y X, Wang B S, Gao Y C, Li C S, Huang X Z. Chem. Res. Chin. Univ., 2017, 33(5): 839.

doi: 10.1007/s40242-017-7067-0
[81]
Wu W, Yao L M, Yang T S, Yin R Y, Li F Y, Yu Y L. J. Am. Chem. Soc., 2011, 133(40): 15810.

doi: 10.1021/ja2043276
[82]
Jiang Z, Xu M, Li F Y, Yu Y L. J. Am. Chem. Soc., 2013, 135(44): 16446.

doi: 10.1021/ja406020r pmid: 24088066
[83]
Zhang P, Wu B, Huang S, Cai F, Wang G J, Yu H F. Polymer, 2019, 178: 121644.

doi: 10.1016/j.polymer.2019.121644
[84]
Zhang S J, Pelligra C I, Feng X D, Osuji C O. Adv. Mater., 2018, 30(18): 1705794.

doi: 10.1002/adma.201705794
[85]
Yang H, Liu J J, Wang Z F, Guo L X, Keller P, Lin B P, Sun Y, Zhang X Q. Chem. Commun., 2015, 51(60): 12126.

doi: 10.1039/C5CC02599K
[86]
Wu Z Y, Liu L, Cheng P, Fang J L, Xu T C, Chen D Z. J. Mater. Chem. C, 2019, 7(45): 14245.

doi: 10.1039/C9TC04651H
[87]
Wang Y C, Dang A L, Zhang Z F, Yin R, Gao Y C, Feng L, Yang S. Adv. Mater., 2020, 32(46): 2004270.

doi: 10.1002/adma.202004270
[88]
Hamon M A, Itkis M E, Niyogi S, Alvaraez T, Kuper C, Menon M, Haddon R C. J. Am. Chem. Soc., 2001, 123(45): 11292.

pmid: 11697973
[89]
Yang L Q, Setyowati K, Li A, Gong S Q, Chen J. Adv. Mater., 2008, 20(12): 2271.

doi: 10.1002/adma.200702953
[90]
Li C S, Liu Y, Lo C W, Jiang H R. Soft Matter, 2011, 7(16): 7511.

doi: 10.1039/c1sm05776f
[91]
Ji Y, Huang Y Y, Terentjev E M. Langmuir, 2011, 27(21): 13254.

doi: 10.1021/la202790a
[92]
Matsuyama A. J. Chem. Phys., 2010, 132(21): 214902.

doi: 10.1063/1.3447892
[93]
Kohlmeyer R R, Chen J. Angew. Chem. Int. Ed., 2013, 52(35): 9234.

doi: 10.1002/anie.201210232 pmid: 23483636
[94]
Kim H, Lee J A, Ambulo C P, Lee H B, Kim S H, Naik V V, Haines C S, Aliev A E, Ovalle-Robles R, Baughman R H, Ware T H. Adv. Funct. Mater., 2019, 29(48): 1905063.

doi: 10.1002/adfm.201905063
[95]
Camargo C J, Campanella H, Marshall J E, Torras N, Zinoviev K, Terentjev E M, Esteve J. J. Micromech. Microeng., 2012, 22(7): 075009.

doi: 10.1088/0960-1317/22/7/075009
[96]
Marshall J E, Ji Y, Torras N, Zinoviev K, Terentjev E M. Soft Matter, 2012, 8(5): 1570.

doi: 10.1039/C1SM06656K
[97]
Deng J, Li J F, Chen P N, Fang X, Sun X M, Jiang Y S, Weng W, Wang B J, Peng H S. J. Am. Chem. Soc., 2016, 138(1): 225.

doi: 10.1021/jacs.5b10131 pmid: 26678012
[98]
Sun X M, Wang W, Qiu L B, Guo W H, Yu Y L, Peng H S. Angew. Chem. Int. Ed., 2012, 51(34): 8520.

doi: 10.1002/anie.201201975
[99]
Wang W, Sun X M, Wu W, Peng H S, Yu Y L. Angew. Chem. Int. Ed., 2012, 51(19): 4644.

doi: 10.1002/anie.201200723 pmid: 22489075
[100]
Wang M, Sayed S M, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016, 49(2): 663.

doi: 10.1021/acs.macromol.5b02388
[101]
Loomis J, King B, Panchapakesan B. Appl. Phys. Lett., 2012, 100(7): 073108.

doi: 10.1063/1.3685479
[102]
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442(7100): 282.

doi: 10.1038/nature04969
[103]
Yang Y K, Zhan W J, Peng R G, He C G, Pang X C, Shi D A, Jiang T, Lin Z Q. Adv. Mater., 2015, 27(41): 6376.

doi: 10.1002/adma.201503680
[104]
Yu L, Cheng Z X, Dong Z J, Zhang Y H, Yu H F. J. Mater. Chem. C, 2014, 2(40): 8501.

doi: 10.1039/C4TC01097C
[105]
Cheng Z X, Wang T J, Li X, Zhang Y H, Yu H F. ACS Appl. Mater. Interfaces, 2015, 7(49): 27494.

doi: 10.1021/acsami.5b09676
[106]
Zuo B, Wang M, Lin B P, Yang H. Nat. Commun., 2019, 10: 4539.

doi: 10.1038/s41467-019-12583-x pmid: 31586123
[107]
Pilz da Cunha M, Kandail H S, den Toonder J M J, Schenning A P H J. Proc. Natl. Acad. Sci., 2020, 117(30): 17571.

doi: 10.1073/pnas.2004748117
[108]
Pilz da Cunha M, Ambergen S, Debije M G, Homburg E F G A, den Toonder J M J, Schenning A P H J. Adv. Sci., 2020, 7(5): 1902842.

doi: 10.1002/advs.201902842
[109]
Wang Z J, Li K, He Q G, Cai S Q. Adv. Mater., 2019, 31(7): 1806849.

doi: 10.1002/adma.201806849
[1] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[2]

Sun Shengtong|Tang Hui|Wu Peiyi**

. FT-IR Characterization of Liquid Crystalline Polymers [J]. Progress in Chemistry, 2009, 21(01): 182-199.
[3] . Development of Research on Ladderlike Polysiloxane Liquid Crystalline [J]. Progress in Chemistry, 2008, 20(11): 1733-1739.
[4] Meng Fanbao|Lian Jiao|Gao Yongmei. Advances in Fluorinated Liquid Crystals [J]. Progress in Chemistry, 2008, 20(04): 499-507.
[5] Deng Deng**,Guangming Zhu,Fei Song,Feng Xiao,Jinhua Wang. Advances in Liquid Crystal Elastomers [J]. Progress in Chemistry, 2006, 18(10): 1352-1360.
[6] Dong Yanming,Wang Jianwei,Yuan Qing. Chitin—a Novel Kind of Liquid Crystalline Polysaccharide [J]. Progress in Chemistry, 1999, 11(04): 416-.
[7] Qian Renyuan,Chen Shousi,Song Wenhui. Recent Advances in the Observation of Disclinations of Main-chain Nematic Polymers [J]. Progress in Chemistry, 1996, 8(01): 1-.