中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 496-508 DOI: 10.7536/PC220917 Previous Articles   

• Review •

Research Progress of Antiviral Coatings

Liu Jun, Ye Daiyong()   

  1. Department of Chemical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510640, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: cedyye@scut.edu.cn
Richhtml ( 24 ) PDF ( 263 ) Cited
Export

EndNote

Ris

BibTeX

With the large-scale spread of COVID-19 around the world, it has caused serious damage to the health of people around the world. In addition to being transmitted by various droplets, viruses can also be transmitted by human touch of contaminated surfaces. However, as a commonly used surface antiviral method, disinfectants have the disadvantage of discontinuously inactivating viruses, which is bad for inhibiting the spread of various infectious viruses. Therefore, it is urgent to protect the surface of daily objects from virus pollution to eliminate the spread of various respiratory viruses (such as Corona Virus Disease 2019, SARS-CoV-2). From this point of view, it is very important to design and develop effective antiviral coatings. This paper discusses the working mechanisms, performance evaluation methods, processing technologies, practical applications and research progress of nanoparticle antiviral coatings and polymer antiviral coatings for SARS-CoV-2, and also proposes some strategies to design more effective antiviral coatings from the perspective of different types of antiviral coatings. Although some of these antiviral coatings are still in the experimental stage, they still show great potential in the antiviral field.

Contents

1 Introduction

2 Antiviral mechanism

2.1 Direct inactivation of virus

2.2 Inhibiting virus infection of host cells

2.3 Inhibition of virus proliferation

3 Antiviral coatings

3.1 Nanomaterial antiviral coatings

3.2 Antiviral polymer coatings

4 Evaluation methods of antiviral coatings

5 Processing technologies of antiviral coatings

6 Practical applications of antiviral coatings

6.1 Antivirus mask

6.2 Antivirus fabrics

6.3 Surface of other solid objects

7 Conclusion and outlook

Fig. 1 Structure of coronavirus[1]. Copyright 2020, American Chemical Society
Fig. 2 Schematic drawing of inactivation of virus in respiratory droplets by photothermal effect, photocatalytic effect and self-cleaning under solar irradiation[16]. Copyright 2020, American Chemical Society
Fig. 3 Comparison of zeta potential curves for MS2 bacteriophage (virus), CuO, Cu2O and Cu[18]. Copyright 2019, American Chemical Society
Fig. 4 SEM images of electrospun fibers, (A)without AgNP (PHBV18), (B) with AgNP (PHVB18/AgNP), and(C)size distribution of fibers[21]. Copyright 2017, Elsevier
Fig. 5 Possible mechanisms of the antiviral activity of Ag2S NCs[23]. Copyright 2018, American Chemical Society
Fig. 6 Antiviral mechanism of nano ZnO[24]. Copyright 2019, Advances in Nutrition
Fig. 7 SEM images of nano ZnO[25]. Copyright 2022, Coatings
Fig. 8 FE-SEM images of ZnO-NPs (a) and ZnO-PEG-NPs (b); TEM image of ZnO-PEG-NPs (c)[26]. Copyright 2019, Springer Nature
Fig. 9 Cytotoxicity of ZnO-NPs (a), ZnO-PEG-NPs (b), polyethylene glycol (c), and oseltamivir (d) on MDCK-SIAT1 cells[26]. Copyright 2019, Springer Nature
Fig. 10 The inhibitory rates of the four compounds against H1N1 influenza virus determined by Real-Time PCR assay[26]. Copyright 2019, Springer Nature
Fig. 11 Inactivation of various types of variants. (a) changes of virus titer of different variants under visible light irradiation and (b) changes of virus titer of Delta variant[29]. Copyright 2022, Springer Nature
Table 1 Progress of carbon-based antiviral nanomaterials
Table 2 Research progress of 2D MXene in anti-virus
Fig. 12 Mechanism of enveloped virus inactivation by polycation coating[46]. Copyright 2011, Proceedings of the National Academy of Sciences
Table 3 Polymer antiviral coatings
Fig. 13 Schematic representation of an antiviral assay for surface coatings[54]. Copyright 2022, ACS Applied Bio Materials
Fig. 14 Preparation process of graphene nanosheet-embedded carbon (GNEC) film mask. (a) Deposition process of GNEC film. (b) Fabrication process of the GNEC mask[57]. Copyright 2020, Nano Research
Fig. 15 SEM images of face mask filter coated by dipping in dispersions of a) 0.1 mg/mL, b) 0.25 mg/mL, c) 0.5 mg/mL, and d) 1 mg/mL Cu@ZIF-8 NWs[55]. Copyright 2021, Advanced Functional Materials
Fig. 16 Individual packages of the wet wipes loaded with the silver nanoparticles[58]. Copyright 2021, International Journal of Biological Macromolecules
Fig. 17 Antimicrobial and antiviral winter sweater made of cotton yarns treated with AgNPs[58]. Copyright 2021, International Journal of Biological Macromolecules
[15]
Minoshima M, Lu Y, Kimura T, Nakano R, Ishiguro H, Kubota Y, Hashimoto K, Sunada K. Journal of Hazardous Materials., 2016, 312: 1.

doi: S0304-3894(16)30238-2 pmid: 27015373
[16]
Kumar S, Karmacharya M, Joshi S R, Gulenko O, Park J, Kim G H, Cho Y K. Nano Lett., 2021, 21(1): 337.

doi: 10.1021/acs.nanolett.0c03725
[17]
Castro Mayorga J L, Fabra Rovira M J, Cabedo Mas L, Sánchez Moragas G, LagarÓn Cabello J M. J. Appl. Polym. Sci., 2018, 135(2): 45673.

doi: 10.1002/app.45673
[18]
Mazurkow J M, Yüzbasi N S, Domagala K W, Pfeiffer S, Kata D, Graule T. Environ. Sci. Technol., 2020, 54(2): 1214.

doi: 10.1021/acs.est.9b05211 pmid: 31855599
[19]
Rai M, Deshmukh S D, Ingle A P, Gupta I R, Galdiero M, Galdiero S. Critical reviews in microbiology., 2016, 42(1): 46.

doi: 10.3109/1040841X.2013.879849
[20]
Chen Y N, Hsueh Y H, Hsieh C T, Tzou D Y, Chang P L. International Journal of Environmental Research and Public Health, 2016, 13(4): 430.

doi: 10.3390/ijerph13040430
[21]
Castro-Mayorga J L, Randazzo W, Fabra M J, Lagaron J M, Aznar R, Sánchez G. LWT-Food Science and Technology, 2017, 79: 503.

doi: 10.1016/j.lwt.2017.01.065
[22]
He Q, Lu J, Liu N, Lu W Q, Li Y, Shang C, Li X, Hu L G, Jiang G B. Nanomaterials, 2022, 12(6): 990.

doi: 10.3390/nano12060990
[23]
Du T, Liang J G, Dong N, Lu J, Fu Y Y, Fang L R, Xiao S B, Han H Y. ACS Appl. Mater. Interfaces, 2018, 10(5): 4369.

doi: 10.1021/acsami.7b13811
[24]
Read S A, Obeid S, Ahlenstiel C, Ahlenstiel G. Advances in nutrition., 2019, 10(4): 696.

doi: 10.1093/advances/nmz013
[25]
El-Megharbel S M, Alsawat M, Al-Salmi F A, Hamza R Z. Coatings, 2021, 11(4): 388.

doi: 10.3390/coatings11040388
[26]
Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani S J, Esghaei M, Pirhajati-Mahabadi V, Monavari S H, Ataei-Pirkooh A. Journal of Biomedical Science, 2019, 26(1): 70.

doi: 10.1186/s12929-019-0563-4 pmid: 31500628
[27]
Nosaka Y, Nosaka A Y. Chem. Rev., 2017, 117(17): 11302.

doi: 10.1021/acs.chemrev.7b00161
[28]
Boldogk? i Z, Csabai Z, Tombácz D, Janovák L, Balassa L, Deák Á, TÓth P S, Janáky C, Duda E, DÉkány I. Front. Bioeng. Biotechnol., 2021, 9: 709462.
[29]
Nakano R, Yamaguchi A, Sunada K, Nagai T, Nakano A, Suzuki Y, Yano H, Ishiguro H, Miyauchi M. Scientific Reports., 2022, 12(1): 1.

doi: 10.1038/s41598-021-99269-x
[30]
Innocenzi P, Stagi L. Chem. Sci., 2020, 11(26): 6606.

doi: 10.1039/d0sc02658a pmid: 33033592
[31]
Ayub M, Othman M H D, Khan I U, Yusop M Z M, Kurniawan T A. Surfaces and Interfaces., 2021, 27: 101460.

doi: 10.1016/j.surfin.2021.101460
[1]
Eldin A Osman E, Toogood P L, Neamati N. ACS Infect. Dis., 2020, 6(7): 1548.

doi: 10.1021/acsinfecdis.0c00224
[2]
Mehraeen E, Salehhi M A, Behnezhad F, Moghaddam H R, SeyedAhmad S. Infectious Disorders-Drug Targets., 2021, 21(6): 27.
[3]
Ghosh S K. Nova Surface-Care Centre Pvt: Maharashtra, India, 2020.
[4]
Huang H, Fan C, Li M, Nie H L, Wang F B, Wang H, Wang R, Xia J, Zheng X, Zuo X, Huang J. ACS Nano, 2020, 14(4): 3747.

doi: 10.1021/acsnano.0c02618
[5]
Reina G, Peng S Y, Jacquemin L, Andrade A F, Bianco A.. ACS Nano, 2020, 14(8): 9364.

doi: 10.1021/acsnano.0c04117
[6]
Moschini E, Colombo G, Chirico G, Capitani G, Dalle-Donne I, Mantecca P. Scientific Reports, 2023, 13(1): 2326.

doi: 10.1038/s41598-023-28958-6
[7]
Innocenzi P, Stagi L. Chemical Science., 2020, 11(26): 6606.

doi: 10.1039/d0sc02658a pmid: 33033592
[8]
Cagno V, Gasbarri M, Medaglia C, Gomes D, Clement S, Stellacci F, Tapparel C. Antimicrobial Agents and Chemotherapy, 2020, 64.
[9]
Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y, Casola A. Viruses, 2019, 11(8): 732.

doi: 10.3390/v11080732
[10]
Tong T, Hu H G, Zhou J W, Deng S F, Zhang X T, Tang W T, Fang L R, Xiao S B, Liang J G. Small, 2020, 16(13): 1906206.
[11]
Turnlund J R. Am. J. Clin. Nutr., 1998, 67(5): 960S.
[12]
Tavakoli A, Hashemzadeh M S. Journal of Virological Methods, 2020, 275: 113688.

doi: 10.1016/j.jviromet.2019.113688
[13]
Maruzuru Y, Shindo K, Liu Z M, Oyama M, Kozuka-Hata H, Arii J, Kato A, Kawaguchi Y. Journal of Virology, 2014, 88(13): 7445.

doi: 10.1128/JVI.01057-14 pmid: 24741100
[14]
Chatterjee A K, Chakraborty R, Basu T. Nanotechnology, 2014, 25(13): 135101.

doi: 10.1088/0957-4484/25/13/135101
[32]
Galante A J, Yates K A, Romanowski E G, Shanks R M Q, Leu P W. ACS Applied Nano Materials, 2022, 5(1): 718.

doi: 10.1021/acsanm.1c03448
[33]
Adcock A F, Wang P, Ferguson I S, Obu S C, Sun Y P, Yang L J. ACS Applied Bio Materials, 2022, 5(7): 3158.

doi: 10.1021/acsabm.2c00153
[34]
Kraevaya O A, Bolshakova V S, Peregudov A S, Chernyak A V, Slesarenko N A, Markov V Y, Lukonina N S, Martynenko V M, Sinegubova E O, Shestakov A F, Zarubaev V V, Schols D, Troshin P A. Organic Letters, 2021, 23(18): 7226.

doi: 10.1021/acs.orglett.1c02623 pmid: 34468156
[35]
Lee S, Nam J S, Han J, Zhang Q, Kauppinen E I, Jeon I. ACS Applied Nano Materials, 2021, 4(8): 8135.

doi: 10.1021/acsanm.1c01386
[36]
Allawadhi P, Khurana A, Allwadhi S, Joshi K, Packirisamy G, Bharani K K. Nano Today, 2020, 35: 100982.
[37]
Zandi M, Hosseini F, Adli A H, Salmanzadeh S, Behboudi E, Halvaei P, Khosravi A, Abbasi S. Biomedicine © Pharmacotherapy, 2022, 156: 113868.
[38]
Cui W, Wang Y, Luo C, Xu J, Wang K, Han H, Yao K. Materials Today Nano, 2022, 18: 100218.
[39]
Neal C J, Fox C R, Sakthivel T S, Kumar U, Fu Y, Drake C, Parks G D, Seal S. ACS Nano, 2021, 15(9): 14544.

doi: 10.1021/acsnano.1c04142
[40]
Ito T, Sunada K, Nagai T, Ishiguro H, Nakano R, Suzuki Y, Nakano A, Yano H, Isobe T, Matsushita S, Nakajima A. Materials Letters, 2021, 290: 129510.

doi: 10.1016/j.matlet.2021.129510
[41]
Huang Y, Yang C, Xu X, Xu W, Liu S. Acta Pharmacologica Sinica, 2020, 41(9): 1141.

doi: 10.1038/s41401-020-0485-4 pmid: 32747721
[42]
Huang Z M, Cui X, Li S L, Wei J C, Li P, Wang Y T, Lee C S. Nanophotonics, 2020, 9(8): 2233.

doi: 10.1515/nanoph-2019-0571
[43]
Unal M A, Bayrakdar F, Fusco L, Besbinar O, Shuck C E, Yalcin S, Erken M T, Ozkul A, Gurcan C, Panatli O, Summak G Y, Gokce C, Orecchioni M, Gazzi A, Vitale F, Somers J, Demir E, Yildiz S S, Nazir H, Grivel J C, Yilmazer A. Nano Today, 2021, 38: 101136.

doi: 10.1016/j.nantod.2021.101136
[44]
Tong T, Tang W, Xiao S, Liang J. Advanced Nobiomed Research, 2022, 2(10): 2200067.
[45]
Zhang G F, Cong Y L, Liu F L, Sun J F, Zhang J T, Cao G L, Zhou L Q, Yang W J, Song Q L, Wang F J, Liu K, Qu J, Wang J, He M, Feng S, Baimanov D, Xu W, Luo R H, Long X Y, Liao S M, Fan Y P, Li Y F, Li B, Shao X M, Wang G C, Fang L J, Wang H Y, Yu X F, Chang Y Z, Zhao Y L, Li L, Yu P, Zheng Y T, Boraschi D, Li H C, Chen C Y, Wang L M, Li Y. Nat. Nanotechnol., 2022, 17(9): 993.

doi: 10.1038/s41565-022-01177-2
[46]
Hsu B B, Wong S Y, Hammond P T, Klibanov A M. Proceedings of the National Academy of Sciences, 2011, 108(1): 61.

doi: 10.1073/pnas.1017012108
[47]
Larson A M, Hsu B B, Rautaray D, Haldar J, Chen J Z, Klibanov A M. Biotechnol. Bioeng., 2011, 108(3): 720.

doi: 10.1002/bit.22967
[48]
Qiu Q H, Yang C, Wang Y M, Alexander C A, Yi G S, Zhang Y G, Qin X H, Yang Y Y. Biomaterials, 2022, 284: 121470.

doi: 10.1016/j.biomaterials.2022.121470
[49]
Sorci M, Fink T D, Sharma V, Singh S, Chen R, Arduini B L, Dovidenko K, Heldt C L, Palermo E F, Zha R H. ACS Applied Materials © Interfaces, 2022, 14(22): 25135.
[50]
Ikner L A, Torrey J R, Gundy P M, Gerba C P. American Journal of Infection Control., 2021, 49(12): 1569.

doi: 10.1016/j.ajic.2021.08.031
[51]
Ghosh S, Mukherjee R, Basak D, Haldar J. ACS Applied Materials © Interfaces, 2020, 12(25): 27853.
[52]
Li R, Hou Y, Huang J, Pan W, Ma Q, Shi Y, Li C, Zhao J, Jia Z, Jiang H, Zheng K, Huang S, Dai J, Li X, Hou X, Wang L, Zhong N, Yang Z. Pharmacological Research, 2020, 156: 104761.

doi: 10.1016/j.phrs.2020.104761
[53]
Ou X Y, Liu Y, Lei X B, Li P, Mi D, Ren L L, Guo L, Guo R X, Chen T, Hu J X, Xiang Z C, Mu Z X, Chen X, Chen J Y, Hu K P, Jin Q, Wang J W, Qian Z H. Nature Communications, 2021, 12(1): 2144.

doi: 10.1038/s41467-021-22614-1
[54]
Sano M, Morisita K, Onizawa Y, Takagi T, Sumaru K. ACS Applied Bio Materials, 2022, 5(11): 5174.

doi: 10.1021/acsabm.2c00613
[55]
Kumar A, Sharma A, Chen Y, Jones M M, Vanyo S T, Li C N, Visser M B, Mahjan S D, Sharma R K, Swihart MT. Adv. Funct. Mater., 2021, 31: 2008054.
[56]
Moreno M A, Bojorges H, Falco I, Sanchez G, Lopez-Carballor G, Lopez-Rubio A, Zampini I C, Isla M a I, Fabra M J. Food Hydrocolloids, 2020, 102: 105595.

doi: 10.1016/j.foodhyd.2019.105595
[57]
Lin Z Z, Wang Z, Zhang X, Diao D F. Nano Research, 2021, 14(4): 1110.

doi: 10.1007/s12274-020-3158-1
[58]
Hamouda T, Ibrahim H M, Kafafy H H, Mashaly H M, Mohamed N H, Aly N M. International Journal of Biological Macromolecules, 2021, 181: 990.

doi: 10.1016/j.ijbiomac.2021.04.071 pmid: 33864870
[59]
Karagoz S, Kiremitler N B, Sarp G, Pekdemir S, Salem S, Goksu A G, Onses M S, Sozdutmaz I, Sahmetlioglu E, Ozkara e s, Ceylan A, Yilmaz E. ACS Appl. Mater. Interfaces, 2021, 13: 5678.

doi: 10.1021/acsami.0c15606
[60]
Das Jana I, Kumbhakar P, Banerjee S, Gowda C C, Kedia N, Kuila S K, Banerjee S, Das N C, Das A K, Mnana I, Tiwary C S, Mondal A. ACS Appl. Nano Mater., 2021, 4: 352.

doi: 10.1021/acsanm.0c02713
[1] Huiping Yu, Yawei Qin, Jinyong Dong. Design and Synthesis of Degradable Polyolefins [J]. Progress in Chemistry, 2023, 35(9): 1294-1303.
[2] Shiping Jin, Ying Sun, Xueqin Zhang. Oxygen Permeability of Polymer Hydrogel Materials [J]. Progress in Chemistry, 2023, 35(9): 1304-1312.
[3] Bingyi Ma, Sheng Huang, Shuanjin Wang, Min Xiao, Dongmei Han, Yuezhong Meng. Composite Polymer Electrolytes with Multi-Dimensional Non-Lithium Inorganic Hybird Components for Lithium Batteries [J]. Progress in Chemistry, 2023, 35(9): 1327-1340.
[4] Ziyu Pan, Haodong Ji. Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications [J]. Progress in Chemistry, 2023, 35(8): 1229-1257.
[5] Tao Liu, Junping Miao, Longlong Wang, Yunxia Hu. Structure Design and Tailoring Strategy of Polymeric Materials for Fabrication of Nanofiltration Membranes via Phase Inversion [J]. Progress in Chemistry, 2023, 35(8): 1199-1213.
[6] Wenbo Zhang, Jianing Wang, Linfeng Wei, Hua Jin, Yan Bao, Jianzhong Ma. Preparation and Application of Functional Polymer-Based Electromagnetic Shielding Materials [J]. Progress in Chemistry, 2023, 35(7): 1065-1076.
[7] Wenying Zhou, Fang Wang, Yating Yang, Yun Wang, Yingying Zhao, Liangqing Zhang. Intrinsically Thermal Conductive Polymers: Heat Conduction Mechanism, Structure & Performances and Applications [J]. Progress in Chemistry, 2023, 35(7): 1106-1122.
[8] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[9] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[10] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[11] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[12] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[13] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[14] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[15] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
Viewed
Full text


Abstract

Research Progress of Antiviral Coatings