中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (5): 735-756 DOI: 10.7536/PC220710 Previous Articles   Next Articles

• Review •

Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery

Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang()   

  1. School of Perfume and Aroma Technology, Shanghai Institute of Technology,Shanghai 201418, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: dmzhang@sit.edu.cn
  • Supported by:
    Provincial and ministerial collaborative innovation Center project(XTCXC-202101); Collaborative Innovation Fund of Shanghai Institute of Technology(XTCX2022-30)
Richhtml ( 37 ) PDF ( 579 ) Cited
Export

EndNote

Ris

BibTeX

Compared with oral administration and injection administration, the microneedle transdermal delivery system has the characteristics of high efficiency, safety and painless administration. In particular, the stimuli-responsive polymer microneedle systems exhibit good biocompatibility and can be realized according to the micro-changes in the environment. The function of percutaneous local and systemic intelligent drug delivery in time and space is currently an international frontier research topic. This paper focuses on the research of stimulus-responsive polymer microneedles at home and abroad in the past ten years, and focuses on the evolution of polymer microneedles, the types of internal and external environmental stimulus response and its response structure-activity mechanism. In addition, the preparation and characterization of microneedles and the application of microneedle system in the fields of biomedicine delivery, tissue and organs, dermatology and medical beauty are described in detail. The stimulation-responsive polymer microneedle system has the advantages of simple use, adjustable mechanical properties and precise targeted drug delivery, which has great research significance in the field of percutaneous targeted drug delivery. In the future, the biological in vivo load and industrial application of standardization are the direction of continuous efforts and progress of researchers.

Contents

1 Introduction

2 Preparation process and characterization methods of stimuli-responsive polymer microneedles

2.1 Preparation

2.2 Methods for characterizing the properties of polymer microneedle systems

3 Classification of stimulus-responsive polymer microneedles

3.1 Polymer microneedle system triggered by external environmental stimuli

3.2 Polymer microneedle system triggered by in vivo physiological signal stimuli

4 Stimuli-responsive polymer microneedles for transdermal delivery

4.1 Biopharmaceutical delivery

4.2 Tissue organ therapy

4.3 Detection and sensing device

4.4 Extraction of samples

4.5 Dermatology and cosmetics

5 Conclusion and outlook

Fig. 1 Schematic diagram of polymer microneedles development
Fig. 2 Preparation method of microneedles. (A,B) Decompression pouring method. (A) Schematic diagram of the process for preparation of microneedles using concentration differences[20]; Schematic diagram of the process for manufacturing microneedles using DPFM (B-i); Electron microscopic images of microneedles (B-ii)[21]; (C) Hot embossing[22]. Schematic diagram of hot embossing (C-i); Scanning electron microscopic images of microneedles (C-ii); (D) Impregnation and coating method. Schematic diagram of the coating microneedle fabrication process[24]; (E,F) 3D printing method[26]. (E) The schematic illustration of the fabrication of MNs by FDM 3D printing and chemical etching; Optical images of MNs as FDM-fabricated (F-i) and after etching in KOH solution (Fii); SEM images of MNs as fabricated (F-iii) and after etching in KOH solution (F-iv)
Fig. 3 Characterization of polymer microneedle systems. (A,B) Mechanical properties of the microneedle system[28]. (A) Schematic diagram of stress modeling (H: initial height of microneedles; H': height of microneedle missing tip; r1: half the side length of the quadrilateral microneedle base; r2: initial half length of the tip of the quadrilateral micro pin; δ: displacement of microneedle; rδ: when the compression displacement is δ, the half length of the contact surface); (B) Displacement changes under different types of microneedles (* : p < 0.05;** : p < 0.01;*** : p < 0.001); (C,D) Drug delivery performance of the microneedle system. (C) microneedle administration method[31]; Bacteriostatic rate under different treatment modes (D-i); Schematic representation of SA, PIL-MN and SA-PIL-Mn for skin acne treatment in a mouse model (D-ii)[32]
Fig. 4 Trigger release mechanisms of different types of stimulation-responsive polymer microneedles
Fig. 5 Environmentally responsive polymer microneedles. (A) Photoresponsive polymer microneedle system. Schematic diagram of the preparation of 5-Fu-ICG-MPEG-PCL (A-i); Growth curves of A431 tumor-bearing mice in each group (mean ± standard deviation (n=5) “**” denotes P < 0.01) (A-ii); Near-infrared thermal effect of A431 tumor-bearing mice irradiated with 1 W/cm2 808nm laser for 5 min (A-iii)[40]; (B) Electrically responsive polymer microneedle system. MXene microneedle biosensor measurement method and signal processing potential peak (B-i); MXene microneedle biosensor application (B-ii)[45] ; (C) Magnetically responsive polymer microneedle system. magnetically driven capsules with multi-layer MN patches (C-i); The process of using a magnetically driven capsule to deliver a microneedle patch to a target lesion (C-ii)[50]; (D) Thermal responsive polymer microneedle system. Intent of gelatin-PNIPam microneedles for control of transdermal drug delivery (D-i); Drug release rates in different concentrations of H2O2 (D-ii); In vitro release rates of RS-GP microneedles at 37 ℃ (1), room temperature (2) and common gelatin microneedles at 37 ℃ (3) (D-iii)[52]; (E) Mechanical force responsive polymer microneedle system. Integration of medicine-equipped wearable devices with microneedle array patches (E-i); Changes in blood glucose levels of mice under different treatment methods (E-ii)[57]
Fig. 6 Stimulus-responsive polymer microneedles for physiological signals in vivo. (A) pH-responsive polymer microneedle system. Schematic diagram of ZIF-8 encapsulated microneedles (A-i); CCM release curves under different pH conditions (A-ii)[67]; (B) Glucose-responsive polymer microneedle system. The mechanism and in vitro performance of GRS glucagon delivery system (B-i); Changes in plasma glucagon concentrations in diabetic mice treated with the patch (B-ii)[70]; (C) Reactive oxygen reactive polymer microneedle system. Mechanism diagram of microneedles in response to H2O2 delivered MTX in the treatment of psoriasis (C-i); EGCG release rate of microneedles in vitro at different concentrations of H2O2 (C-ii)[74]; (D) Enzyme-responsive polymer microneedle system. Schematic diagram of the mechanism of microneedle lysis of biofilms in infected wound removal (D-i); left-handed release curves at different pH values and temperatures (D-ii)[82]
Table 1 Different types of stimulus-responsive polymer microneedle system and applications
Fig. 7 Application of Stimulus-responsive polymer microneedle systems
Fig. 8 Transdermal delivery of stimulus-responsive polymer microneedles. (A) Tissue and organ therapy. Thermal images of MN applied to the back skin of rats before and after 1 W/cm2 NIR irradiation for 2 min (A-i); Oxygen release in different groups (control group, BP group, BP + Hb group and BP + Hb + NIR group) (A-ii);Representative photographs of different groups of skin wounds on days 0, 3, 5, 7 and 9 (A-iii)[88](B) Detection and sensing device application[91]. Diagram of the manufacturing process and detection mechanism of the glucose sensor (B-i); I(A)-t response curve in stirred PBS continuously supplemented with 0.2 mM glucose at 0.75 V (B-ii); 0.5 mM glucose, 0.025 mM AA, 0.5 mM glucose, 1 mM urea, 0.025 mM Gly, 0.5 mM glucose and 0.025 mM AP were added continuously at 0.75 V (B-iii); (C) Sample extraction application. Schematic diagram of conventional CTAB extraction and MN extraction (C-i); Image of tomato leaves after puncture and cut of microneedle patch (C-ii); The amount of DNA extracted by microneedle extraction method and CTAB extraction method (C-iii)[93]; (D) Whitening and anti-aging applications. Histological images of skin hair treated with control, HA and gelatin microneedles (D-i); Change rate of skin elasticity within 4 weeks before and after microneedle application (P<0.05) (D-ii)[99]; (E) Anti-hair loss application. synthesis of polylactic acid-glycolate grafted hyaluronic acid (HA-PLGA) (E-i)[100]; the cumulative release curve (MXD solution (●), PLGA/MXD-NP (■), the HA-PLGA/MXD-NP (▲)) (E-ii)
[1]
Chen M L, Yang D, Sun Y, Quan G L, Wu C B, Pan X. Progress in Pharmaceutical Sciences, 2020, 44(5): 324.
(陈明龙, 杨丹, 孙颖, 权桂兰, 吴传斌, 潘昕. 药学进展, 2020, 44(5): 324. ).
[2]
Hao Y, Li W, Zhou X L, Yang F, Qian Z Y. J. Biomed. Nanotechnol., 2017, 13(12): 1581.

doi: 10.1166/jbn.2017.2474
[3]
Ahmed Saeed AL-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, Raman S. Int. J. Pharm., 2020, 587: 119673.

doi: 10.1016/j.ijpharm.2020.119673
[4]
Chen Y H, Li X F, Xu W J, Wang Y X. Progress in Chemistry, 2021, 33(07): 1152.
(陈永杭, 李欣芳, 余伟江, 王幽香. 化学进展, 2021, 33(07): 1152).
[5]
Jeong W Y, Kwon M, Choi H E, Kim K S. Biomater. Res., 2021, 25(1): 24.

doi: 10.1186/s40824-021-00226-6 pmid: 34321111
[6]
Makvandi P, Jamaledin R, Chen G J, Baghbantaraghdari Z, Zare E N, Di Natale C, Onesto V, Vecchione R, Lee J, Tay F R, Netti P, Mattoli V, Jaklenec A, Gu Z, Langer R. Mater. Today, 2021, 47: 206.

doi: 10.1016/j.mattod.2021.03.012 pmid: 36338772
[7]
Ullah, Khan, Choi, Kim. Polymers, 2019, 11(11): 1834.

doi: 10.3390/polym11111834
[8]
Wang W X, Feng S S, Zheng C H. Int. J. Pharm., 2016, 513(1/2): 387.

doi: 10.1016/j.ijpharm.2016.09.043
[9]
Tierney T, Bodnár K, Rasmuson Å, Hudson S. Int. J. Pharm., 2017, 518(1/2): 111.

doi: 10.1016/j.ijpharm.2016.11.045
[10]
Pang B, Liu H, Zhang K. Adv. Colloid Interface Sci., 2021, 296: 102522.

doi: 10.1016/j.cis.2021.102522
[11]
Chen Y, Song T, Chen W L, Li H L, Lu A Y, Zhang J Y. Progress in Pharmaceutical Sciences, 2021, 40(11): 744.
(陈怡, 宋婷, 陈雯琳, 李海梁, 卢爱玉, 张峻颖. 药学研究, 2021, 40(11): 744.).
[12]
Zhang D D, Wu Y L, Ju D H, Liu M J, Hao B H. China Ind. Econ., 2014, 29(8): 2559.
(张朵朵, 吴艳丽, 鞠大宏, 刘梅洁, 郝保华. 中华中医药杂志, 2014, 29(8): 2559.).
[13]
Henry S, McAllister D V, Allen M G, Prausnitz M R. J. Pharm. Sci., 1998, 87(8): 922.

doi: 10.1021/js980042+
[14]
Zhao X, Li X F, Zhang P, Wang Y X. Progress in Chemistry, 2017, 29(12): 1518.
(赵笑, 李欣芳, 张鹏, 王幽香. 化学进展, 2017, 29(12): 1518.).

doi: 10.7536/PC170804
[15]
Miyano T, Tobinaga Y, Kanno T, Matsuzaki Y, Takeda H, Wakui M, Hanada K. Biomed. Microdevices, 2005, 7(3): 185.

doi: 10.1007/s10544-005-3024-7
[16]
Donnelly R F, Singh T R R, Garland M J, Migalska K, Majithiya R, McCrudden C M, Laxman Kole P, Mahmood T M T, McCarthy H O, David Woolfson A. Adv. Funct. Mater., 2012, 22(23): 4879.

pmid: 23606824
[17]
Yu J, Zhang Y, Ye Y, Disanto R, Sun W, Ranson D, Ligler F S, Buse J B, Gu Z. Proc. Natl. Acad. Sci. U. S. A., 2015, 52(6): 720.
[18]
Chen M C, Ling M H, Wang K W, Lin Z W, Lai B H, Chen D H. Biomacromolecules, 2015, 16(5): 1598.

doi: 10.1021/acs.biomac.5b00185
[19]
Zhang L J, Guo R R, Wang S Q, Yang X T, Ling G X, Zhang P. Int. J. Pharm., 2021, 604: 120749.

doi: 10.1016/j.ijpharm.2021.120749
[20]
Vrdoljak A, Allen E A, Ferrara F, Temperton N J, Crean A M, Moore A C. J. Control. Release, 2016, 225: 192.

doi: 10.1016/j.jconrel.2016.01.019
[21]
Chen H, Wu B, Zhang M, Yang P, Yang B, Qin W, Wang Q, Wen X, Chen M, Quan G, Pan X, Wu C. Drug Delivery Transl. Res., 2018, 9(2019): 240.

doi: 10.1007/s13346-018-00593-z
[22]
Andersen T E, Andersen A J, Petersen R S, Nielsen L H, Keller S S. Microelectron. Eng., 2018, 195: 57.

doi: 10.1016/j.mee.2018.03.024
[23]
Abubaker S S, Zhang Y J. Int. J. Precis. Eng. Manuf., 2019, 20(4): 631.

doi: 10.1007/s12541-019-00095-z
[24]
Chen Y, Chen B Z, Wang Q L, Jin X, Guo X D. J. Controlled Release, 2017, 265(2017): 14.

doi: 10.1016/j.jconrel.2017.03.383
[25]
Chen B Z, He M C, Zhang X P, Fei W M, Cui Y, Guo X D. Drug Deliv. Transl. Res., 2022, 12(11): 2730.

doi: 10.1007/s13346-022-01123-8
[26]
Detamornrat U, McAlister E, Hutton A R J, Larrañeta E, Donnelly R F. Small, 2022, 18(18): 2106392.

doi: 10.1002/smll.v18.18
[27]
Luzuriaga M A, Berry D R, Reagan J C, Smaldone R A, Gassensmith J J. Lab a Chip, 2018, 18(8): 1223.

doi: 10.1039/C8LC00098K
[28]
Du G S, Zhang Z H, He P H, Zhang Z B, Sun X. J. Mech. Behav. Biomed. Mater., 2021, 117: 104384.

doi: 10.1016/j.jmbbm.2021.104384
[29]
Tas C, Joyce J C, Nguyen H X, Eangoor P, Knaack J S, Banga A K, Prausnitz M R. J. Controlled Release, 2017, 268: 159.

doi: 10.1016/j.jconrel.2017.10.021
[30]
Zhuang J, Rao F, Wu D M, Huang Y, Xu H, Gao W X, Zhang J R, Sun J Y. Eur. J. Pharm. Biopharm., 2020, 157: 66.

doi: 10.1016/j.ejpb.2020.10.002 pmid: 33059004
[31]
Chen J M, Liu X Y, Liu S W, He Z M, Yu S J, Ruan Z P, Jin N. Drug Dev. Ind. Pharm., 2021, 47(10): 1578.

doi: 10.1080/03639045.2022.2027959
[32]
Zhang T K, Sun B, Guo J N, Wang M Y, Cui H Q, Mao H L, Wang B, Yan F. Acta Biomater., 2020, 115: 136.

doi: 10.1016/j.actbio.2020.08.023
[33]
Peng H C, Zhang C X, Wang M Y, Zhang W, Xu B, Yan X X, Xin H B, Wang X L. Appl. Mater. Today, 2020, 19: 100577.
[34]
Long Z, Zhan S S, Gao P C, Wang Y Q, Lou X D, Xia F. Anal. Chem., 2018, 90(1): 577.

doi: 10.1021/acs.analchem.7b04737 pmid: 29161021
[35]
Yang Q L, Kang X M, Sun J, Wei L H, Ma Z. Chem. Ind. Eng. Prog., 2015, 34(08): 3075.
(杨倩丽, 康晓明, 孙静, 魏柳荷, 马志. 化工进展, 2015, 34(08): 3075).

doi: 10.16085/j.issn.1000-6613.2015.08.027
[36]
Tang Y, Wang G. J. Photochem. Photobiol., C, 2021, 47(2021): 100420.
[37]
Hardy J G, Larrañeta E, Donnelly R F, McGoldrick N, Migalska K, McCrudden M T C, Irwin N J, Donnelly L, McCoy C P. Mol. Pharmaceutics, 2016, 13(3): 907.

doi: 10.1021/acs.molpharmaceut.5b00807
[38]
Liu J Z, Kang W R, Wang W P. Photochem. Photobiol., 2022, 98(2): 288.

doi: 10.1111/php.v98.2
[39]
Ye Y Q, Wang C, Zhang X D, Hu Q Y, Zhang Y Q, Liu Q, Wen D, Milligan J, Bellotti A, Huang L, Dotti G, Gu Z. Sci. Immunol., 2017, 2(17): eaan5692.

doi: 10.1126/sciimmunol.aan5692
[40]
Hao Y, Chen Y W, He X L, Yang F, Han R X, Yang C L, Li W, Qian Z Y. Bioact. Mater., 2020, 5(3): 542.
[41]
Fan Z J, Wei Y, Yin Z R, Huang H F, Liao X Z, Sun L Y, Liu B, Liu F Z. ACS Appl. Mater. Interfaces, 2021, 13(34): 40278.

doi: 10.1021/acsami.1c09658
[42]
Xu L L, Yang Y, Mao Y K, Li Z. Adv. Mater. Technol., 2022, 7(2): 2100055.

doi: 10.1002/admt.v7.2
[43]
Wilson A M, Justin G, Guiseppi-Elie A. Biomedical Applications of Hydrogels Handbook. New York: Springer New York, 2010. 319.
[44]
Qu J, Zhao X, Ma P X, Guo B L. Acta Biomater., 2018, 72: 55.

doi: 10.1016/j.actbio.2018.03.018
[45]
Yang Y C, Lin Y T, Yu J, Chang H T, Lu T Y, Huang T Y, Preet A, Hsu Y J, Wang L, Lin T E. ACS Appl. Nano Mater., 2021, 4(8): 7917.

doi: 10.1021/acsanm.1c01237
[46]
Seeni R Z, Zheng M, Lio D C S, Wiraja C, Mohd Yusoff M F B, Koh W T Y, Liu Y, Goh B T, Xu C. Adv. Funct. Mater., 2021, 31(47): 2105686.

doi: 10.1002/adfm.v31.47
[47]
Jayaneththi V R, Aw K, Sharma M, Wen J, Svirskis D, McDaid A J. Sens. Actuat. B Chem., 2019, 297: 126708.

doi: 10.1016/j.snb.2019.126708
[48]
Justin R, Chen B Q. Interface Focus., 2018, 8(3): 20170055.

doi: 10.1098/rsfs.2017.0055
[49]
Sharifianjazi F, Irani M, Esmaeilkhanian A, Bazli L, Asl M S, Jang H W, Kim S Y, Ramakrishna S, Shokouhimehr M, Varma R S. Mater. Sci. Eng., 2021, 272(2021): 115358.

doi: 10.1016/j.mseb.2021.115358
[50]
Lee J H, Lee H Y, Kim S H, Park S H. Med. Eng. Phys., 2020, 85: 87.

doi: 10.1016/j.medengphy.2020.09.012
[51]
Hu L, Wang Y, Yin Q, Du K, Yin Q,. J. Appl. Polym. Sci., 2019, 136(38): 47972.

doi: 10.1002/app.v136.38
[52]
Li J Y, Feng Y H, He Y T, Hu L F, Liang L, Zhao Z Q, Chen B Z, Guo X D. Acta Biomater., 2022, 153: 308.

doi: 10.1016/j.actbio.2022.08.061
[53]
Lee H, Choi T K, Lee Y B, Cho H R, Ghaffari R, Wang L, Choi H J, Chung T D, Lu N, Hyeon T, Choi S H, Kim D H. Nat. Nanotechnol., 2016, 11(6): 566.

doi: 10.1038/nnano.2016.38
[54]
Lee C, Kim J, Um D J, Kim Y, Min H S, Shin J, Nam J H, Kang G, Jang M, Yang H, Jung H. Pharmaceutics, 2021, 13(7): 1058.

doi: 10.3390/pharmaceutics13071058
[55]
Zhang Y, Yu J, Bomba H N, Zhu Y, Gu Z. Chem. Rev., 2016, 116(19): 12536.

pmid: 27680291
[56]
Wang J L, Kaplan J A, Colson Y L, Grinstaff M W. Adv. Drug Deliv. Rev., 2017, 108: 68.

doi: 10.1016/j.addr.2016.11.001
[57]
Di J, Yao S S, Ye Y Q, Cui Z, Yu J C, Ghosh T K, Zhu Y, Gu Z. ACS Nano, 2015, 9(9): 9407.

doi: 10.1021/acsnano.5b03975
[58]
Jun H, Ahn M H, Choi I J, Baek S K, Park J H, Choi S O. RSC Adv., 2018, 8(32): 17786.

doi: 10.1039/C8RA02334D
[59]
Zhang Q, Shi L, He H, Liu X M, Huang Y, Xu D, Yao M Y, Zhang N, Guo Y C, Lu Y F, Li H S, Zhou J Y, Tan J L, Xing M, Luo G X. ACS Nano, 2022, 16(7): 10163.

doi: 10.1021/acsnano.1c11016
[60]
Yu J C, Zhang Y Q, Yan J J, Kahkoska A R, Gu Z. Int. J. Pharm., 2018, 544(2): 350.

doi: 10.1016/j.ijpharm.2017.11.064
[61]
Hu L, Shu T, Wan Y, Fang C H, Gao F, Serpe M J. Mol. Syst. Des. Eng., 2021, 6(2): 108.

doi: 10.1039/D0ME00133C
[62]
Duong H T T, Yin Y, Thambi T, Nguyen T L, Giang Phan V H, Lee min sang, Lee J E, Kim J, Jeong J H, Lee D S. Biomaterials, 2018, 185: 13.

doi: 10.1016/j.biomaterials.2018.09.008
[63]
Cai Z X, Zhang B, Jiang L Y, Li Y Z, Xu G H, Ma J J. Progress in Chemistry, 2019, 31(12): 1653.
(蔡紫煊, 张斌, 姜丽阳, 许国贺, 马晶军. 化学进展, 2019, 31(12): 1653.).

doi: 10.7536/PC190327
[64]
Li X F, Xu Q N, Zhang P, Zhao X, Wang Y X. J. Control. Release, 2019, 314: 72.

doi: 10.1016/j.jconrel.2019.10.016
[65]
Hu H M, Ruan H, Ruan S Y, Pei L X, Jing Q, Wu T, Hou X L, Xu H, Wang Y J, Feng N P, Zhang Y T. Chem. Eng. J., 2021, 431(2022): 134196.

doi: 10.1016/j.cej.2021.134196
[66]
Pu X Q, Ju X J, Liu W Y, Liu Y Q, Li X J, Li Y, Xie R, Wang W, Liu Z, Chu L Y. Ind. Eng. Chem. Res., 2022, 61(23): 7982.

doi: 10.1021/acs.iecr.2c00831
[67]
Jung S, Chang S, Kim N, Choi S O, Song Y, Yuan Y, Kim J. ACS Appl. Nano Mater., 2022, 5(9): 13671.

doi: 10.1021/acsanm.2c03884
[68]
Luo F Q, Chen G J, Xu W, Zhou D J, Li J X, Huang Y C, Lin R, Gu Z, Du J Z. Nano Res., 2021, 14(8): 2689.

doi: 10.1007/s12274-020-3273-z
[69]
Tong Z, Zhou J, Zhong J, Tang Q, Lei Z, Luo H, Ma P, Liu X. ACS Appl. Mater. Interfaces, 2018, 10(23): 20014.

doi: 10.1021/acsami.8b04484
[70]
Wang Z J, Fu R X, Han X, Wen D, Wu Y F, Li S, Gu Z. Adv. Sci., 2022, 9(28): 2203274.

doi: 10.1002/advs.v9.28
[71]
Ye Z, Xiang Y H, Monroe T, Yu S H, Dong P, Xian S J, Webber M J. Biomacromolecules, 2022, 23(10): 4401.

doi: 10.1021/acs.biomac.2c00878
[72]
Lv X M, Zhu Y Y, Ghandehari H, Yu A, Wang Y J. Chem. Commun., 2019, 55(23): 3383.

doi: 10.1039/C9CC00358D
[73]
Zhang T H, Xiao C S, Zhuang X L, Chen X S. J. Control. Release, 2017, 259: e126.
[74]
Bi D H, Qu F, Xiao W Y, Wu J X, Liu P, Du H Y, Xie Y W, Liu H M, Zhang L B, Tao J, Liu Y J, Zhu J T. ACS Nano, 2023, 17(5): 4346.

doi: 10.1021/acsnano.2c08979
[75]
Broaders K E, Grandhe S, FrÉchet J M J. J. Am. Chem. Soc., 2011, 133(4): 756.

doi: 10.1021/ja110468v pmid: 21171594
[76]
Zhang Y Q, Feng P J, Yu J C, Yang J, Zhao J C, Wang J Q, Shen Q D, Gu Z. Adv. Ther., 2018, 1(3): 1800035.
[77]
Wang L, Zhu K X, Cao W, Sun C X, Lu C J, Xu H P. Polym. Chem., 2019, 10(16): 2039.

doi: 10.1039/C9PY00171A
[78]
Chandrawati R. Exp. Biol. Med., 2016, 241(9): 972.

doi: 10.1177/1535370216647186
[79]
Ann Benore M. Biochem. Mol. Biol. Educ., 2019, 47(4): 481.

doi: 10.1002/bmb.v47.4
[80]
Ye Y Q, Wang J Q, Hu Q Y, Hochu G M, Xin H L, Wang C, Gu Z. ACS Nano, 2016, 10(9): 8956.

doi: 10.1021/acsnano.6b04989
[81]
Hu X L, Yu J C, Qian C G, Lu Y, Kahkoska A R, Xie Z G, Jing X B, Buse J B, Gu Z. ACS Nano, 2017, 11(1): 613.

doi: 10.1021/acsnano.6b06892
[82]
Yu X Q, Zhao J, Fan D D. Chem. Eng. J., 2022, 437: 135475.

doi: 10.1016/j.cej.2022.135475
[83]
Choi I J, Kang A, Ahn M H, Jun H, Baek S K, Park J H, Na W, Choi S O. J. Control. Release, 2018, 286: 460.

doi: 10.1016/j.jconrel.2018.08.017
[84]
GhavamiNejad A, Li J, Lu B, Zhou L W, Lam L, Giacca A, Wu X Y. Adv. Mater., 2019, 31(30): 1901051.
[85]
Lee B M, Lee C S, Lahiji S F, Jung U W, Chung G, Jung H. Pharmaceutics, 2020, 12(4): 366.

doi: 10.3390/pharmaceutics12040366
[86]
Lim S, Park T Y, Jeon E Y, Joo K I, Cha H J. Biomaterials, 2021, 278: 121171.

doi: 10.1016/j.biomaterials.2021.121171
[87]
Zhou J X, Ding F, Tang L N, Li T, Li Y H, Zhang Y J, Gong H Y, Li Y T, Zhang G J. Anal., 2018, 143(18): 4469.

doi: 10.1039/C8AN01149D
[88]
Zhang X X, Chen G P, Liu Y X, Sun L Y, Sun L Y, Zhao Y J. ACS Nano, 2020, 14(5): 5901.

doi: 10.1021/acsnano.0c01059
[89]
Zeng Y, Wang J Q, Wang Z J, Chen G J, Yu J C, Li S, Li Q W, Li H J, Wen D, Gu Z Z, Gu Z. Nano Today, 2020, 35: 100984.

doi: 10.1016/j.nantod.2020.100984
[90]
McHugh K J, Jing L H, Severt S Y, Cruz M, Sarmadi M, Jayawardena H S N, Perkinson C F, Larusson F, Rose S, Tomasic S, Graf T, Tzeng S Y, Sugarman J L, Vlasic D, Peters M, Peterson N, Wood L, Tang W, Yeom J, Collins J, Welkhoff P A, Karchin A, Tse M, Gao M Y, Bawendi M G, Langer R, Jaklenec A. Sci. Transl. Med., 2019, 11(523): eaay7162.

doi: 10.1126/scitranslmed.aay7162
[91]
Zhang B L, Yang Y, Zhao Z Q, Guo X D. Electrochimica Acta, 2020, 358: 136917.

doi: 10.1016/j.electacta.2020.136917
[92]
Yang B, Fang X E, Kong J L. Adv. Funct. Mater., 2020, 30(24): 2000591.

doi: 10.1002/adfm.v30.24
[93]
Paul R, Saville A C, Hansel J C, Ye Y Q, Ball C, Williams A, Chang X Y, Chen G J, Gu Z, Ristaino J B, Wei Q S. ACS Nano, 2019, 13(6): 6540.

doi: 10.1021/acsnano.9b00193
[94]
Tai M L, Zhang C G, Ma Y H, Yang J, Mai Z X, Li C G, Leng G. J. Cosmet. Dermatol., 2022, 21(12): 6913.

doi: 10.1111/jocd.v21.12
[95]
Mina M, Elgarhy L, Al-saeid H, Ibrahim Z. J. Cosmet. Dermatol., 2018, 17(5): 744.

doi: 10.1111/jocd.2018.17.issue-5
[96]
Du H Y, Liu P, Zhu J J, Lan J J, Li Y, Zhang L B, Zhu J T, Tao J. ACS Appl. Mater. Interfaces, 2019, 11(46): 43588.

doi: 10.1021/acsami.9b15668
[97]
Park K Y, Kwon H J, Lee C J, Kim D, Yoon J J, Kim M N, Kim B J. J. Cosmet. Dermatol., 2017, 16(3): 382.

doi: 10.1111/jocd.2017.16.issue-3
[98]
Avcil M, Akman G, Klokkers J, Jeong D, Çelik A. J. Cosmet. Dermatol., 2020, 19(2): 328.

doi: 10.1111/jocd.v19.2
[99]
Kim D S, Lee H, Kim M J, Seong K, Jeong J S, Kim S Y, Jung E, Yang S Y, An B. J. Ind. Eng. Chem., 2022, 111(2022): 200.

doi: 10.1016/j.jiec.2022.03.052
[100]
Jeong W Y, Kim S, Lee S Y, Lee H, Han D W, Yang S Y, Kim K S. Biomater. Res., 2019, 23(1): 16.

doi: 10.1186/s40824-019-0164-z
[101]
Dhurat R, Sukesh M S, Avhad G, Dandale A, Pal A, Pund P. International Journal of Trichology, 2013, 5(1): 6.

doi: 10.4103/0974-7753.114700
[102]
Faghihi G, Nabavinejad S, Mokhtari F, Fatemi Naeini F, Iraji F. J. Cosmet. Dermatol., 2021, 20(4): 1241.

doi: 10.1111/jocd.v20.4
[103]
Makvandi P, Kirkby M, Hutton A R J, Shabani M, Yiu C K Y, Baghbantaraghdari Z, Jamaledin R, Carlotti M, Mazzolai B, Mattoli V, Donnelly R F. Nano Micro Lett., 2021, 13(1): 1.
[104]
Manzari M T, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller D A. Nat. Rev. Mater., 2021, 6(4): 351.

doi: 10.1038/s41578-020-00269-6
[105]
Cai B, Gong Y S, Wang Z, Wang L, Chen W. Theranostics, 2021, 11(20): 10012.

doi: 10.7150/thno.66478 pmid: 34815801
[1] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[2] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[3] Xiao Zhao, Xinfang Li, Peng Zhang, Youxiang Wang*. Research of Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2017, 29(12): 1518-1525.