中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 233-246 DOI: 10.7536/PC220805 Previous Articles   Next Articles

• Review •

Surface Pretreatment of Polymer Electroless Plating for Electronic Applications

Xuexian Wu1, Yan Zhang1,2, Chunyi Ye1, Zhibin Zhang1, Jingli Luo1, Xianzhu Fu1()   

  1. 1 College of Materials Science and Engineering, Shenzhen University,Shenzhen 518055, China
    2 Pingshan Biomedical R&D Transformation Center, Shenzhen Bay Laboratory,Shenzhen 518118, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: xz.fu@szu.edu.cn
Richhtml ( 38 ) PDF ( 469 ) Cited
Export

EndNote

Ris

BibTeX

Metallization of polymer surface plays an important role in conductive interconnect, electromagnetic shielding, thermal management, decoration and protection of electronic products. Compared with vacuum sputtering and other methods, electroless plating has advantages of uniform coating, low cost and easy large-scale production. In recent years, polymer used for electronic applications such as epoxy resin, polyimide (PI), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyurethane (PU), polystyrene (PS) have been actively studied. Coarsening treatment has obvious influence on the binding force of coating and the degree of coating on the substrate. At the same time, the activation method affects the speed and thickness of electroless plating. In the surface pretreatment of polymer electroless plating, coarsening and activation methods have a great influence on the coating properties, especially for LCP and other polymers that will be used in 5G equipment. In polymer electroless plating pretreatment, coarsening processes such as chemical etching, plasma treatment and graft treatment, as well as activation processes such as ion adsorption reduction, catalyst direct adsorption and ink printing also have many new developments. In this paper, the latest development of coarsening and activation pretreatment of various polymer substrates in electronic applications is summarized, in order to provide reference for the development of electroless plating technology for electronic circuits.

Contents

1 Introduction

2 Application of polymer electroless plating in electronic field

2.1 Mechanism of electroless plating

2.2 Conductive interconnect

2.3 Electromagnetic shielding

2.4 Heat management

3 Polymer surface coarsening method

3.1 Chemical etching

3.2 Plasma treatment

3.3 Grafting treatment

4 Activation method before polymer electroless plating

4.1 Catalyst metal ion adsorption and reduction

4.2 Direct catalyst adsorption

4.3 Direct ink writing and graphic printing

5 Polyimide (PI) pretreatment method for electroless plating

6 Polyethylene terephthalate (PET) pretreatment method for electroless plating

7 Polyurethane (PU) pretreatment method for electroless plating

8 Polydimethylaminosiloxane (PDMS) pretreatment method for electroless plating

9 Polystyrene (PS) pretreatment method for electroless plating

10 Polypropylene (PP) pretreatment method for electroless plating

11 Polytetrafluoroethylene (PTFE) pretreatment method for electroless plating

12 Liquid crystal polymer (LCP) pretreatment method for electroless plating

13 Conclusion and outlook

Fig.1 Schematic flow diagram of the electroless plating process.
Fig.2 Schematic diagram of commonly used substrate materials and roughening and activation methods for electroless plating in the field of electronics. Roughening: chemical etching, grafting, plasma treatment; activation: ion exchange, ink printing, colloidal activation.
Fig.3 (a) Schematic diagram of conductive interconnection of PCB; (b) Schematic diagram of electromagnetic shielding layer prepared by electroless plating on a polymer substrate[50]; (c) Schematic representation of heat management by electroless plating of components with a layer of polymer insulation[39]
Fig.4 (a) Schematic diagram of graft modification process[4]; (b)Change of contact angle of samples after roughening[4]; (c) process of grafting; (d,e) Adhesive force test of tape pulling coating[36]
Fig.5 (a) Flow diagram of ion exchange activation[2]; (b) Glue stability test[1]; (c) Flow diagram of catalyst direct adsorption activation[53]
Fig.6 Schematic of catalyst adsorption electroless plating
Fig.7 (a) Structural formula of polyimide; (b) 100-square-knife test after electroless polyimide plating[47]; (c) bending test and conductivity change test after electroless polyimide plating[56] ; (d) Flow chart of ion exchange activation after chemical etching and roughening of polyimide[1]; (e) Flow chart of activation after chemical etching and grafting of polyimide[30]
Fig.8 (a) PET structural formula; (b) PET electroless plating after bending and conductive circuit test[59]; (c) Schematic diagram of direct adsorption and activation of Pd catalyst after PET roughening by plasma treatment[52]; (d) Conductive wire prepared by PET electroless plating device[72]
Table 1 Summary of commonly used methods for coarsening and activation of PI
Table 2 Summary of commonly used coarsening and activation methods for PET.
Fig.9 (a) PU structural formula; (b) electrode prepared by electroless plating on PU surface[71]; (c) PU conductive line as thin as 28 μm[71]; (d) elasticity test of PU sponge after electroless plating [24]; (e) PU conductive circuit test[79]; (f) PU surface electroless plating bending experiment [80]; (g) PU sponge electroless plating pretreatment flow chart[80]; (h) 3D printed PU and electroless plating samples[82].
Table 3 Summary of commonly used coarsening and activation methods for PU
Fig.10 (a) Structural formula of PDMS; (b) flow chart of Ag+ activation after PDMS graft modification with dopamine[78]; (c) Electroless plating pattern of PDMS precise and selective activation[16]
Fig.11 (a) PS structural formula; (b) SEM image of PS microspheres after electroless copper plating[85]; (c) (d) PS microspheres contacted with each other after hot pressing to form a conductive network[82]; (e) PS microspheres electroless plating and Flow chart of forming a three-dimensional conductive structure by hot pressing[82]
Table 4 Summary of common coarsening and activation methods for PDMS.
Table 5 Summary of common coarsening and activation methods for PS
Table 6 Summary of commonly used coarsening and activation methods for PP
Fig.12 (a) Structure diagram of polypropylene; (b) Electroless plating on polypropylene surface to prepare electronic devices[13]; (c) Bending test of polypropylene after electroless plating[86]; (d) Polypropylene roughened by ultraviolet light under the mask, and then use the catalyst for direct adsorption activation to obtain a precise conductive pattern[11]
[1]
Sato T, Urata C. Mol. Cryst. Liq. Cryst., 2019, 688(1): 98.

doi: 10.1080/15421406.2019.1651074
[2]
Jones T D A, Ryspayeva A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y, Marques-Hueso J. Surf. Coat. Technol., 2019, 360: 285.

doi: 10.1016/j.surfcoat.2019.01.023
[3]
Yang C, Li X T, Dong J, Zhao X, Gong J H, Zhang Q H. Acta Polymerica Sinica, 2022, 53(6): 663.
(杨晨, 李琇廷, 董杰, 赵昕, 龚静华, 张清华. 高分子学报, 2022, 53(6): 663.).
[4]
Zhu Y M, Tang J, Jin X, Pan T R, Chang Y, Yang Z G. ACS Appl. Mater. Interfaces, 2020, 12(6): 7679.

doi: 10.1021/acsami.9b17694
[5]
Yang S T, Kang Z X, Guo T. Nanotechnology, 2020, 31(19): 195710.

doi: 10.1088/1361-6528/ab703e
[6]
Sahoo S K, Sahu A K, Mahapatra S S. Int. J. Plast. Technol., 2017, 21(2): 297.

doi: 10.1007/s12588-017-9185-4
[7]
Jia Y K, Chen J X, Asahara H, Hsu Y I, Asoh T A, Uyama H. Polymer, 2020, 200: 122592.

doi: 10.1016/j.polymer.2020.122592
[8]
Chen Y. Int. J. Electrochem. Sci., 2021, 21112.
[9]
Kim K, Oh H, Kwon D, Lee J, Kim J. Compos. B Eng., 2019, 166: 742.

doi: 10.1016/j.compositesb.2019.02.065
[10]
Zhang W L, Ding D Y. Jnl Chin. Chemical Soc., 2016, 63(2): 222.

doi: 10.1002/jccs.v63.2
[11]
Li W L, Li L Y, Sun Q Q, Liu X Y, Kanehara M, Nakayama T, Jiu J T, Sakamoto K, Minari T. Chem. Eng. J., 2021, 416: 127644.

doi: 10.1016/j.cej.2020.127644
[12]
Chou S C, Sun B Y, Cheang W H, Tso K C, Fan T L, Chiao J C, Wu P W. Ceram. Int., 2021, 47(23): 32554.

doi: 10.1016/j.ceramint.2021.08.150
[13]
Yeetsorn R, Ouajai W P, Onyu K. RSC Adv., 2020, 10(41): 24330.

doi: 10.1039/D0RA00461H
[14]
Rao L H, Tang J Y, Hu S F, Shen L G, Xu Y C, Li R J, Lin H J. J. Colloid Interface Sci., 2020, 565: 546.

doi: 10.1016/j.jcis.2020.01.069
[15]
Qiang Q, Qin J X, Ma Y, Wang Z L, Zhao C. ACS Appl. Mater. Interfaces, 2019, 11(5): 5517.

doi: 10.1021/acsami.8b18209
[16]
Polywka A, Jakob T, Stegers L, Riedl T, Görrn P. Adv. Mater., 2015, 27(25): 3755.

doi: 10.1002/adma.v27.25
[17]
Mirmohammadi S M, Hoshian S, Jokinen V P, Franssila S. Sci. Rep., 2021, 11: 12646.

doi: 10.1038/s41598-021-92231-x pmid: 34135443
[18]
Adamo C B, Poppi R J, de Jesus D P. Microchem. J., 2021, 160: 105704.

doi: 10.1016/j.microc.2020.105704
[19]
Guo R S, Li H D, Wang H R, Zhao X Y, Yu H, Ye Q. ACS Appl. Mater. Interfaces, 2021, 13(47): 56597.

doi: 10.1021/acsami.1c18065
[20]
Oshikiri J, Kosuge A, Iimori Y, Watanabe M, Honma H, Takai O. Trans. Jpn. Inst. Electron. Packag., 2017, 10: E16.
[21]
Cheng P W, Chen C Y, Ichibayashi T, Chang T F M, Sone M, Nishimura S. J. Supercrit. Fluids, 2022, 180: 105455.

doi: 10.1016/j.supflu.2021.105455
[22]
Rytlewski P, Jagodziński B, Malinowski R, Budner B, Moraczewski K, Wojciechowska A, Augustyn P. Molecules, 2021, 26(18): 5571.

doi: 10.3390/molecules26185571
[23]
Xia S H, Wei C L, Tang J C, Yan J H. ACS Sustainable Chem. Eng., 2021, 9(42): 13999.

doi: 10.1021/acssuschemeng.1c05589
[24]
Lu J Y, Cheng W H, Shi Y Q, Jia P F, Liao C, Zhang K, Song L, Wang B B, Hu Y. J. Colloid Interface Sci., 2021, 603: 25.

doi: 10.1016/j.jcis.2021.06.103
[25]
Li Y, Chen Y, Yang Y, Gu J D, Ke K, Yin B, Yang M B. J. Mater. Chem. B, 2021, 9(42): 8801.

doi: 10.1039/d1tb01441b pmid: 34633022
[26]
Cheng J H, Gan G Y, Li J P, Yu X L, Tang L, Liu C B. Mater. Res. Express, 2021, 8(1): 015018.

doi: 10.1088/2053-1591/abd89c
[27]
Li Y R, Zheng W, Zhang A B, Xie Z Y, Liu M X. J. Alloys Compd., 2021, 870: 159368.

doi: 10.1016/j.jallcom.2021.159368
[28]
Kim S H, Bazin N, Shaw J I, Yoo J H, Worsley M A, Satcher J H, Sain J D, Kuntz J D, Kucheyev S O, Baumann T F, Hamza A V. ACS Appl. Mater. Interfaces, 2016, 8(50): 34706.

doi: 10.1021/acsami.6b12320
[29]
Jinsenji M, Tajiri A, Nishimura Y, Bachman M, Li G P, Takai O. J. Electrochem. Soc., 2019, 166(10): D470.

doi: 10.1149/2.0101912jes
[30]
Qiang Q, Geng X Y, Wang Z L. J. Adhesion Sci. Technol., 2019, 33(4): 371.

doi: 10.1080/01694243.2018.1507318
[31]
Huang S E, Shen F Y, Dow W P. J. Electrochem. Soc., 2019, 166(15): D843.

doi: 10.1149/2.1111915jes
[32]
Gao Q H, Wang M L, Chen J, Zhang M J, Zhao J C, Zhang M X, Hu J T, Wu G Z. RSC Adv., 2020, 10(26): 15139.

doi: 10.1039/D0RA02228D
[33]
Zhou M Q, Kang Z X, Zhu S M. Nanotechnology, 2019, 30(39): 395701.

doi: 10.1088/1361-6528/ab2a91
[34]
Kang Z X, Zhang Y, Zhou M Q. Chem. Eng. J., 2019, 368: 223.

doi: 10.1016/j.cej.2019.01.005
[35]
Liu T J, Sil M C, Chen C M. Compos. Sci. Technol., 2020, 193: 108135.

doi: 10.1016/j.compscitech.2020.108135
[36]
Zhang H, Kang Z X, Sang J, Hirahara H. Surf. Coat. Technol., 2018, 340: 8.

doi: 10.1016/j.surfcoat.2018.02.005
[37]
Asano T, Koshiba Y, Ueda Y, Nakagawa K, Yamanaka K, Mori M. Mol. Cryst. Liq. Cryst., 2007, 464(1): 187.
[38]
Chen L J, Wan C C, Wang Y Y. Journal of Colloid & Interface Science, 2006, 297(1): 143-150.
[39]
Lee C, Huang Y, Kuo L. Electrochemistry Communications, 2006, 8(6): 1021.

doi: 10.1016/j.elecom.2006.04.013
[40]
Biemolt J, van Noordenne D, Liu J W, Antonetti E, Leconte M, van Vliet S, Bliem R, Rothenberg G, Fu X Z, Yan N. ACS Appl. Nano Mater., 2020, 3(10): 10176.

doi: 10.1021/acsanm.0c02162
[41]
Taghavi Pourian Azar G, Fox D, Fedutik Y, Krishnan L, Cobley A J. Surf. Coat. Technol., 2020, 396: 125971.

doi: 10.1016/j.surfcoat.2020.125971
[42]
Liu C R, Pan L S, Li C H, Chen H R, Lee C L. J. Electrochem. Soc., 2015, 162(7): D283.

doi: 10.1149/2.0891507jes
[43]
Xie J Q, Ji Y Q, Kang J H, Sheng J L, Mao D S, Fu X Z, Sun R, Wong C P. Energy Environ. Sci., 2019, 12(1): 194.

doi: 10.1039/C8EE01979G
[44]
Ghosh S. Thin Solid Films, 2019, 669: 641.

doi: 10.1016/j.tsf.2018.11.016
[45]
Xu H R, Zhang J H, Feng J, Zhou T. Ind. Eng. Chem. Res., 2021, 60(24): 8821.

doi: 10.1021/acs.iecr.1c01668
[46]
Siau S, Vervaet A, Schacht E, Van Calster A. J. Electrochem. Soc., 2004, 151(2): C133.
[47]
Song J, Kim M R, Kim Y, Seo D, Ha K, Song T E, Lee W G, Lee Y, Kim K C, Ahn C W, Han H E. Nanotechnology, 2022, 33(6): 065303.

doi: 10.1088/1361-6528/ac353d
[48]
Liu H G, Feng Z S, Wang K, Lian J Q, Chen Y M, Yang M Y, Wang Y. J. Mater. Sci. Mater. Electron., 2022, 33(16): 13012.

doi: 10.1007/s10854-022-08243-4
[49]
Xing D, Lu L S, Xie Y X, Tang Y, Teh K S. Mater. Des., 2020, 185: 108227.

doi: 10.1016/j.matdes.2019.108227
[50]
Zhang N, Zhao R, He D Y, Ma Y Y, Qiu J, Jin C X, Wang C. J. Alloys Compd., 2019, 784: 244.

doi: 10.1016/j.jallcom.2018.12.341
[51]
Gebrael T, Li J Q, Gamboa A R, Ma J C, Schaadt J, Horowitz L, Pilawa-Podgurski R, Miljkovic N. Nat. Electron., 2022, 5(6): 394.

doi: 10.1038/s41928-022-00748-4
[52]
Lin F B, Li W, Du X D, Chen N L, Wu Y B, Tang Y S, Jiang J H. Appl. Surf. Sci., 2019, 493: 1.

doi: 10.1016/j.apsusc.2019.06.171
[53]
Zhang Y B, Zhang T, Shi H B, Liu Q, Wang T. Appl. Surf. Sci., 2021, 547: 149220.

doi: 10.1016/j.apsusc.2021.149220
[54]
Yang W Z, Liu Y, Xu W, Nie H Y. IEEE Sens. J., 2021, 21(9): 10473.

doi: 10.1109/JSEN.2021.3060281
[55]
Chen Y Q, Liu Y, Xu W, Zhang Y, Nie H Y. Surf. Topogr.: Metrol. Prop., 2020, 8(3): 035003.
[56]
Wang Y, Wang W, Ding X D, Yu D. Chem. Eng. J., 2020, 380: 122553.

doi: 10.1016/j.cej.2019.122553
[57]
Liu T J, Chen C H, Wu P Y, Lin C H, Chen C M. Langmuir, 2019, 35(22): 7212.

doi: 10.1021/acs.langmuir.9b00354
[58]
Wang Y F, Hong Y, Chen Q G, Zhou G Y, He W, Gao Z P, Zhou X, Zhang W H, Su X H, Sun R. J. Taiwan Inst. Chem. Eng., 2019, 97: 450.

doi: 10.1016/j.jtice.2019.02.014
[59]
Hussain N, Yousif M, Ali A, Mehdi M, Ullah S, Ullah A, Mahar F K, Kim I S. Mater. Chem. Phys., 2020, 255: 123614.

doi: 10.1016/j.matchemphys.2020.123614
[60]
Liu Q Z, Yi C, Chen J H, Xia M, Lu Y, Wang Y D, Liu X, Li M F, Liu K, Wang D. Compos. B Eng., 2021, 215: 108752.

doi: 10.1016/j.compositesb.2021.108752
[61]
Zhang Y B, Zhang T, Shi H B, Liu Q, Shi Y L, Wang T. ACS Sustainable Chem. Eng., 2021, 9(35): 11991.

doi: 10.1021/acssuschemeng.1c04613
[62]
Huang J J, Wu W P, Zhang R X, Lu G Q, Chen B, Chen Z M, Gui C M. Nano Energy, 2022, 92: 106734.

doi: 10.1016/j.nanoen.2021.106734
[63]
Chang Y, Yang C, Zheng X Y, Wang D Y, Yang Z G. ACS Appl. Mater. Interfaces, 2014, 6(2): 768.

doi: 10.1021/am405539r
[64]
Wang Y F, Hong Y, Zhou G Y, He W, Gao Z P, Wang S X, Wang C, Chen Y M, Weng Z S, Wang Y Q. ACS Appl. Mater. Interfaces, 2019, 11(47): 44811.

doi: 10.1021/acsami.9b11690
[65]
Liao Y, Kao Z. ACS Appl. Mater. Interfaces, 2012, 4(10): 5109.

doi: 10.1021/am301654j
[66]
Huang J J, Xu L L, Zhao D F, Wang J, Chu C R, Chen H D, Liu Y H, Chen Z M. Chem. Eng. J., 2020, 383: 123199.

doi: 10.1016/j.cej.2019.123199
[67]
Liu X Q, Guo R S, Shi Y X, Deng L B, Li Y. Macromol. Mater. Eng., 2016, 301(11): 1383.

doi: 10.1002/mame.v301.11
[68]
Liang S Q, Li Y Y, Zhou T J, Yang J B, Zhou X H, Zhu T P, Huang J Q, Zhu J L, Zhu D Y, Liu Y Z, He C X, Zhang J M, Zhou X C. Adv. Sci., 2017, 4(2): 1600313.

doi: 10.1002/advs.201600313
[69]
Zhu C, Chalmers E, Chen L M, Wang Y Q, Xu ben bin, Li Y, Liu X Q. Small, 2019, 15(35): 1902440.

doi: 10.1002/smll.v15.35
[70]
Li Y X, Liu Z, Jiang Y C, de Glee B, Li D Z, Zeng J H. J. Mater. Sci., 2018, 53(1): 479.

doi: 10.1007/s10853-017-1530-7
[71]
Fathi Dehkharghani A M, Divandari M. Trans. IMF, 2015, 93(4): 186.

doi: 10.1179/0020296715Z.000000000248
[72]
Han F, Su X Y, Huang M Q, Li J H, Zhang Y, Zhao S F, Liu F, Zhang B, Wang Y, Zhang G P, Sun R, Wong C P. J. Mater. Chem. C, 2018, 6(30): 8135.

doi: 10.1039/C8TC02413H
[73]
Yu Y, Zeng J F, Chen C J, Xie Z, Guo R S, Liu Z L, Zhou X C, Yang Y, Zheng Z J. Adv. Mater., 2014, 26(5): 810.

doi: 10.1002/adma.201303662
[74]
Ryspayeva A, David Arthur Jones T, Khan S R, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y, Marques-Hueso J. IEEE Access, 2019, 7: 104947.

doi: 10.1109/ACCESS.2019.2931594
[75]
Rytlewski P, Jagodziński B, Malinowski R, Budner B, Moraczewski K, Wojciechowska A, Augustyn P. Appl. Surf. Sci., 2020, 505: 144429.

doi: 10.1016/j.apsusc.2019.144429
[76]
Ding J L, Zhou P, Guo W L, Su B. Front. Chem., 2021, 8: 630246.

doi: 10.3389/fchem.2020.630246
[77]
Zhou B, Su B, Li M, Meng J H. J. Micromech. Microeng., 2020, 30(4): 045013.

doi: 10.1088/1361-6439/ab7263
[78]
Wu C Y, Tang X, Gan L, Li W F, Zhang J, Wang H, Qin Z Y, Zhang T, Zhou T T, Huang J, Xie C S, Zeng D W. ACS Appl. Mater. Interfaces, 2019, 11(22): 20535.

doi: 10.1021/acsami.9b05135
[79]
Ryspayeva A, Jones T D A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y, Marques-Hueso J. Microelectron. Eng., 2019, 209: 35.

doi: 10.1016/j.mee.2019.03.001
[80]
Coulm J, LÉonard D, Desroches C, Bessueille F. Colloids Surf. A Physicochem. Eng. Aspects, 2015, 466: 75.

doi: 10.1016/j.colsurfa.2014.10.057
[81]
Li Y R, Zhang A B, Zheng W, Wang D, Kong J. J. Phys. Chem. C, 2020, 124(1): 1190.

doi: 10.1021/acs.jpcc.9b09892
[82]
Lee S H, Yu S, Shahzad F, Hong J, Noh S J, Kim W N, Hong S M, Koo C M. Compos. Sci. Technol., 2019, 182: 107778.

doi: 10.1016/j.compscitech.2019.107778
[83]
Wang C J, Hung P S, Chou S C, Chung W A, Wu P W. Mater. Lett., 2020, 263: 127239.

doi: 10.1016/j.matlet.2019.127239
[84]
Lee S H, Yu S, Shahzad F, Hong J P, Kim W N, Park C, Hong S M, Koo C M. Compos. Sci. Technol., 2017, 144: 57.

doi: 10.1016/j.compscitech.2017.03.016
[85]
Hu Y G, Zhao T, Zhu P L, Liang X W, Sun R, Wong C P. RSC Adv., 2015, 5(1): 58.

doi: 10.1039/C4RA12475H
[86]
Ali Fulazzaky M, Fulazzaky M, Sumeru K. J. Adhesion Sci. Technol., 2019, 33(13): 1438.

doi: 10.1080/01694243.2019.1602021
[87]
Liu Z D, Chen Z C, Li W, Ding Z K, Xu Z M. Heat Transf. Eng., 2021, 42(22): 1877.

doi: 10.1080/01457632.2020.1834202
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[8] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[9] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[10] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[11] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[12] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[13] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[14] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[15] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.