中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1298-1307 DOI: 10.7536/PC210736 Previous Articles   Next Articles

• Review •

Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents

Hang Yin1,2, Zhi Li1,2, Xiaofeng Guo1,2, Anchao Feng1,2(), Liqun Zhang1,2, San Hoa Thang3   

  1. 1 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology,Beijing 100029, China
    2 Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029, China
    3 School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
  • Received: Revised: Online: Published:
  • Contact: Anchao Feng
  • Supported by:
    Foundation of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology(oic-202103015); China Petrochemical Corporation(H2019485)
Richhtml ( 96 ) PDF ( 1256 ) Cited
Export

EndNote

Ris

BibTeX

Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT Polymerization) is currently one of the most common “Reversible Deactivation Radical Polymerization”, and it has been widely used by scientists in different directions because of its advantages such as narrow molecular weight distribution, wide range of applicable monomers, and mild reaction conditions. However, when scientists choose RAFT chain transfer agents (also known as RAFT agents) in polymerization, they often donot clearly understand the principle of matching the activity of RAFT chain transfer agents and monomers. Therefore, in the preparation of block copolymers of “more activated” monomers (MAMs) and “less activated” monomers (LAMs), there are problems that the product has a wide molecular weight distribution, a slow polymerization rate, and even the reaction cannot successfully continue. Based on this, we first review the selection principles of RAFT chain transfer agents in polymerization, and then introduce the principle and application conditions of a universal RAFT chain transfer agent (Universal RAFT agent) (including non switchable type and proton switchable type) developed in recent years that is suitable for the polymerization of MAMs/LAMs. Finally, the latest development and application of block copolymers with MAMs and LAMs based on Universal RAFT agents are discussed in depth.

Contents

1 Introduction

2 Structure of RAFT agents and selection principle

3 (Non Switchable) Universal RAFT agents

4 Proton Switchable RAFT agents

4.1 Chain transfer kinetics

4.2 Application of Switchable RAFT agents in aqueous solution

4.3 Effect of acids’ type and amount on Switchable RAFT agents’ activity

4.4 Removal method of end group

4.5 Block copolymer realized with Switchable RAFT agents

5 Conclusions and outlook

Fig. 1 Mechanism of RAFT polymerization[2]
Fig. 2 Structures of RAFT agents
Fig. 3 (a) Guidelines for selection of the R-group of RAFT agents for various polymerizations; (b) Guidelines for selection of the Z-group of RAFT agents for various polymerization[2]
Fig. 4 Structures of popular (Non Switchable)Universal RAFT agents
Fig. 5 Mechanism and structure of Proton Switchable RAFT[50]
Table 1 MAMs-b-LAMs copolymer prepared with Switchable RAFT agent
Fig. 6 pH stimuli biocompatible block copolymer utilizing Switchable RAFT agents[56]
Fig. 7 CO2-responsive gradient copolymers by Switchable RAFT polymerization and their controlled self-assembly
[1]
Rizzardo E, Chiefari J, Chong B Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Thang S H. Macromol. Symp., 1999, 143(1): 291.

doi: 10.1002/masy.19991430122
[2]
Perrier S. Macromolecules, 2017, 50(19): 7433.

doi: 10.1021/acs.macromol.7b00767
[3]
Xiang Q, Luo Y W. Prog. Chem., 2018, 30(1): 101.

doi: 10.7536/PC170836
( 项青, 罗英武. 化学进展, 2018, 30(1): 101.)

doi: 10.7536/PC170836
[4]
Peng J Y, Xu Q H, Ni Y Y, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2019, 10(16): 2064.

doi: 10.1039/C9PY00069K
[5]
Zapata-Gonzalez I, Hutchinson R A, Buback M, Rivera-Magallanes A. Chem. Eng. J., 2021, 415: 128970.

doi: 10.1016/j.cej.2021.128970
[6]
Wang Y J, Wang M Q, Bai L J, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2020, 11(12): 2080.

doi: 10.1039/C9PY01763A
[7]
Zetterlund P B, Perrier S. Macromolecules, 2011, 44(6): 1340.

doi: 10.1021/ma102689d
[8]
Guerrero-Sanchez C, Keddie D J, Saubern S, Chiefari J. ACS Comb. Sci., 2012, 14(7): 389.

doi: 10.1021/co300044w pmid: 22709484
[9]
Hoff E A, Abel B A, Tretbar C A, McCormick C L, Patton D L. Polym. Chem., 2017, 8(34): 4978.

doi: 10.1039/C6PY01563H
[10]
Altintas O, Riazi K, Lee R, Lin C Y, Coote M L, Wilhelm M, Barner-Kowollik C. Macromolecules, 2013, 46 (20): 8079.

doi: 10.1021/ma401749h
[11]
Wang Z J, Ma Z Y, Zhang Z Y, Wu F, Jiang H, Jia X R. Polym. Chem., 2014, 5(24): 6893.

doi: 10.1039/C4PY00964A
[12]
Sun Z H, Choi B, Feng A C, Moad G, Thang S H. Macromolecules, 2019, 52(4): 1746.

doi: 10.1021/acs.macromol.8b02146
[13]
Guo X F, Zhang T R, Wu Y T, Shi W C, Choi B, Feng A C, Thang S H. Polym. Chem., 2020, 11(42): 6794.

doi: 10.1039/D0PY01109F
[14]
Moad G, Rizzardo E, Thang S H. Acc. Chem. Res., 2008, 41(9): 1133.

doi: 10.1021/ar800075n
[15]
Li Z, Li H, Sun Z H, Hao B T, Lee T C, Feng A C, Zhang L Q, Thang S H. Polym. Chem., 2020, 11(18): 3162.

doi: 10.1039/D0PY00318B
[16]
Sun Z H, Mi X, Yu Y N, Shi W C, Feng A C, Moad G, Thang S H. Macromolecules, 2021, 54(11): 5022.

doi: 10.1021/acs.macromol.1c00616
[17]
Chen C, Guo X F, Du J H, Choi B, Tang H L, Feng A C, Thang S H. Polym. Chem., 2019, 10(2): 228.

doi: 10.1039/C8PY01355A
[18]
Hou W M, Li Z Q, Xu L, Li Y C, Shi Y, Chen Y M. ACS Macro Lett., 2021, 10(10): 1260.

doi: 10.1021/acsmacrolett.1c00565
[19]
Sun Q, Liu G Q, Wu H B, Xue H D, Zhao Y, Wang Z L, Wei Y, Wang Z M, Tao L. ACS Macro Lett., 2017, 6(5): 550.

doi: 10.1021/acsmacrolett.7b00220
[20]
Pound G, McKenzie J M, Lange R F M, Klumperman B. Chem. Commun., 2008: 3193.
[21]
Stace S J, Fellows C M, Moad G, Keddie D J. Macromol. Rapid Commun., 2018, 39(19): 1800228.
[22]
Luo X H, Zhao S Z, Chen Y, Zhang L, Tan J B. Macromolecules, 2021, 54(6): 2948.

doi: 10.1021/acs.macromol.1c00038
[23]
He W D, Sun X L, Wan W M, Pan C Y. Macromolecules, 2011, 44(9): 3358.

doi: 10.1021/ma2000674
[24]
Schmidt Bernhard V K J. Macromol. Chem. Phys., 2018, 219(7): 1700494.
[25]
Feng Y N, Liu S H, Zhang S B, Xue T, Zhuang H L, Feng A C. Prog. Chem., 2021, 33(11): 1953.
( 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 化学进展,2021, 33(11): 1953.)
[26]
DelRe C, Jiang Y F, Kang P, Kwon J, Hall A, Jayapurna I, Ruan Z Y, Ma L, Zolkin K, Li T, Scown C D, Ritchie R O, Russell T P, Xu T. Nature, 2021, 592(7855): 558.

doi: 10.1038/s41586-021-03408-3
[27]
Oral I, Grossmann L, Fedorenko E, Struck J, Abetz V. Polymers, 2021, 13(21): 3675.

doi: 10.3390/polym13213675
[28]
Tanaka J, Archer N E, Grant M J, You W. J. Am. Chem. Soc., 2021, 143(39): 15918.

doi: 10.1021/jacs.1c07553 pmid: 34581557
[29]
Lee K, Corrigan N, Boyer C. Angew. Chem. Int. Ed., 2021, 60(16): 8839.

doi: 10.1002/anie.202016523
[30]
Moad G, Rizzardo E. Polym. Int., 2020, 69(8): 658.

doi: 10.1002/pi.5944
[31]
Sun L W, Sun Z H, Wang X, Xu L, Feng A C, Zhang L Q. Prog. Chem., 2020, 32(6): 727.
( 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 化学进展, 2020, 32(6): 727.)

doi: 10.7536/PC191108
[32]
Moad G, Rizzardo E, Thang S H. Polymer, 2008, 49(5): 1079.

doi: 10.1016/j.polymer.2007.11.020
[33]
Guimaraes T R, Bong Y L, Thompson S, Moad G, Perrier S, Zetterlund P B. Polym. Chem., 2021, 12(1), 122.

doi: 10.1039/D0PY01311K
[34]
Chong Y K, Krstina J, Le T P T, Moad G, Postma A, Rizzardo E, Thang S H. Macromolecules, 2003, 36(7): 2256.

doi: 10.1021/ma020882h
[35]
Vishnevetskii D V, Chernikova E V, Garina E S, Sivtsov E V. Polym. Sci. Ser. B, 2013, 55(9/10): 515.

doi: 10.1134/S156009041308006X
[36]
Theis A, Stenzel M H, Davis T P, Coote M L, Barner-Kowollik C. Aust. J. Chem., 2005, 58(6): 437.

doi: 10.1071/CH05069
[37]
Coote M L, Izgorodina E I, Cavigliasso G E, Roth M, Busch M, Barner-Kowollik C. Macromolecules, 2006, 39(13): 4585.

doi: 10.1021/ma060470z
[38]
Gigmes D, Bertin D, Marque S, Guerret O, Tordo P. Tetrahedron Lett., 2003, 44(6): 1227.
[39]
Keddie D J, Moad G, Rizzardo E, Thang S H. Macromolecules, 2012, 45(13): 5321.

doi: 10.1021/ma300410v
[40]
Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2012, 65(8): 985.

doi: 10.1071/CH12295
[41]
Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2009, 62(11): 1402.

doi: 10.1071/CH09311
[42]
Chiefari J, Mayadunne R T A, Moad C L, Moad G, Rizzardo E, Postma A, And M A S, Thang S H. Macromolecules, 2003, 36(7): 2273.

doi: 10.1021/ma020883+
[43]
Moad G. J. Polym. Sci. A Polym. Chem., 2019, 57(3): 216.

doi: 10.1002/pola.29199
[44]
Gardiner J, Martinez-Botella I, Tsanaktsidis J, Moad G. Polym. Chem., 2016, 7(2): 481.

doi: 10.1039/C5PY01382H
[45]
Gardiner J, Martinez-Botella I, Kohl T M, Krstina J, Moad G, Tyrell J H, Coote M L, Tsanaktsidis J. Polym. Int, 2017, 66(11): 1438.

doi: 10.1002/pi.5423
[46]
Girard E, Marty J D, Ameduri B, Destarac M. ACS Macro Lett., 2012, 1(2): 270.

doi: 10.1021/mz2001143
[47]
Dayter L A, Murphy K A, Shipp D A. Aust. J. Chem., 2013, 66(12): 1564.

doi: 10.1071/CH13375
[48]
Keddie D J, Guerrero-Sanchez C, Moad G, Rizzardo E, Thang S H. Macromolecules, 2011, 44(17): 6738.

doi: 10.1021/ma200760q
[49]
Benaglia M, Chen M, Chong Y K, Moad G, Rizzardo E, Thang S H. Macromolecules, 2009, 42(24): 9384.

doi: 10.1021/ma9021086
[50]
Moad G, Keddie D, Guerrero-Sanchez C, Rizzardo E, Thang S H. Macromol. Symp., 2015, 350(1): 34.

doi: 10.1002/masy.201400022
[51]
Benaglia M, Chiefari J, Chong Y K, Moad G, Rizzardo E, Thang S H. J. Am. Chem. Soc., 2009, 131(20): 6914.

doi: 10.1021/ja901955n pmid: 19402660
[52]
Moad G, Benaglia M, Chen M, Chiefari J, Chong Y K, Keddie D J, Rizzardo E, Thang S H.. Non-Conventional Functional Block Copolymers. Washington, DC: American Chemical Society, 2011: 81.
[53]
Keddie D J, Guerrero-Sanchez C, Moad G, Mulder R J, Rizzardo E, Thang S H. Macromolecules, 2012, 45(10): 4205.

doi: 10.1021/ma300616g
[54]
Stace S J, Moad G, Fellows C M, Keddie D J. Polym. Chem., 2015, 6(40): 7119.

doi: 10.1039/C5PY01021G
[55]
Pound G, Eksteen Z, Pfukwa R, McKenzie J M, Lange R F M, Klumperman B. J. Polym. Sci. A Polym. Chem., 2008, 46(19): 6575.

doi: 10.1002/pola.22968
[56]
Pan X Y, Guo X F, Choi B, Feng A C, Wei X H, Thang S H. Polym. Chem., 2019, 10(16): 2083.

doi: 10.1039/C9PY00110G
[57]
Tselepy A, Schiller T L, Harrisson S, Guerrero-Sanchez C, Moad G, Keddie D J. Macromolecules, 2018, 51(2): 410.

doi: 10.1021/acs.macromol.7b02104
[58]
Zhou Y W, He J P, Li C X, Hong L X, Yang Y L. Macromolecules, 2011, 44(21): 8446.

doi: 10.1021/ma201570f
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[11] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[15] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.