中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (5): 721-734 DOI: 10.7536/PC221129 Previous Articles   Next Articles

• Review •

Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction

Ruyue Cao1,2,3, Jingjing Xiao1,2,3, Yixuan Wang1,2,3, Xiangyu Li1,2,3, Anchao Feng1,2,3(), Liqun Zang1,2,3   

  1. 1 State Key Laboratory of organic and inorganic composites, Beijing University of Chemical Technology,Beijing 100029, China
    2 Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology,Beijing 100029, China
    3 School of Materials Science and Engineering, Center of Advanced Elastomer Materials, Beijing University of Chemical Technology,Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: fengac@mail.buct.edu.cn
  • Supported by:
    National Natural Science Foundation of China(ZK20220198); Foundation of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology(oic-202103015)
Richhtml ( 10 ) PDF ( 139 ) Cited
Export

EndNote

Ris

BibTeX

Diels-Alder (DA) reaction is temperature-reversible, catalyst-free, efficient and fast with none harmful products, making it a favorable choice to build a self-healing and recyclable dynamic covalent elastomer network. However, classic DA reactions (such as the reaction between furan and maleimide) still have the problems of long reaction time, low efficiency and poor chemical modularity. Recent studies have shown that the efficient cascade of HDA reaction (Diels-Alder cycloaddition reaction containing heteroatom sulfur) and RAFT polymerization can be realized by highly reactive dienes reacting with specific RAFT agents, which can reduce the reaction temperature and time of DA. By virtue of the RAFT polymerization, it can control polymer molecular weight and its distribution at the same time. RAFT-HDA cascade reaction shows wide potential applications especially in the preparation of high molecular weight block or grafted polymer and surface modification. In this paper, the research and application of HDA-RAFT cascade reaction in the past 15 years are summarized, existing problems and solutions are discussed and the future development of this field is also prospected.

Contents

1 Introduction

2 RAFT-HDA reaction between cyclic conjugated diene and BPDF/BDEPDF

2.1 Preparation of high molecular weight copolymer by chain extension

2.2 Material surface finish

2.3 Self healing and self reporting materials

2.4 Crosslinking networks with thermally reversible crosslinking sites

3 RAFT-HDA reaction between linear conjugated diene and BPDF/BDEPDF

3.1 Preparation of high molecular weight copolymer by chain extension

3.2 Material surface finish

3.3 Self healing and self reporting materials

3.4 Crosslinking networks with thermally reversible crosslinking sites

4 Others

5 Conclusion and outlooks

Fig. 1 (a) Reaction mechanism of DA;(b) reaction mechanism of RAFT-HDA
Fig. 2 The structure of RAFT agent used in RAFT-HDA reaction
Fig. 3 (a) General synthetic strategy for producing well-defined block copolymers via the RAFT-HDA click reaction; (b) comparison of molecular weight before and after HDA[11]
Fig. 4 Synthetic strategy for the preparation of amphiphilic P(S-co-I)-b-PTEGA block copolymers with a reversible hetero Diels-Alder linkage[13]
Fig. 5 (a) Preparation of NBR and SAN block copolymers by RAFT-HAD reaction;(b) Preparation of micro-armed star-shaped polymers by RAFT-HDA reaction[14]
Fig. 6 Surface modification of microspheres by RAFT-HDA reaction[26]
Fig. 7 Preparation scheme of cellulose peptide hybrid materials[27]
Fig. 8 Star polymers via the hetero-Diels-Alder cycloadditiona[40]
Fig. 9 Synthetic strategy for the generation of comb polymers via the RAFT-HDA concept[44]
Fig. 10 Surface grafting of divinylbenzene microspheres by RAFT-HDA reaction[46]
Fig. 11 (a) Synthesis the HDA hardener from castor oil, methyl ricinoleate and PDTMBA, (b) OM image of scratch before and after heating [54]
Fig. 12 Photo-conjugation of the dithiobenzoate end-capped poly(methyl methacrylate) with 2-methoxy-6-methylbenzaldehyde[56]
Fig. 13 Schematic illustration of the synthetic route toward single-ring nanoparticles (SRNPs) as cyclotide mimetics by a stepwise folding-activation-collapse process[57]
[1]
Ouchi M, Terashima T, Sawamoto M. Chem. Rev., 2009, 109(11): 4963.

doi: 10.1021/cr900234b
[2]
Braunecker W A, Matyjaszewski K. Prog. Polym. Sci., 2007, 32(1): 93.

doi: 10.1016/j.progpolymsci.2006.11.002
[3]
Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2012, 65(8): 985.

doi: 10.1071/CH12295
[4]
Moad G, Rizzardo E, Thang S H. Polymer, 2008, 49(5): 1079.

doi: 10.1016/j.polymer.2007.11.020
[5]
Inglis A J, Barner-kowollik C. Macromol. Rapid Commun., 2010, 31(14): 1247.

doi: 10.1002/marc.200900924
[6]
Adzima B J, Bowman C N. AIChE J., 2012, 58(10): 2952.

doi: 10.1002/aic.v58.10
[7]
Masson G, Lalli C, Benohoud M. Chem. Soc. Rev., 2013, 42(3): 902.

doi: 10.1039/C2CS35370A
[8]
Tasdelen M A. Polym. Chem., 2011, 2(10): 2133.

doi: 10.1039/c1py00041a
[9]
Wang Z P, Yuan J Y. Prog. Chem., 2012, 24(12): 2342.
[10]
Knall A C, Slugovc C. Chem. Soc. Rev., 2013, 42(12): 5131.

doi: 10.1039/c3cs60049a
[11]
Inglis A J, Stenzel M H, Barner-kowollik C. Macromol. Rapid Commun., 2009, 30(21): 1792.

doi: 10.1002/marc.200900363
[12]
Espinosa E, Glassner M, Boisson C. Macromol. Rapid Commun., 2011, 32(18): 1447.

doi: 10.1002/marc.201100310
[13]
Langer M, Brandt J, Lederer A, Goldmann A S, Schacher F H, Barner-Kowollik C. Polym. Chem., 2014, 5(18): 5330.

doi: 10.1039/C4PY00644E
[14]
Dürr C J, Hlalele L, Kaiser A, Brandau S, Barner-Kowollik C. Macromolecules, 2013, 46(1): 49.

doi: 10.1021/ma302017c
[15]
Glassner M, Delaittre G, Kaupp M, Blinco J P, Barner-Kowollik C. J. Am. Chem. Soc., 2012, 134(17): 7274.

doi: 10.1021/ja301762y pmid: 22506863
[16]
Kawaguchi H. Prog. Polym. Sci., 2000, 25(8): 1171.
[17]
Zhu J M, Li P. J. Polym. Sci. A Polym. Chem., 2003, 41(21): 3346.
[18]
Blomberg S, Ostberg S, Harth E, Bosman A W, Van Horn B, Hawker C J. J. Polym. Sci. A Polym. Chem., 2002, 40(9): 1309.

doi: 10.1002/(ISSN)1099-0518
[19]
Voccia S, JÉrôme C, Detrembleur C, Leclère P, Gouttebaron R, Hecq M, Gilbert B, Lazzaroni R, JÉrôme R. Chem. Mater., 2003, 15(4): 923.
[20]
Parvole J, Montfort J P, Reiter G, Borisov O, Billon L. Polymer, 2006, 47(4): 972.

doi: 10.1016/j.polymer.2005.12.072
[21]
Garcia F G, Pinto M R, Soares B G. Eur. Polym. J., 2002, 38(4): 759.

doi: 10.1016/S0014-3057(01)00225-7
[22]
Vivek A V, Dhamodharan R. J. Polym. Sci. A Polym. Chem., 2007, 45(17): 3818.

doi: 10.1002/(ISSN)1099-0518
[23]
Inoue Y, Matsugi T, Kashiwa N, Matyjaszewski K. Macromolecules, 2004, 37(10): 3651.

doi: 10.1021/ma0359887
[24]
Li Y, Schadler L S, Benicewicz B C. Handbook of RAFT Polymerization. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 423.
[25]
Quinn J F, Davis T P, Barner L, Barner-Kowollik C. Polymer, 2007, 48(22): 6467.

doi: 10.1016/j.polymer.2007.08.043
[26]
Nebhani L, Schmiedl D, Barner L, Barner-Kowollik C. Adv. Funct. Mater., 2010, 20(12): 2010.

doi: 10.1002/adfm.v20:12
[27]
Tischer T, Goldmann A S, Linkert K, Trouillet V, Börner H G, Barner-Kowollik C. Adv. Funct. Mater., 2012, 22(18): 3853.

doi: 10.1002/adfm.v22.18
[28]
Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Prog. Polym. Sci., 2010, 35(3): 357.

doi: 10.1016/j.progpolymsci.2009.09.003
[29]
Zydziak N, Hübner C, Bruns M, Barner-Kowollik C. Macromolecules, 2011, 44(9): 3374.

doi: 10.1021/ma200107z
[30]
Zydziak N, Preuss C M, Winkler V, Bruns M, Hübner C, Barner-Kowollik C. Macromol. Rapid Commun., 2013, 34(8): 672.

doi: 10.1002/marc.201300025
[31]
Kaupp M, Vogt A P, Natterodt J C, Trouillet V, Gruendling T, Hofe T, Barner L, Barner-Kowollik C. Polym. Chem., 2012, 3(9): 2605.

doi: 10.1039/c2py20369c
[32]
Ge G, Lu Y, Qu X. ACS Nano, 2020, 14(1): 218.

doi: 10.1021/acsnano.9b07874
[33]
Zhang F, Ju P F, Pan M Q, Zhang D W, Huang Y, Li G L, Li X G. Corros. Sci., 2018, 144: 74.

doi: 10.1016/j.corsci.2018.08.005
[34]
Wang H, Wang P P, Feng Y P, Liu J, Wang J Q, Hu M M, Wei J, Huang Y. ChemElectroChem, 2019, 6(6): 1605.

doi: 10.1002/celc.201801612
[35]
Döhler D, Michael P, Binder W H. Acc. Chem. Res., 2017, 50(10): 2610.

doi: 10.1021/acs.accounts.7b00371
[36]
Zhang Q H, Niu S M, Wang L, Lopez J, Chen S C, Cai Y F, Du R C, Liu Y X, Lai J C, Liu L, Li C H, Yan X Z, Liu C G, Tok J B H, Jia X D, Bao Z N. Adv. Mater., 2018, 30(33): 1801435.

doi: 10.1002/adma.v30.33
[37]
Mutlu H, Schmitt C W, Wedler-Jasinski N, Woehlk H, Fairfull-Smith K E, Blinco J P, Barner-Kowollik C. Polym. Chem., 2017, 8(40): 6199.

doi: 10.1039/C7PY01437F
[38]
Guimard N K, Ho J, Brandt J, Lin C Y, Namazian M, Mueller J O, Oehlenschlaeger K K, Hilf S, Lederer A, Schmidt F G, Coote M L, Barner-Kowollik C. Chem. Sci., 2013, 4(7): 2752.

doi: 10.1039/c3sc50642h
[39]
Schenzel A M, Klein C, Rist K, Moszner N, Barner-Kowollik C. Adv. Sci., 2016, 3(3): 1500361.

doi: 10.1002/advs.201500361
[40]
Inglis A J, Sinnwell S, Davis T P, Barner-Kowollik C, Stenzel M H. Macromolecules, 2008, 41(12): 4120.

doi: 10.1021/ma8002328
[41]
Sinnwell S, Inglis A J, Davis T P, Stenzel M H, Barner-Kowollik C. Chem. Commun., 2008, (17): 2052.
[42]
Sinnwell S, Inglis A J, Stenzel M H, Barner-Kowollik C. Macromol. Rapid Commun., 2008, 29(12/13): 1090.

doi: 10.1002/marc.v29:12/13
[43]
Sinnwell S, Lammens M, Stenzel M H, Du Prez F E, Barner-Kowollik C. J. Polym. Sci. A Polym. Chem., 2009, 47(8): 2207.S.
[44]
Bousquet A, Barner-Kowollik C, Stenzel M H. J. Polym. Sci. A Polym. Chem., 2010, 48(8): 1773.

doi: 10.1002/pola.v48:8
[45]
Wang Z J, Ma Z Y, Zhang Z Y, Wu F, Jiang H, Jia X R. Polym. Chem., 2014, 5(24): 6893.

doi: 10.1039/C4PY00964A
[46]
Nebhani L, Sinnwell S, Inglis A J, Stenzel M H, Barner-Kowollik C, Barner L. Macromol. Rapid Commun., 2008, 29(17): 1431.

doi: 10.1002/marc.v29:17
[47]
Nebhani L, Gerstel P, Atanasova P, Bruns M, Barner-Kowollik C. J. Polym. Sci. A Polym. Chem., 2009, 47(24): 7090.

doi: 10.1002/pola.23756
[48]
Le Droumaguet B, Nicolas J. Polym. Chem., 2010, 1(5): 563.

doi: 10.1039/b9py00363k
[49]
Gauthier M A, Klok H A. Polym. Chem., 2010, 1(9): 1352.

doi: 10.1039/c0py90001j
[50]
Ko J H, Maynard H D. Chem. Soc. Rev., 2018, 47(24): 8998.

doi: 10.1039/C8CS00606G
[51]
Wright T A, Page R C, Konkolewicz D. Polym. Chem., 2019, 10(4): 434.

doi: 10.1039/C8PY01399C
[52]
Beloqui A, Mane S R, Langer M, Glassner M, Bauer D M, Fruk L, Barner-Kowollik C, Delaittre G. Angew. Chem. Int. Ed., 2020, 59(45): 19951.

doi: 10.1002/anie.v59.45
[53]
Zhou J W, Guimard N K, Inglis A J, Namazian M, Lin C Y, Coote M L, Spyrou E, Hilf S, Schmidt F G, Barner-Kowollik C. Polym. Chem., 2012, 3(3): 628.

doi: 10.1039/C1PY00356A
[54]
Rajappan S C, Davis B J, Dishner I T, Thornell T L, Peyrefitte J J, Simon Y C. Polym. Chem., 2022, 13(6): 741.

doi: 10.1039/D1PY00917F
[55]
Nebhani L, Sinnwell S, Lin C Y, Coote M L, Stenzel M H, Barner-Kowollik C. J. Polym. Sci. A Polym. Chem., 2009, 47(22): 6053.

doi: 10.1002/pola.23647
[56]
Oehlenschlaeger K K, Mueller J O, Heine N B, Glassner M, Guimard N K, Delaittre G, Schmidt F G, Barner-Kowollik C. Angew. Chem. Int. Ed., 2013, 52(2): 762.

doi: 10.1002/anie.201206905 pmid: 23090883
[57]
Rubio-Cervilla J, Frisch H, Barner-Kowollik C, Pomposo J A. Macromol. Rapid Commun., 2019, 40(1): 1800491.

doi: 10.1002/marc.v40.1
[1] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[2] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[7] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[8] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[9] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[10] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[11] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[12] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[13] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[14] Dongdong Zha, Bin Guo, Bengang Li, Peng Yin, Panxin Li. Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(1): 156-166.
[15] Qing Xiang, Yingwu Luo*. RAFT Emulsion Polymerization [J]. Progress in Chemistry, 2018, 30(1): 101-111.