中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1290-1297 DOI: 10.7536/PC210839 Previous Articles   Next Articles

• Review •

Graphite-based Composite Bipolar Plates for Flow Batteries

Fengjing Jiang(), Hanchen Song   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Contact: Fengjing Jiang
Richhtml ( 16 ) PDF ( 589 ) Cited
Export

EndNote

Ris

BibTeX

Flow battery is considered a promising technology for large-scale energy storage, because of its high safety, long service life, and scalability. It can assist the power grid in peak shaving and energy storage, which will help to improve the energy utilization. Bipolar plate is a key component in a flow battery, which can separate single cells, connect the adjacent electrodes in series, help to conduct electric current and provide structural support for the stack. However, the cost of bipolar plate accounts for a big proportion of the total stack cost. It is of great significance to develop high-performance and low-cost bipolar plates, which will significantly accelerate the commercialization of flow batteries. Thus, its development has become an urgent need in the flow battery industry. Although much work related to the development of bipolar plates has been carried out, there is still lack of ideal bipolar plate products in the market, taking both their performance and cost into consideration. This article focuses on the introduction of current research status on graphite-based composite bipolar plates for flow batteries and the influence of material selection and processing techniques on the performance of bipolar plates, including electrical conductivity, mechanical strength, barrier properties, and corrosion resistance. Based on the review, some suggestions are made for the further developments of bipolar plates for flow batteries.

Contents

1 Introduction

2 Key performance and requirements of graphite-based composite bipolar plates

2.1 Electrical conductivity

2.2 Mechanical strength

2.3 Barrier properties

2.4 Corrosion resistance

2.5 Economical requirements

3 Conclusion and outlook

Fig. 1 Schematic diagram of contact resistance test[1]
Table 1 Electrical properties of composite bipolar plates for flow batteries
Table 2 Mechanical properties of composite bipolar plates for flow batteries
Fig. 2 Proportion of the cost of BP in the total cost of all-vanadium redox flow battery and Fe-V flow battery[72]
[1]
Kumar A, Ricketts M, Hirano S. J. Power Sources, 2010, 195(5): 1401.

doi: 10.1016/j.jpowsour.2009.09.022
[2]
Kang K, Park S, Ju H. Solid State Ion., 2014, 262: 332.

doi: 10.1016/j.ssi.2013.11.024
[3]
Rigail-Cedeño A F, Espinoza-Andaluz M, Vera J, Orellana-Valarezo M, Villacis-Balbuca M. Mater. Today Proc., 2020, 33: 2003.
[4]
Derieth T, Bandlamudi G, Beckhaus P, Kreuz C, Mahlendorf F, Heinzel A. J. New Mat. Electr. Sys., 2008, 11: 21.
[5]
Clingerman M L, King J A, Schulz K H, Meyers J D. J. Appl. Polym. Sci., 2002, 83(6): 1341.

doi: 10.1002/app.10014
[6]
Mamunya Y P, Davydenko V V, Pissis P, Lebedev E V. Eur. Polym. J., 2002, 38(9): 1887.

doi: 10.1016/S0014-3057(02)00064-2
[7]
Blunk R, Zhong F, Owens J. J. Power Sources, 2006, 159(1): 533.

doi: 10.1016/j.jpowsour.2005.09.068
[8]
Kang S J, Kim D O, Lee J H, Lee P C, Lee M H, Lee Y, Lee J Y, Choi H R, Lee J H, Oh Y S, Nam J D. J. Power Sources, 2010, 195(12): 3794.

doi: 10.1016/j.jpowsour.2009.11.064
[9]
Mathur R B, Dhakate S R, Gupta D K, Dhami T L, Aggarwal R K. J. Mater. Process. Technol., 2008, 203(1/3): 184.

doi: 10.1016/j.jmatprotec.2007.10.044
[10]
Rao J, Zhang P, He S, Li Z H, Ma H W, Shen Z P, Miao S D. Sci. Sin. Technol., 2017, 47(1): 13.

doi: 10.1360/N092015-00380
( 饶娟, 张盼, 何帅, 李植淮, 马鸿文, 沈兆普, 苗世顶. 中国科学: 技术科学, 2017, 47(1): 13.)
[11]
Li W W, Jing S, Wang S B, Wang C, Xie X F. Int. J. Hydrog. Energy, 2016, 41(36): 16240.

doi: 10.1016/j.ijhydene.2016.05.253
[12]
Luo X K, Hou M, Fu Y F, Hou Z J, Ming P W, Yi B L. Chinese Journal of Power Sources, 2008(03): 174.
( 罗晓宽, 侯明, 傅云峰, 侯中军, 明平文, 衣宝廉. 电源技术, 2008(03): 174.).
[13]
Du C, Ming P W, Hou M, Fu J, Fu Y F, Luo X K, Shen Q, Shao Z G, Yi B L. J. Power Sources, 2010, 195(16): 5312.

doi: 10.1016/j.jpowsour.2010.03.005
[14]
Park M, Jung Y J, Ryu J, Cho J. J. Mater. Chem. A, 2014, 2(38): 15808.

doi: 10.1039/C4TA03542A
[15]
Gautam R K, Kar K K. Fuel Cells, 2016, 16(2): 179.

doi: 10.1002/fuce.201500051
[16]
Yang T, Shi P F. J. Power Sources, 2008, 175(1): 390.

doi: 10.1016/j.jpowsour.2007.08.113
[17]
Li F N, Li H J, Wang J. Carbon, 2004, 42: 2989.

doi: 10.1016/j.carbon.2004.07.012
[18]
Yang T, Shi P. Chinese J. Power Sources, 2008, 32(5): 306.
( 杨涛, 史鹏飞. 电源技术, 2008, 32(5): 306.)
[19]
Ghosh A, Goswami P, Mahanta P, Verma A. J. Solid State Electrochem., 2014, 18(12): 3427.

doi: 10.1007/s10008-014-2573-1
[20]
Liao W N, Jiang F J, Zhang Y, Zhou X J, He Z Q. Renew. Energy, 2020, 152: 1310.

doi: 10.1016/j.renene.2020.01.155
[21]
Phuangngamphan M, Okhawilai M, Hiziroglu S, Rimdusit S. J. Appl. Polym. Sci., 2019, 136(11): 47183.

doi: 10.1002/app.47183
[22]
Jiang X, Drzal L T. J. Power Sources, 2012, 218: 297.

doi: 10.1016/j.jpowsour.2012.07.001
[23]
Liao W N, Zhang Y, Zhou X J, Zhuang M D, Guo D Y, Jiang F J, Yu Q C. ChemistrySelect, 2019, 4(8): 2421.

doi: 10.1002/slct.201900521
[24]
Dweiri R, Sahari J. J. Power Sources, 2007, 171(2): 424.

doi: 10.1016/j.jpowsour.2007.05.106
[25]
Mirzazadeh H, Katbab A A, Hrymak A N. Polym. Adv. Technol., 2011, 22(6): 863.

doi: 10.1002/pat.1589
[26]
Wang W B, Wang J H, Wang S B, Xie X F, Lv Y F, Qi L, Yao K J. Chem. Ind. Eng., 2011, 62: 203.
( 王文嫔, 王金海, 王树博, 谢晓峰, 吕亚非, 齐亮, 姚克俭. 化工学报, 2011, 62: 203.).
[27]
Adloo A, Sadeghi M, Masoomi M, Pazhooh H N. Renew. Energy, 2016, 99: 867.

doi: 10.1016/j.renene.2016.07.062
[28]
Zhao Z D, Men Y, Hou S Y, Wang Y L, Liu J G, Yan C W. Chinese Journal of Power Sources, 2011, 35(11): 1376.
( 赵正德, 门阅, 侯绍宇, 王远乐, 刘建国, 严川伟. 电源技术, 2011, 35(11): 1376.)
[29]
San F G B, Okur O. Int. J. Hydrog. Energy, 2017, 42(36): 23054.

doi: 10.1016/j.ijhydene.2017.07.175
[30]
Liu Z H, Wang B G, Yu L X. J. Energy Chem., 2018, 27(5): 1369.

doi: 10.1016/j.jechem.2018.04.010
[31]
Yu H N, Lim J W, Suh J D, Lee D G. J. Power Sources, 2011, 196(23): 9868.

doi: 10.1016/j.jpowsour.2011.06.102
[32]
Yu H N, Lim J W, Kim M K, Lee D G. Compos. Struct., 2012, 94(5): 1911.

doi: 10.1016/j.compstruct.2011.12.024
[33]
Kim K H, Kim B G, Lee D G. Compos. Struct., 2014, 109: 253.

doi: 10.1016/j.compstruct.2013.11.002
[34]
Lee H E, Han S H, Song S A, Kim S S. Compos. Struct., 2015, 134: 44.

doi: 10.1016/j.compstruct.2015.08.037
[35]
Lee D, Lim J W, Nam S, Choi I, Lee D G. Compos. Struct., 2015, 134: 1.
[36]
Jiang F J, Liao W N, Ayukawa T, Yoon S H, Nakabayashi K, Miyawaki J. J. Power Sources, 2021, 482: 228903.

doi: 10.1016/j.jpowsour.2020.228903
[37]
Lee D, Lee D G, Lim J W. J. Intell. Mater. Syst. Struct., 2018, 29(17): 3386.

doi: 10.1177/1045389X17708345
[38]
Liu Z H, Wang B G, Yu L X. J. Energy Chem., 2018, 27(5): 1369.

doi: 10.1016/j.jechem.2018.04.010
[39]
Avasarala B, Haldar P. J. Power Sources, 2009, 188(1): 225.

doi: 10.1016/j.jpowsour.2008.11.063
[40]
Xiong J, Song Y X, Wang S L, Li X R, Liu J G, Yan C W, Tang A. J. Power Sources, 2019, 431: 170.

doi: 10.1016/j.jpowsour.2019.05.061
[41]
Lee N J, Lee S W, Kim K J, Kim J H, Park M S, Jeong G, Kim Y J, Byun D. Bull. Korean Chem. Soc., 2012, 33(11): 3589.

doi: 10.5012/bkcs.2012.33.11.3589
[42]
Satola B, Kirchner C N, Komsiyska L, Wittstock G. J. Electrochem. Soc., 2016, 163(10): A2318.

doi: 10.1149/2.0841610jes
[43]
Yang L, Zhou Y, Wang S, Lin Y, Huang T, Yu A. Int. J. Electrochem. Sci., 2017, 12: 7031.
[44]
Nam S, Lee D, Lee D G, Kim J. Compos. Struct., 2017, 159: 220.

doi: 10.1016/j.compstruct.2016.09.063
[45]
Saadat N, Dhakal H N, Tjong J, Jaffer S, Yang W M, Sain M. Renew. Sustain. Energy Rev., 2021, 138: 110535.
[46]
Kakati B K, Sathiyamoorthy D, Verma A. Int. J. Hydrog. Energy, 2010, 35(9): 4185.

doi: 10.1016/j.ijhydene.2010.02.033
[47]
Kim N H, Kuila T, Kim K M, Nahm S H, Lee J H. Polym. Test., 2012, 31(4): 537.

doi: 10.1016/j.polymertesting.2012.02.006
[48]
Ruban E, Stepashkin A, Gvozdik N, Konev D, Kartashova N, Antipov A, Lyange M, Usenko A. Mater. Today Commun., 2021, 26: 101967.
[49]
Boudou J P, Paredes J I, Cuesta A, Martínez-Alonso A, TascÓn J M D. Carbon, 2003, 41(1): 41.

doi: 10.1016/S0008-6223(02)00270-1
[50]
Montes-Morán M A, Martínez-Alonso A, TascÓn J M D, Paiva M C, Bernardo C A. Carbon, 2001, 39(7): 1057.

doi: 10.1016/S0008-6223(00)00220-7
[51]
Dai Z S, Shi F H, Zhang B Y, Li M, Zhang Z G. Appl. Surf. Sci., 2011, 258(5): 1894.

doi: 10.1016/j.apsusc.2011.09.096
[52]
Ozkan C, Karsli N G, Aytac A, Deniz V. Compos. B Eng., 2014, 62: 230.

doi: 10.1016/j.compositesb.2014.03.002
[53]
Chaiwan P, Pumchusak J. Electrochimica Acta, 2015, 158: 1.

doi: 10.1016/j.electacta.2015.01.101
[54]
Zhang M Y, Sui S, Chen J Y, Wu S L, Sun R, Guo N. Trans. China Electrotech. Soc., 2014, 29(4): 97.
( 张明艳, 隋珊, 陈金玉, 吴淑龙, 孙睿, 郭宁. 电工技术学报, 2014, 29(4): 97.)
[55]
Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, MarêchÉ J F. Phys. Rev. B, 1996, 53(10): 6209.

pmid: 9982020
[56]
Dhakate S R, Sharma S, Chauhan N, Seth R K, Mathur R B. Int. J. Hydrog. Energy, 2010, 35(9): 4195.

doi: 10.1016/j.ijhydene.2010.02.072
[57]
Jin F L, Ma C J, Park S J. Mater. Sci. Eng. A, 2011, 528(29/30): 8517.

doi: 10.1016/j.msea.2011.08.054
[58]
Lee J H, Jang Y K, Hong C E, Kim N H, Li P, Lee H K. J. Power Sources, 2009, 193(2): 523.

doi: 10.1016/j.jpowsour.2009.04.029
[59]
Caglar B, Fischer P, Kauranen P, Karttunen M, Elsner P. J. Power Sources, 2014, 256: 88.

doi: 10.1016/j.jpowsour.2014.01.060
[60]
Lee D, Choe J, Nam S, Lim J W, Choi I, Lee D G. Compos. Struct., 2017, 160: 976.

doi: 10.1016/j.compstruct.2016.10.107
[61]
Jeong K I, Oh J, Song S A, Lee D, Lee D G, Kim S S. Compos. Struct., 2021, 262: 113617.

doi: 10.1016/j.compstruct.2021.113617
[62]
Choe J, Lim J W, Kim M, Kim J, Lee D G. Compos. Struct., 2015, 134: 106.

doi: 10.1016/j.compstruct.2015.08.030
[63]
Kim S, Yoon Y, Narejo G M, Jung M, Kim K J, Kim Y J. Int. J. Energy Res., 2021, 45(7): 11098.

doi: 10.1002/er.6592
[64]
Satola B, Komsiyska L, Wittstock G. J. Electrochem. Soc., 2018, 165(5): A963.

doi: 10.1149/2.0921805jes
[65]
Al-Fetlawi H, Shah A A, Walsh F C. Electrochimica Acta, 2010, 55(9): 3192.

doi: 10.1016/j.electacta.2009.12.085
[66]
Antunes R A, Lopes de Oliveira M C, Ett G. Int. J. Hydrog. Energy, 2011, 36(19): 12474.

doi: 10.1016/j.ijhydene.2011.06.131
[67]
Wang M X, Liu Q, Sun H F, Ogbeifun N, Xu F, Stach E A, Xie J. Mater. Chem. Phys., 2010, 123(2/3): 761.

doi: 10.1016/j.matchemphys.2010.05.055
[68]
Liu H J, Yang L X, Xu Q, Yan C W. RSC Adv., 2015, 5(8): 5928.

doi: 10.1039/C4RA13697G
[69]
Hu B, Chang F L, Xiang L Y, He G J, Cao X W, Yin X C. Int. J. Hydrog. Energy, 2021, 46(50): 25666.

doi: 10.1016/j.ijhydene.2021.05.081
[70]
Xu D Q, Fan Y S, Liu P, Wang B G. J. Chem. Eng. Chin. Univ., 2011, 25(2): 308.
( 徐冬清, 范永生, 刘平, 王保国. 高校化学工程学报, 2011, 25(2): 308.)
[71]
Zheng M L, Sun J, Meinrenken C J, Wang T. J. Electrochem. Energy Convers. Storage, 2019, 16(2): 021001.

doi: 10.1115/1.4040921
[72]
Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V. J. Power Sources, 2014, 247: 1040.

doi: 10.1016/j.jpowsour.2012.12.023
[73]
Zeng Y K, Zhao T S, An L, Zhou X L, Wei L. J. Power Sources, 2015, 300: 438.

doi: 10.1016/j.jpowsour.2015.09.100
[74]
Mongird K, Viswanathan V, Alam J, Vartanian C, Sprenkle V, Baxter R. 2020 Grid Energy Storage Technology Cost and Performance Assessment (2020-12-17). [2021-11-1]. https://www.energy.gov/energy-storage-grand-challenge/downloads/2020-grid-energy-storage-technology-cost-and-performance/.
[75]
Middelman E, Kout W, Vogelaar B, Lenssen J, de Waal E. J. Power Sources, 2003, 118(1/2): 44.
[76]
Minke C, Hickmann T, Dos Santos A R, Kunz U, Turek T. J. Power Sources, 2016, 305: 182.

doi: 10.1016/j.jpowsour.2015.11.052
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Mingjun Nan, Lin Qiao, Yuqin Liu, Huamin Zhang, Xiangkun Ma. A Review of Inorganic Aqueous Flow Battery [J]. Progress in Chemistry, 2022, 34(6): 1402-1413.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[6] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[7] Hong-lin Zhu, Wen-ying Li, Ting-ting Li, Michael Baitinger, Juri Grin, Yue-qing Zheng. N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction [J]. Progress in Chemistry, 2019, 31(7): 939-953.
[8] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[9] Ying Shi, Lei Wen, Minjie Wu, Feng Li. Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries [J]. Progress in Chemistry, 2017, 29(1): 149-161.
[10] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Yang Minggao, Wang Jianlong. The Key Materials and Components for Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2015, 27(2/3): 310-320.
[11] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[12] Xu Tingting, Xue Chunfeng, Zhang Zhonglin, Hao Xiaogang. Hierarchically Porous Carbon Materials Templated from Skeletonal Polyurethane Foam [J]. Progress in Chemistry, 2014, 26(12): 1924-1929.
[13] Qiu Shi, Zheng Jingwei, Yang Guitang, Zheng Jingtang, Wu Mingbo, Wu Wenting. Synthesis and Application of Three-Dimensionally Ordered Macroporous Carbon with Designed Pore Architecture [J]. Progress in Chemistry, 2014, 26(05): 772-783.
[14] Miao lixiao, Wang Weikun, Wang Mengjia, Duan Bochao, Yang Yusheng, Wang Anbang. Sulfur Composite Cathode for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2013, 25(11): 1867-1875.
[15] Lai Qingxue, Zhang Xiaogang, Liang Yanyu. Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors [J]. Progress in Chemistry, 2013, 25(10): 1703-1712.