中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 499-518 DOI: 10.7536/PC210303 Previous Articles   Next Articles

• Review •

Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects

Chenghao Li1, Yamin Liu2, Bin Lu1, Ulla Sana1, Xianyan Ren1(), Yaping Sun2()   

  1. 1 School of Materials Science and Engineering, Southwest University of Science and Technology,Mianyang 621010, China
    2 Department of Chemistry, Clemson University, South Carolina 29634, USA
  • Received: Revised: Online: Published:
  • Contact: Xianyan Ren, Yaping Sun
  • Supported by:
    Southwest University of Science and Technology of the Startup Foundation for Doctors(16ZX7139); Longshan Talent Program(18LZX675)
Richhtml ( 90 ) PDF ( 1074 ) Cited
Export

EndNote

Ris

BibTeX

Carbon dots (CDots) emerging as a nova in carbon nanomaterials are applied in various fields due to their unique optical property, low toxicity, high biocompatibility, and designable flexibility. Several strategies for controlling the optical properties of CDots have been proposed to meet demands, including heteroatom doping, semiconductor quantum dot doping, polymer passivation and modification, and host-guest constructing. Electron donors or electron acceptors are introduced by doping a single heteroatom or multiple heteroatoms to affect the electron density of neighboring carbon atoms, hence enhancing the fluorescence emission intensity. Semiconductor quantum dots can also form composites with CDots to improve the electron hole separation efficiency, thus enhancing fluorescence. In terms of polymer modification, the polymer can passivate and functionalize the CDots' surface, and (cured) polymer film can provide tight spaces to promote the radiation transition on the surface of CDots to enhance the fluorescence. Furthermore, dye-CDots and porous material-CDots represent the main host-guest structures. The former shows positive effects on the fluorescence emission of CDots, especially performing better in red/near-infrared emission. The latter is highly designable and contributes to solid-state fluorescence, paving the way for advanced applications. This review elucidates four types of functionalized CDots and summarizes their optical properties, photoluminescence mechanisms, and potential applications. Finally, the development and current situation of functionalized CDots are discussed, and the future research direction of functionalized CDots has also been prospected.

Contents

1 Introduction

2 Heteroatom-doped carbon dots

2.1 N-doped carbon dots

2.2 Other donor atom-doped carbon dots

2.3 B-doped carbon dots

2.4 Lanthanide atom-doped carbon dots

2.5 Multiple atom-codoped carbon dots

3 Semiconductor quantum dot-doped carbon dots and their composites

4 Polymer functionalized carbon dots and their composites

4.1 Polymer as a surface layer of carbon dots for fluorescence enhancement

4.2 Polymer as a matrix in carbon dot-containing composites

4.3 Polymer as a precursor of carbon dots

5 Host-guest carbon dots

5.1 Host-guest structure composed of carbon dots and dyes

5.2 Host-guest structure composed of carbon dots and porous materials

6 Summary and outlook

Table 1 The precursor, structure, and fluorescence performances of some reported N-CDots
Fig.1 Positive effects of pyridine N on PL intensity. Most pyridine N atoms are always embedded in the center of the carbon skeleton and form a circle trap, whereas the pyrrole N atoms distributed along the edges. Thus, the N-CDots-1 containing pyridine N in internal structure is easier to form electron traps than N-CDots-2, thus showing higher PL intensity. The electron traps can trap electrons as electron reservoirs[36]. Copyright 2018, Elsevier
Fig.2 (a) Schematic representation of the synthesis of N-GDos and size of the N-GDots as a function of heating time. (b) The size-dependent UV-vis-NIR absorption of N-GDots. (c) Size-dependent visible PL spectra of N-GDos excited by 375 nm laser. (d) NIR PL spectra of the N-GDots excited by 808 nm laser[25]. Copyright 2014, American Chemical Society
Table 2 Precursor, structure, and fluorescence performance of some S-, P-, or B-CDots
Fig.3 (a) Computational models: coronene units containing phosphate group or sulphonate group. (b) HOMO-LUMO gaps and molecule orbit plots of the model containing phosphate groups (P-MO) or sulfonate groups (S-MO)[51]. Copyright 2018, Springer Nature
Table 3 Values of the nonlinear optical parameters belong to B-CDots and N-CDots reported in ref[54]
Fig.4 (a) T1-weighted MR images and R1 maps of MRI phantom images of B-GDots at different concentrations. (b) Plot of 1/T1 as a function of B-GDots concentration. The slope of the curve is defined as the specific relaxivity of r 1 [58]. Copyright 2016, John Wiley and Sons
Fig.5 Representation of the fluorescence mechanism of O-CDots, N-CDots, and N, S-CDots. (1) Electrons excited from the ground state and trapped by the surface states, (2) excited electrons return to the ground state via a nonradiative route, and (3) excited electrons return to the ground state via a radiative route. The introduced sulfur atoms seem to be able to eliminate the O-states and enhance the N-state, leading to that the original O-states are nearly neglected in the N, S-CDots[47]. Copyright 2013, John Wiley and Sons
Table 4 Precursor, structure, and fluorescence performance of some codoped CDots
Precursor Products Heteroatom-related bonds Average diameter/nm QY/% Max λem/nm
Carbon source Heteroatom source
Citric acid L-cysteine N, S-CDots Pyridinic, Pyrrolic N; C—S—C 7 73(λex: 345 nm) 415[47]
α-Lipoic acid,
Ethylenediamine
Pyridinic, Pyrrolic, Graphitic N—C—S—, —C—SOx; (x = 2, 3, 4) 2.7 54.4(λex: 390 nm) 472[77]
Sodium citrate Sulfamide C—N—C, N—C, N—H; —C—SOx(x = 3, 4) 8 55 (λex: 350 nm) 440[78]
Citric acid Diethylenetriamine,Phosphoric acid N, P-CDots Pyridinic, Pyrrolic, Graphitic N;C—P 2 70 (λex: 360 nm) 452[71]
Citric acid monohydrate Diammonium hydrogen
phosphate
C—N—C,N—H;C— PO 4 3 - 2.7 59 (λex: 340 nm) 440[79]
Diethylenetriaminepenta
(Methylene-phosphonic
acid), m-
Phenylenediamine
—NH+—, —C=NH+;P—C, P—O 2.9 32(λex: 440 nm) 510[80]
Citric acid Ethylene diamine,
Phosphoric acid
Tertiary amines, Quaternary-N, N—H;C3—P, C—PO3 and/or C2—PO2, C—O—P 4.5 30 (λex: 340 nm) (blue)
78(λex: 450 nm) (green)
Dual emission
430, 500[81]
m-Phenylenediamine, Ethylenediamine, Phosphoric acid Tertiary amines, Pyridinic, Pyrrolic N, N—H;P—X aromatic, P—O groups 8.1 51(λex: 340 nm) (blue)
38 (λex: 450 nm) (green)
Dual emission
450, 510[82]
Diethylenetriamine,boric
acid
N, B-CDots Pyrridinic, Pyrrolic, Graphitic N
B—C, BC3, BC2O, BCO2
2 39 (λex: 360 nm) 452[71]
Sucrose Urea, Boric acid Pyridinic, Pyrrolic, Graphitic N,B—C, B—N, BC2O, BCO2 4.5 14.2 (λex: 365 nm) 450[83]
Citric acid Urea, Boric acid B—O, B—O—C, B—N 20 /(λex: 355 nm) 455[84]
p-Phenylenediamine, 3-
Formylphenylboronic acid
/ 8.1 36.5 (λex: 400 nm) 560[85]
3-Aminophenylboronic acid / 5 /(λex: 400 nm) 500[86]
N-(4-hydroxyphenyl)
glycine, Boric acid
B—N, B—C, and C—N 3 23.7(λex: 365 nm) 500[87]
Fig.6 Cartoon illustrations of nondoped (left) and surface-doped (right) carbon dots with nanoscale semiconductors[88]. Copyright 2011, Royal Society of Chemistry
Fig.7 (a) Stern-Volmer quenching plots for fluorescence intensities of the PVK-CDots in DMF solution (△, 440 nm excitation) and the PVK-C60 in dichlorobenzene solution (?, 540 nm excitation) at different DEA concentrations. (b) Stern-Volmer quenching plot for fluorescence intensities (440 nm excitation) of the PVK-CDots in DMF solution at different DNT concentrations[111]
Fig.8 Carbon dots with encapsulated species (host-guest carbon dot, left) versus an endofullerene (right)[20]
[1]
Wang Y L, Anilkumar P, Cao L, Liu J H, Luo P G, Tackett K N II, Sahu S, Wang P, Wang X, Sun Y P. Exp. Biol. Med., 2011, 236(11): 1231.

doi: 10.1258/ebm.2011.011132
[2]
Guo Y M, Wang Z, Shao H W, Jiang X Y. Carbon, 2013, 52: 583.

doi: 10.1016/j.carbon.2012.10.028
[3]
Hu C, Li M Y, Qiu J S, Sun Y P. Chem. Soc. Rev., 2019, 48(8): 2315.

doi: 10.1039/C8CS00750K
[4]
Ai L, Yang Y S, Wang B Y, Chang J B, Tang Z Y, Yang B, Lu S Y. Sci. Bull., 2021, 66(8): 839.

doi: 10.1016/j.scib.2020.12.015
[5]
Bogireddy N K R, Lara J, Fragoso L R, Agarwal V. Chem. Eng. J., 2020, 401: 126097.

doi: 10.1016/j.cej.2020.126097
[6]
Bandi R, Kannikanti H G, Dadigala R, Gangapuram B R, Vaidya J R, Guttena V. Opt. Mater., 2020, 109: 110349.

doi: 10.1016/j.optmat.2020.110349
[7]
Du X Y, Wang C F, Wu G, Chen S. Angew. Chem. Int. Ed., 2021, 60(16): 8585.

doi: 10.1002/anie.202004109
[8]
Yang S T, Cao L, Luo P G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131(32): 11308.

doi: 10.1021/ja904843x
[9]
Bao X, Yuan Y, Chen J Q, Zhang B H, Li D, Zhou D, Jing P T, Xu G Y, Wang Y L, Holá K, Shen D Z, Wu C F, Song L, Liu C B, Zbořil R, Qu S N. Light.: Sci. Appl., 2018, 7(1): 91.

doi: 10.1038/s41377-018-0090-1
[10]
Zhou Y F, Benetti D, Tong X, Jin L, Wang Z M, Ma D L, Zhao H G, Rosei F. Nano Energy, 2018, 44: 378.

doi: 10.1016/j.nanoen.2017.12.017
[11]
Qu Y N, Xu X J, Huang R L, Qi W, Su R X, He Z M. Chem. Eng. J., 2020, 382: 123016.

doi: 10.1016/j.cej.2019.123016
[12]
Chen L T, Liu Y L, Cheng G H, Fan Z G, Yuan J Y, He S L, Zhu G F. Sci. Total. Environ., 2021, 759: 143432.

doi: 10.1016/j.scitotenv.2020.143432
[13]
Shi D C, Yan F Y, Zheng T C, Wang Y Y, Zhou X G, Chen L. RSC Adv., 2015, 5(119): 98492.

doi: 10.1039/C5RA18800H
[14]
Wang F X, Hao Q L, Zhang Y H, Xu Y J, Lei W. Microchimica Acta, 2016, 183(1): 273.

doi: 10.1007/s00604-015-1650-1
[15]
Long P, Feng Y Y, Cao C, Li Y, Han J K, Li S W, Peng C, Li Z Y, Feng W. Adv. Funct. Mater., 2018, 28(37): 1800791.

doi: 10.1002/adfm.201800791
[16]
Wang W J, Zeng Z T, Zeng G M, Zhang C, Xiao R, Zhou C Y, Xiong W P, Yang Y, Lei L, Liu Y, Huang D L, Cheng M, Yang Y Y, Fu Y K, Luo H Z, Zhou Y. Chem. Eng. J., 2019, 378: 122132.

doi: 10.1016/j.cej.2019.122132
[17]
Sun Y P, Wang X, Lu F S, Cao L, Meziani M J, Luo P G, Gu L R, Veca L M. J. Phys. Chem. C, 2008, 112(47): 18295.

doi: 10.1021/jp8076485
[18]
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128(24): 7756.

pmid: 16771487
[19]
Anilkumar P, Cao L, Yu J J, Tackett K N II, Wang P, Meziani M J, Sun Y P. Small, 2013, 9(4): 545.

doi: 10.1002/smll.201202000
[20]
Sun Y P, Wang P, Lu Z M, Yang F, Meziani M J, LeCroy G E, Liu Y, Qian H J. Sci. Rep., 2015, 5(1): 12354.

doi: 10.1038/srep12354
[21]
Zhang H Y, Wang B L, Yu X W, Li J Y, Shang J, Yu J H. Angew. Chem. Int. Ed., 2020, 59(44): 19390.

doi: 10.1002/anie.202006545
[22]
Wang L, Yin Y, Jain A, Zhou H S. Langmuir, 2014, 30(47): 14270.

doi: 10.1021/la5031813 pmid: 25365539
[23]
Yang Z, Xu M H, Liu Y, He F J, Gao F, Su Y J, Wei H, Zhang Y F. Nanoscale, 2014, 6(3): 1890.

doi: 10.1039/c3nr05380f pmid: 24362823
[24]
Dang V D, Ganganboina A B, Doong R A. ACS Appl. Mater. Interfaces, 2020, 12(29): 32247.

doi: 10.1021/acsami.0c04645
[25]
Tang L B, Ji R B, Li X M, Bai G X, Liu C P, Hao J H, Lin J Y, Jiang H X, Teng K S, Yang Z B, Lau S P. ACS Nano, 2014, 8(6): 6312.

doi: 10.1021/nn501796r
[26]
Niu W J, Li Y, Zhu R H, Shan D, Fan Y R, Zhang X J. Sens. Actuat. B: Chem., 2015, 218: 229.

doi: 10.1016/j.snb.2015.05.006
[27]
Yi Z H, Li X M, Zhang H Y, Ji X L, Sun W, Yu Y X, Liu Y N, Huang J X, Sarshar Z, Sain M. Talanta, 2021, 222: 121663.

doi: 10.1016/j.talanta.2020.121663
[28]
Pan L L, Sun S, Zhang L, Jiang K, Lin H W. Nanoscale, 2016, 8(39): 17350.

doi: 10.1039/C6NR05878G
[29]
Sun S, Zhang L, Jiang K, Wu A G, Lin H W. Chem. Mater., 2016, 28(23): 8659.

doi: 10.1021/acs.chemmater.6b03695
[30]
Ding H, Wei J S, Zhang P, Zhou Z Y, Gao Q Y, Xiong H M. Small, 2018, 14(22): 1800612.

doi: 10.1002/smll.201800612
[31]
Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2015, 54(18): 5360.

doi: 10.1002/anie.201501193 pmid: 25832292
[32]
Niino S, Takeshita S, Iso Y, Isobe T. J. Lumin., 2016, 180: 123.

doi: 10.1016/j.jlumin.2016.08.021
[33]
Qian Z S, Ma J J, Shan X Y, Feng H, Shao L X, Chen J R. Chem. Eur. J., 2014, 20(8): 2254.

doi: 10.1002/chem.201304374
[34]
Wang J Q, Zhang P F, Huang C, Liu G, Leung K C F, Wáng Y X J. Langmuir, 2015, 31(29): 8063.

doi: 10.1021/acs.langmuir.5b01875
[35]
Sarkar S, Sudolská M, Dubecký M, Reckmeier C J, Rogach A L, Zbořil R, Otyepka M. J. Phys. Chem. C, 2016, 120(2): 1303.

doi: 10.1021/acs.jpcc.5b10186
[36]
Liang Y, Shen Y F, Liu C L, Ren X Y. J. Lumin., 2018, 197: 285.

doi: 10.1016/j.jlumin.2018.01.034
[37]
Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Adv. Mater., 2018, 30(1): 1704740.

doi: 10.1002/adma.201704740
[38]
Wang B Y, Li J, Tang Z Y, Yang B, Lu S Y. Sci. Bull., 2019, 64(17): 1285.

doi: 10.1016/j.scib.2019.07.021
[39]
Ye X X, Xiang Y H, Wang Q R, Li Z, Liu Z H. Small, 2019, 15(48): e1901673.
[40]
Fang Q Q, Dong Y Q, Chen Y M, Lu C H, Chi Y W, Yang H H, Yu T. Carbon, 2017, 118: 319.

doi: 10.1016/j.carbon.2017.03.061
[41]
Liang W X, Ge L, Hou X F, Ren X Y, Yang L J, Bunker C E, Overton C M, Wang P, Sun Y P. C - J. Carbon Res., 2019, 5(4): 70.
[42]
Xiong Y, Schneider J, Ushakova E V, Rogach A L. Nano Today, 2018, 23: 124.

doi: 10.1016/j.nantod.2018.10.010
[43]
Mura S, Stagi L, Malfatti L, Carbonaro C M, Ludmerczki R, Innocenzi P. J. Phys. Chem. A, 2020, 124(1): 197.

doi: 10.1021/acs.jpca.9b10884
[44]
Chandra S, Patra P, Pathan S H, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A. J. Mater. Chem. B, 2013, 1(18): 2375.

doi: 10.1039/c3tb00583f pmid: 32261072
[45]
Loi E, Ng R W C, Chang M M F, Fong J F Y, Ng Y H, Ng S M. Luminescence, 2017, 32(1): 114.

doi: 10.1002/bio.3157
[46]
Guo Y, Yang L L, Li W W, Wang X F, Shang Y H, Li B X. Microchimica Acta, 2016, 183(4): 1409.

doi: 10.1007/s00604-016-1779-6
[47]
Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52(30): 7800.

doi: 10.1002/anie.201301114
[48]
Xu Q, Pu P, Zhao J G, Dong C B, Gao C, Chen Y S, Chen J R, Liu Y, Zhou H J. J. Mater. Chem. A, 2015, 3(2): 542.

doi: 10.1039/C4TA05483K
[49]
Bhunia S K, Saha A, Maity A R, Ray S C, Jana N R. Sci. Rep., 2013, 3(1): 1473.

doi: 10.1038/srep01473
[50]
Wang W, Li Y M, Cheng L, Cao Z Q, Liu W G. J. Mater. Chem. B, 2014, 2(1): 46.

doi: 10.1039/c3tb21370f pmid: 32261297
[51]
Shen Y F, Liang Y, Wang Y P, Liu C L, Ren X Y. J. Nanoparticle Res., 2018, 20(9): 229.

doi: 10.1007/s11051-018-4334-z
[52]
Ma Y, Chen A Y, Huang Y Y, He X, Xie X F, He B, Yang J H, Wang X Y. Carbon, 2020, 162: 234.

doi: 10.1016/j.carbon.2020.02.048
[53]
Wang H, Revia R, Mu Q X, Lin G Y, Yen C, Zhang M Q. Nanoscale Horiz., 2020, 5(3): 573.

doi: 10.1039/c9nh00608g pmid: 32118222
[54]
Bourlinos A B, Trivizas G, Karakassides M A, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S. Carbon, 2015, 83: 173.

doi: 10.1016/j.carbon.2014.11.032
[55]
Dey S, Govindaraj A, Biswas K, Rao C N R. Chem. Phys. Lett., 2014, 595/596: 203.

doi: 10.1016/j.cplett.2014.02.012
[56]
Fan Z T, Li Y C, Li X H, Fan L Z, Zhou S X, Fang D C, Yang S H. Carbon, 2014, 70: 149.

doi: 10.1016/j.carbon.2013.12.085
[57]
Shen C, Wang J, Cao Y, Lu Y. J. Mater. Chem. C, 2015, 3(26): 6668.

doi: 10.1039/C5TC01156F
[58]
Wang H, Revia R, Wang K, Kant R J, Mu Q X, Gai Z, Hong K L, Zhang M Q. Adv. Mater., 2017, 29(11): 1605416.

doi: 10.1002/adma.201605416
[59]
Wang Y, Huang Y, Song Y, Zhang X Y, Ma Y F, Liang J J, Chen Y S. Nano Lett., 2009, 9(1): 220.

doi: 10.1021/nl802810g pmid: 19072314
[60]
Peng J, Guo Y Q, Lv H, Dou X Y, Chen Q, Zhao J Y, Wu C Z, Zhu X J, Lin Y, Lu W, Wu X J, Xie Y. Angew. Chem., 2016, 128(9): 3228.

doi: 10.1002/ange.201511436
[61]
Molkenova A, Atabaev T S. Optik, 2019, 187: 70.

doi: 10.1016/j.ijleo.2019.05.013
[62]
Feng Q, Xe Z G, Zheng M. Chem. Eng. J., 2021, 420: 127647.

doi: 10.1016/j.cej.2020.127647
[63]
Shan X Y, Chai L J, Ma J J, Qian Z S, Chen J R, Feng H. Anal., 2014, 139(10): 2322.

doi: 10.1039/C3AN02222F
[64]
Sadhanala H K, Nanda K K. Carbon, 2016, 96: 166.

doi: 10.1016/j.carbon.2015.08.096
[65]
Jiang Q J, Liu L, Li Q Y, Cao Y, Chen D, Du Q S, Yang X B, Huang D P, Pei R J, Chen X, Huang G. J. Nanobiotechnology, 2021, 19(1): 64.

doi: 10.1186/s12951-021-00811-w
[66]
Ren X Y, Liu L H, Li Y, Dai Q, Zhang M, Jing X L. J. Mater. Chem. B, 2014, 2(34): 5541.

doi: 10.1039/C4TB00709C
[67]
Yang S H, Sun X H, Wang Z Y, Wang X Y, Guo G S, Pu Q S. Nano Res., 2018, 11(3): 1369.

doi: 10.1007/s12274-017-1751-8
[68]
Zhou Q J, Fang Y J, Li J Y, Hong D, Zhu P P, Chen S H, Tan K J. Talanta, 2021, 222: 121548.

doi: 10.1016/j.talanta.2020.121548
[69]
Zhang Z, Chang H, Xue B L, Zhang S F, Li X P, Wong W K, Li K C, Zhu X J. Cellulose, 2018, 25(1): 377.

doi: 10.1007/s10570-017-1594-1
[70]
Xu Q, Kuang T R, Liu Y, Cai L L, Peng X F, Sreenivasan Sreeprasad T, Zhao P, Yu Z Q, Li N. J. Mater. Chem. B, 2016, 4(45): 7204.

doi: 10.1039/C6TB02131J
[71]
Barman M K, Jana B, Bhattacharyya S, Patra A. J. Phys. Chem. C, 2014, 118(34): 20034.

doi: 10.1021/jp507080c
[72]
Ananthanarayanan A, Wang Y, Routh P, Sk M A, Than A, Lin M, Zhang J, Chen J, Sun H D, Chen P. Nanoscale, 2015, 7(17): 8159.

doi: 10.1039/c5nr01519g pmid: 25875153
[73]
Yu D S, Xue Y H, Dai L M. J. Phys. Chem. Lett., 2012, 3(19): 2863.

doi: 10.1021/jz3011833
[74]
Cruz-Silva E, Cullen D A, Gu L, Romo-Herrera J M, Muñoz-Sandoval E, LÓpez-Urías F, Sumpter B G, Meunier V, Charlier J C, Smith D J, Terrones H, Terrones M. ACS Nano, 2008, 2(3): 441.

doi: 10.1021/nn700330w pmid: 19206568
[75]
Kundu S, Yadav R M, Narayanan T N, Shelke M V, Vajtai R, Ajayan P M, Pillai V K. Nanoscale, 2015, 7(27): 11515.

doi: 10.1039/C5NR02427G
[76]
Wang X, Ma Y R, Wu Q Y, Wang Z Z, Tao Y C, Zhao Y J, Wang B, Cao J J, Wang H, Gu X Q, Huang H, Li S, Wang X Y, Hu F R, Shao M W, Liao L S, Sham T K, Liu Y, Kang Z H. Laser Photonics Rev., 2021, 15(3): 2000412.

doi: 10.1002/lpor.202000412
[77]
Ding H, Wei J S, Xiong H M. Nanoscale, 2014, 6(22): 13817.

doi: 10.1039/c4nr04267k pmid: 25297983
[78]
Xu Q, Liu Y, Gao C, Wei J F, Zhou H J, Chen Y S, Dong C B, Sreeprasad T S, Li N, Xia Z H. J. Mater. Chem. C, 2015, 3(38): 9885.

doi: 10.1039/C5TC01912E
[79]
Chandra S, Laha D, Pramanik A, Ray Chowdhuri A, Karmakar P, Sahu S K. Luminescence, 2016, 31(1): 81.

doi: 10.1002/bio.2927 pmid: 25964146
[80]
Li J J, Jiao Y Z, Feng L D, Zhong Y, Zuo G C, Xie A, Dong W. Microchimica Acta, 2017, 184(8): 2933.

doi: 10.1007/s00604-017-2314-0
[81]
Parvin N, Mandal T K. Microchimica Acta, 2017, 184(4): 1117.

doi: 10.1007/s00604-017-2108-4
[82]
Sun X C, Brückner C, Lei Y. Nanoscale, 2015, 7(41): 17278.

doi: 10.1039/C5NR05549K
[83]
Sadhanala H K, Nanda K K. J. Phys. Chem. C, 2015, 119(23): 13138.

doi: 10.1021/acs.jpcc.5b04140
[84]
Tabaraki R, Abdi O, Yousefipour S. J. Fluoresc., 2017, 27(2): 651.

doi: 10.1007/s10895-016-1994-x pmid: 27975166
[85]
Li R S, Yuan B F, Liu J H, Liu M L, Gao P F, Li Y F, Li M, Huang C Z. J. Mater. Chem. B, 2017, 5(44): 8719.

doi: 10.1039/C7TB02356A
[86]
Mao M, Tian T, He Y, Ge Y L, Zhou J G, Song G W. Microchimica Acta, 2017, 185(1): 17.

doi: 10.1007/s00604-017-2541-4
[87]
Jahan S, Mansoor F, Naz S, Lei J P, Kanwal S. Anal. Chem., 2013, 85(21): 10232.

doi: 10.1021/ac401949k
[88]
Anilkumar P, Wang X, Cao L, Sahu S, Liu J H, Wang P, Korch K, Tackett K N, Parenzan A, Sun Y P. Nanoscale, 2011, 3(5): 2023.

doi: 10.1039/c0nr00962h
[89]
Mahmood A, Shi G S, Wang Z, Rao Z P, Xiao W, Xie X F, Sun J. J. Hazard. Mater., 2021, 401: 123402.

doi: 10.1016/j.jhazmat.2020.123402
[90]
Dutta M, Sarkar S, Ghosh T, Basak D. J. Phys. Chem. C, 2012, 116(38): 20127.

doi: 10.1021/jp302992k
[91]
Zhang X Y, Liu J K, Wang J D, Yang X H. Ind. Eng. Chem. Res., 2015, 54(6): 1766.

doi: 10.1021/ie504444w
[92]
Yu Y, Song M Y, Chen C L, Du Y Y, Li C G, Han Y, Yan F, Shi Z, Feng S H. ACS Nano, 2020, 14(8): 10688.

doi: 10.1021/acsnano.0c05332
[93]
Wu J R, Fu S C, Zhang X T, Wu C X, Wang A L, Li C, Shan G Y, Liu Y C. ACS Appl. Mater. Interfaces, 2020, 12(5): 6262.

doi: 10.1021/acsami.9b19403
[94]
Zhang L Y, Han Y L, Yang J J, Deng S L, Wang B Y. Appl. Surf. Sci., 2021, 546: 149089.

doi: 10.1016/j.apsusc.2021.149089
[95]
Li B, Fang Q, Si Y, Huang T, Huang W Q, Hu W Y, Pan A L, Fan X X, Huang G F. Chem. Eng. J., 2020, 397: 125470.

doi: 10.1016/j.cej.2020.125470
[96]
Mou Z G, Lu C, Yu K, Wu H, Zhang H, Sun J H, Zhu M S, Cynthia Goh M. Energy Technol., 2019, 7(3): 1800589.

doi: 10.1002/ente.201800589
[97]
Liu J L, Rojas-Andrade M D, Chata G, Peng Y, Roseman G, Lu J E, Millhauser G L, Saltikov C, Chen S W. Nanoscale, 2018, 10(1): 158.

doi: 10.1039/C7NR07367D
[98]
Nwaji N, Achadu O J, Nyokong T. New J. Chem., 2018, 42(8): 6040.

doi: 10.1039/C7NJ05196D
[99]
Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W. Adv. Mater., 2020, 32(4): 1906374.

doi: 10.1002/adma.201906374
[100]
Liu C J, Zhang P, Zhai X Y, Tian F, Li W C, Yang J H, Liu Y, Wang H B, Wang W, Liu W G. Biomaterials, 2012, 33(13): 3604.

doi: 10.1016/j.biomaterials.2012.01.052
[101]
Liu Y M, Wang P, Shiral Fernando K A, LeCroy G E, Maimaiti H, Harruff-Miller B A, Lewis W K, Bunker C E, Hou Z L, Sun Y P. J. Mater. Chem. C, 2016, 4(29): 6967.

doi: 10.1039/C6TC01932C
[102]
Ren J K, Stagi L, Innocenzi P. Prog. Solid State Chem., 2021, 62: 100295.

doi: 10.1016/j.progsolidstchem.2020.100295
[103]
Zhou Y Q, Sharma S, Peng Z L, Leblanc R. Polymers, 2017, 9(12): 67.

doi: 10.3390/polym9020067
[104]
Sachdev A, Matai I, Gopinath P. Colloids Surf. B: Biointerfaces, 2016, 141: 242.

doi: 10.1016/j.colsurfb.2016.01.043
[105]
Zhai L, Ren X M, Xu Q. Mater. Chem. Front., 2021, 5(11): 4272.

doi: 10.1039/D1QM00019E
[106]
Yan F Y, Zhang H, Yu N H, Sun Z H, Chen L. Sens. Actuat. B: Chem., 2021, 329: 129263.

doi: 10.1016/j.snb.2020.129263
[107]
Yang P, Zhu Z Q, Li X H, Zhang T, Zhang W, Chen M Z, Zhou X Y. J. Alloys Compd., 2020, 834: 154399.

doi: 10.1016/j.jallcom.2020.154399
[108]
Chen B, Feng J C. J. Phys. Chem. C, 2015, 119(14): 7865.

doi: 10.1021/acs.jpcc.5b00208
[109]
Bhunia S K, Nandi S, Shikler R, Jelinek R. Nanoscale, 2016, 8(6): 3400.

doi: 10.1039/C5NR08400H
[110]
Lee U, Heo E, Le T H, Lee H, Kim S, Lee S, Jo H, Yoon H. Chem. Eng. J., 2021, 405: 126988.

doi: 10.1016/j.cej.2020.126988
[111]
Yang F, Ren X Y, LeCroy G E, Song J Y, Wang P, Beckerle L, Bunker C E, Xiong Q W, Sun Y P. ACS Omega, 2018, 3(5): 5685.

doi: 10.1021/acsomega.8b00839 pmid: 31458768
[112]
Zhang H J, Zhang Q, Li M M, Kan B, Ni W, Wang Y C, Yang X, Du C X, Wan X J, Chen Y S. J. Mater. Chem. C, 2015, 3(48): 12403.

doi: 10.1039/C5TC02957K
[113]
Liu C Y, Chang K W, Guo W B, Li H, Shen L, Chen W Y, Yan D W. Appl. Phys. Lett., 2014, 105(7): 073306.

doi: 10.1063/1.4893994
[114]
Jian X, Li J G, Yang H M, Cao L L, Zhang E H, Liang Z H. Carbon, 2017, 114: 533.

doi: 10.1016/j.carbon.2016.12.033
[115]
Du X Y, Shen J C, Zhang J, Ling L T, Wang C F, Chen S. Polym. Chem., 2018, 9(4): 420.

doi: 10.1039/C7PY01969F
[116]
Ferrer-Ruiz A, Scharl T, Rodríguez-Pérez L, Cadranel A,Herranz M Á Martín N, Guldi D M. J. Am. Chem. Soc., 2020, 142(48): 20324.

doi: 10.1021/jacs.0c10132
[117]
Wang P, Liu J H, Gao H D, Hu Y, Hou X F, LeCroy G E, Bunker C E, Liu Y F, Sun Y P. J. Mater. Chem. C, 2017, 5(25): 6328.

doi: 10.1039/C7TC01574G
[118]
Liu J C, Wang N, Yu Y, Yan Y, Zhang H Y, Li J Y, Yu J H, Sci. Adv., 2017, 3: 8.
[119]
Yu X W, Liu K K, Zhang H Y, Wang B L, Yang G J, Li J Y, Yu J H. CCS Chem., 2021: 252.
[120]
Gao J P, Yao R X, Chen X H, Li H H, Zhang C, Zhang F Q, Zhang X M. Dalton Trans., 2021, 50(5): 1690.

doi: 10.1039/D0DT03048A
[121]
Wang Y F, Wang B L, Shi H Z, Zhang C H, Tao C Y, Li J Y. Inorg. Chem. Front., 2018, 5(11): 2739.

doi: 10.1039/C8QI00637G
[122]
He J L, Chen Y H, He Y L, Xu X K, Lei B F, Zhang H R, Zhuang J L, Hu C F, Liu Y L. Small, 2020, 16(49): 2005228.

doi: 10.1002/smll.202005228
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[3] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[4] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[5] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[6] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[7] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[8] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[9] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[10] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[11] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[12] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[13] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[14] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[15] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.