中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1124-1135 DOI: 10.7536/PC210604 Previous Articles   Next Articles

• Review •

The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment

Tianyu Zhou1,2,3, Yanbo Wang1,4, Yilin Zhao5, Hongji Li1,2,3, Chunbo Liu1,2,3(), Guangbo Che1,2,3()   

  1. 1. Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University,Changchun 130103, China
    2. College of Environmental Science and Engineering, Jilin Normal University,Siping 136000, China
    3. Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University,Siping 136000, China
    4. College of Chemistry, Jilin Normal University,Siping 136000, China
    5. Jilin Qingtian Environmental Protection Technology Processing Center Co., Ltd, Changchun 130519, China
  • Received: Revised: Online: Published:
  • Contact: Chunbo Liu, Guangbo Che
  • Supported by:
    National Natural Science Foundation of China(22004047); National Natural Science Foundation of China(21906062); Project of Department of Science & Technology of Jilin Province(20180623042TC); Project of Human Resources and Social Security Department of Jilin Province(2017956); Project of Ecological Environment Department of Jilin Province(2019-01-07); Project of Jilin Province Development and Reform Commission(2021C036-7); Project of Education Department of Jilin Province(JJKH20200427KJ)
Richhtml ( 21 ) PDF ( 280 ) Cited
Export

EndNote

Ris

BibTeX

Molecularly imprinted polymers (MIPs) are artificially constructed materials that mimic the recognition mechanism of antigens and antibodies. The construction of MIPs with excellent aqueous recognition capacity has been a long-term challenge in molecular imprinting fields. In recent years, aqueous recognition MIPs have attracted extensive attention from analytical chemists, materials scientists and environmentalists due to their excellent aqueous recognition and anti-matrix interference ability. In this article, we summarize the preparation and application of aqueous recognition MIPs in sample pretreatment in recent years. Firstly, the construction principles, advantages of MIPs and challenges of MIPs in aqueous recognition are briefly introduced. Secondly, sample pretreatment and its importance are introduced. Thirdly, combined with various emerging materials and preparation techniques of MIPs, the application of aqueous recognition MIPs in sample pretreatment is comprehensively summarized from the perspective of sample pretreatment techniques involving solid phase extraction, dispersive solid phase extraction, magnetic solid phase extraction, solid phase microextraction, pipette tip solid phase extraction and stir bar adsorption extraction. Meanwhile, the advantages of various methods in the analysis of water environment samples are discussed in combination with material properties and analytical parameters. Finally, the challenges and future development trends in this field are presented from perspectives of the construction of aqueous recognition MIPs and sample pretreatment.

Contents

1 Introduction

2 Sample pretreatment techniques

2.1 Solid phase extraction

2.2 Dispersive solid phase extraction

2.3 Magnetic solid phase extraction

2.4 Solid phase microextraction

2.5 Pipette tip solid phase extraction

2.6 Stir bar adsorption extraction

2.7 Membrane protected solid phase extraction

3 Conclusion and outlook

Fig. 1 The preparation scheme of MIPs
Table 1 The preparation of aqueous-recognition MIPs for samples pretreatment and corresponding analytical parameters
Preparation of aqueous-recognition MIPs Target Sample Analytical method LOD Linear range RSD% Re% ref
MIPs surface-grafted dense poly
(2hydroxyethyl methacrylate) brushes
Propranolol Undiluted bovine
serum
DSPE-HPLC-UV 0.002 μmol·L-1 0.01~100 μmol·L-1 2.3~3.7 85.2~97.4 18
Hydrophilic MIPs constructed by
natural polysaccharide
Cyclic adenosine
monophosphate
Winter jujube MSPE-HPLC-UV 5 ng·mg-1 0.02~3.0 mg· mL-1 - - 19
Phenolic condensation with hydrophilic small molecule Plant hormones Bean sprouts SPE-HPLC-UV 0.014 mg·kg-1 0.07~2.86 mg ·kg-1 <5.3 90.2~99.1 20
Radical polymerization Tyloside Milk SPE-UV 0.026 μg·mL-1 1~20 μg·mL-1 5 92 27
Non-covalent bulk polymerization Spiramycin Water and goat milk SPE-HPLC-UV 24.1 μg·kg-1 24~965 μg· kg-1 5 90 28
Bifunctional monomers of 1-allyl-3-
vinylimidazole chloride and 2-hydroxyethyl
methacrylate
Quinolone antibiotics Water, soil and pork SPE-HPLC-UV 0.11 μg·L-1 0.0000029~0.0000147
μg· L-1
9.65 87.3~102.5 31
Bulk polymerization Pirmica Water SPE-HPLC-MS/MS - - 5.07 76.8~96.4 32
Noncovalent imprinting Carbamazepine and
oxcarbazepine
Urine and blood SPE-HPLC-UV 0.488~0.515μg·L-1 1~500 μg·L-1 3 72~98 33
Noncovalent molecular imprinting Ceftazidime Serum and urine MISPE-HPLC-DAD 7 μg·L-1 25~800 μg·L-1 4.1 94~99 36
Combination of computational model and
molecular imprinting technique
Chenodeoxycholic acid Crude bile SPE-HPLC-UV - - - 94.1~96.1 38
Green organic solvent free strategy molecular imprinting technology Cardiovascular drugs Urine DSPE-HPLC-DAD 0.1~0.2 μg·L-1 0.3~100 μg· L-1 <4 90.5~102.5 45
RAFT strategy Fluoroquinolones Milk and river water DSPE-HPLC-UV 0.93~2.87 μg·L-1 - <5.3 80.7~105.9 46
RAFTPP strategy Bisphenol A Drinks DSPE-HPLC-DAD 3.75 nmol·L-1 - <6.08 80.7~108.2 47
One step swelling method Thiomycin Milk and river water MSPE-HPLC-UV 10.4 μg·L-1 - 2.8~3.8 96.5~101.1 55
One pot condensation of resorcinol,
melamine and formaldehyde
Triazines Environmental water MSPE-HPLC-MS/MS 0.02~0.07 μg·L-1 0.65~333.33 μg·L-1 ≤7 85~101 60
One pot condensation Triazines Environmental water MSPE-HPLC-MS/MS 0.007~0.068 μg·L-1 0.25~50 μg ·L-1 <9 88~100 61
Two step template immobilization strategy combined with surface imprinting Chlorophenols Environmental water MSPE-HPLC-UV 0.056~0.102 μg·L-1 0.5~100 μg· L-1 2.0~5.4 91~100 62
Methods of multicomponent copolymerization Tetracyclines Animal derived food SPME-HPLC-UV 0.38~0.72 μg·kg-1 5~1000 μg·L-1 3.1~7.9 77.3~104.4 69
Ccocaine imprinted polymer on the surface of magnetite nanoparticles Cocaine and its
metabolites
Plasma MSPE-HPLC-MS/MS 0.013~0.36 ng·L-1 - 1~10 91~102 70
Sol-gel Paraquat Environmental water, vegetable MIP-SB-HPLC-UV 8.2 ng·L-1 ,0.02~
0.85 mg·kg-1
100~10 000 ng·L-1 ≤7.6 70.0~96.1 82
Emulsion polymerization Triazines Tea MPSPE-HPLC-MS/MS 0.09~0.18 ng·g-1 0.5~250 ng·g-1 - 81~104 86
Bulk polymerization Synthetic cannabinoids Urine MIP-MPSPE-SPME-UHPLC-MS/MS 0.032~0.75 mg·L-1 5.0~20 g·L-1 <8 86~106 88
Bulk polymerization Indole-3-butyric acid Mung bean MIP-MPSPE-SPME-HPLC-FD 0.075 mg·kg-1 5~20 mg· L-1 <2.13 88.9~106.4 89
Fig. 2 Schematic diagram of SPE
Fig. 3 Schematic diagram of MIPs combined with DSPE
Fig. 4 Schematic diagram of MMIPs combined with MSPE
Fig. 5 Schematic illustration of the MIPs combined with MPSPE
Table 2 Comparison of advantages and disadvantages of various pretreatment methods
[1]
Arabi M, Ostovan A, Bagheri A R, Guo X T, Wang L Y, Li J H, Wang X Y, Li B W, Chen L X. Trac Trends Anal. Chem., 2020, 128: 115923.

doi: 10.1016/j.trac.2020.115923
[2]
Chen L X, Wang X Y, Lu W H, Wu X Q, Li J H. Chem. Soc. Rev., 2016, 45(8): 2137.

doi: 10.1039/C6CS00061D
[3]
Pan J M, Chen W, Ma Y, Pan G Q. Chem. Soc. Rev., 2018, 47(15): 5574.

doi: 10.1039/C7CS00854F
[4]
BelBruno J J. Chem. Rev., 2019, 119(1): 94.

doi: 10.1021/acs.chemrev.8b00171 pmid: 30246529
[5]
Xie X W, Ma X G, Guo L H. Prog. Chem., 2019, 31(12): 1749.
((谢晓纹, 马晓国, 郭丽慧. 化学进展, 2019, 31(12): 1749.)

doi: 10.7536/PC190529
[6]
Lu Z Y, Zhou G S, Song M S, Wang D D, Huo P W, Fan W Q, Dong H J, Tang H, Yan F, Xing G Z. J. Mater. Chem. A, 2019, 7(23): 13986.

doi: 10.1039/C9TA01863H
[7]
He F, Lu Z Y, Song M S, Liu X L, Tang H, Huo P W, Fan W Q, Dong H J, Wu X Y, Han S. Chem. Eng. J., 2019, 360: 750.

doi: 10.1016/j.cej.2018.12.034
[8]
Lu Z Y, Zhou G S, Song M S, Liu X L, Tang H, Dong H J, Huo P W, Yan F, Du P, Xing G Z. Appl. Catal. B: Environ., 2020, 268: 118433.

doi: 10.1016/j.apcatb.2019.118433
[9]
Bhogal S, Kaur K, Malik A K, Sonne C, Lee S S, Kim K H. Trac Trends Anal. Chem., 2020, 133: 116043.

doi: 10.1016/j.trac.2020.116043
[10]
Li H J, Li Y, Wang D D, Wang J F, Zhang J Y, Jiang W, Zhou T, Liu C B, Che G B. Sens. Actuat. B: Chem., 2021, 340: 129955.

doi: 10.1016/j.snb.2021.129955
[11]
Xu S X, Wang L S, Liu Z. Angew. Chem. Int. Ed., 2021, 60(8): 3858.

doi: 10.1002/anie.202005309
[12]
Villa C C, Sánchez L T, Valencia G A, Ahmed S, GutiÉrrez T J. Trends Food Sci. Technol., 2021, 111: 642.

doi: 10.1016/j.tifs.2021.03.003
[13]
Bi L B, Chen Z L, Li L H, Kang J, Zhao S X, Wang B Y, Yan P W, Li Y B, Zhang X X, Shen J M. J. Hazard. Mater., 2021, 407: 124759.

doi: 10.1016/j.jhazmat.2020.124759
[14]
Wan L B, Liu H, Huang C X, Shen X T. J. Mater. Chem. A, 2020, 8(48): 25931.

doi: 10.1039/D0TA09873F
[15]
Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J H, Chen L X. ACS Appl. Mater. Interfaces, 2018, 10(4): 4140.

doi: 10.1021/acsami.7b17500
[16]
Zhou T, Che G B, Ding L, Sun D S, Li Y H. Trac Trends Anal. Chem., 2019, 121: 115678.

doi: 10.1016/j.trac.2019.115678
[17]
Zhou T, Ding L, Che G B, Jiang W, Sang L. Trac Trends Anal. Chem., 2019, 114: 11.

doi: 10.1016/j.trac.2019.02.028
[18]
Tu X Z, Shi X H, Zhao M, Zhang H Q. Talanta, 2021, 226: 122142.

doi: 10.1016/j.talanta.2021.122142
[19]
Li F, Li X X, Su J, Li Y J, He X W, Chen L X, Zhang Y K. J. Sep. Sci., 2021, 44(10): 2131.

doi: 10.1002/jssc.202001095
[20]
Wang M W, Liang S R, Bai L G, Qiao F X, Yan H Y. Anal. Chimica Acta, 2019, 1064: 47.

doi: 10.1016/j.aca.2019.03.025
[21]
Kanao E, Tsuchiya Y, Tanaka K, Masuda Y, Tanigawa T, Naito T, Sano T, Kubo T, Otsuka K. ACS Appl. Polym. Mater., 2021, 3(1): 226.

doi: 10.1021/acsapm.0c01062
[22]
Shao H K, Cherif S D, Wang J C, Wang Q Q, Jiang Z J. Curr. Anal. Chem., 2021, 17(3): 408.

doi: 10.2174/1573411016999200518084012
[23]
Lu X, Zheng C, Zhang H. Eur. Polym. J., 2019, 115: 12.

doi: 10.1016/j.eurpolymj.2019.02.044
[24]
Zhang H Q. Polymer, 2014, 55(3): 699.

doi: 10.1016/j.polymer.2013.12.064
[25]
Li W K, Chen J, Zhang H X, Shi Y P. Talanta, 2017, 168: 136.

doi: 10.1016/j.talanta.2017.03.034
[26]
Mpupa A, Dinc M, Mizaikoff B, Nomngongo P N. Processes, 2021, 9(2): 186.

doi: 10.3390/pr9020186
[27]
Garza Montelongo E, Sánchez Anguiano M G, Blanco Jerez L M, Pereira Ulloa E D, Rivas Quiroz B L, Elizondo Martínez P. J. Appl. Polym. Sci., 2020, 137(40): 49204.

doi: 10.1002/app.49204
[28]
García Mayor M A, Paniagua González G, Garcinuño Martínez R M, Fernández Hernando P, Durand Alegría J S. Food Chem., 2017, 221: 721.

doi: S0308-8146(16)31963-X pmid: 27979264
[29]
Ji W H, Zhang M M, Wang D J, Wang X, Liu J H, Huang L Q. J. Chromatogr. A, 2015, 1425: 88.

doi: 10.1016/j.chroma.2015.11.053
[30]
Ji W H, Xie H K, Zhou J, Wang X, Ma X L, Huang L Q. J. Chromatogr. B, 2016, 1008: 225.

doi: 10.1016/j.jchromb.2015.11.053
[31]
Zhu G F, Cheng G H, Wang P Y, Li W W, Wang Y C, Fan J. Talanta, 2019, 200: 307.

doi: 10.1016/j.talanta.2019.03.070
[32]
Zhou T Y, Ding J, Wang Q, Xu Y, Wang B, Zhao L, Ding H, Chen Y H, Ding L. Talanta, 2018, 179: 734.

doi: 10.1016/j.talanta.2017.12.003
[33]
Mohiuddin I, Malik A K, Aulakh J S. J. Anal. Chem., 2020, 75(6): 717.

doi: 10.1134/S1061934820060143
[34]
Zhou T, Hou J, Yuan D, Li H Y, Zhang P, Li Y, Ding H, Chen Y H, Ding L. RSC Adv., 2016, 6(101): 98663.

doi: 10.1039/C6RA20698K
[35]
Fathi Til R, Mohammadi R, Alizadeh-Khaledabad M, Wilson L D, Pirsa S. J. Polym. Res., 2020, 27(8): 1.

doi: 10.1007/s10965-019-1979-y
[36]
Parisa J, Ameneh Porgham D J. Anal. Chem., 2020, 75: 1108.
[37]
Saad E M, El Gohary N A, Abdel-Halim M, Handoussa H, Mohamed El Nashar R, Mizaikoff B. Food Chem., 2021, 335: 127644.

doi: 10.1016/j.foodchem.2020.127644
[38]
Yu X, Zeng H N, Wan J F, Cao X J. J. Chromatogr. A, 2020, 1609: 460490.

doi: 10.1016/j.chroma.2019.460490
[39]
Sun Y, Gu Y P, Jiang Y. J. Hazard. Mater., 2021, 412: 125271.

doi: 10.1016/j.jhazmat.2021.125271
[40]
Büyüktiryaki S, Keçili R, Hussain C M. Trac Trends Anal. Chem., 2020, 127: 115893.

doi: 10.1016/j.trac.2020.115893
[41]
Qiao F X, Row K H, Wang M G. J. Chromatogr. B, 2014, 957: 84.

doi: 10.1016/j.jchromb.2014.02.041
[42]
Zhou C Y, Li H, Zhou H, Wang H, Yang P J, Zhong S A. J. Sep. Science, 2015, 38(8): 1365.

doi: 10.1002/jssc.201401469
[43]
Liu A P, Anfossi L, Shen L, Li C, Wang X H. Trends Food Sci. Technol., 2018, 71: 181.

doi: 10.1016/j.tifs.2017.11.014
[44]
Tang W Y, Row K H. J. Pharm. Biomed. Anal., 2018, 160: 386.

doi: 10.1016/j.jpba.2018.08.019
[45]
Abbasi S, Haeri S A, Naghipour A, Sajjadifar S. Microchem. J., 2020, 157: 104874.

doi: 10.1016/j.microc.2020.104874
[46]
Li J M, Zhou Y Q, Sun Z A, Cai T P, Wang X X, Zhao S W, Liu H C, Gong B L. J. Chromatogr. A, 2020, 1626: 461364.

doi: 10.1016/j.chroma.2020.461364
[47]
Xiong H H, Guo L, Mao X J, Tan T, Wan H, Wan Y Q. Food Chem., 2020, 331: 127311.

doi: 10.1016/j.foodchem.2020.127311
[48]
Gholami H, Ghaedi M, Ostovan A, Arabi M, Bagheri A R. Microchimica Acta, 2019, 186(11): 1.

doi: 10.1007/s00604-018-3127-5
[49]
Yu X R, Zhang R R, Liu H, Zhang Z M, Shi X Z, Sun A L, Chen J. Food Chem., 2021, 347: 129030.

doi: 10.1016/j.foodchem.2021.129030
[50]
Corps Ricardo A I, Abujaber F, Guzmán Bernardo F J, Rodríguez Martín-Doimeadios R C, Ríos Á. Trends Environ. Anal. Chem., 2020, 27: e00097.

doi: 10.1016/j.teac.2020.e00097
[51]
Li W K, Shi Y P. Trac Trends Anal. Chem., 2019, 118: 652.

doi: 10.1016/j.trac.2019.06.039
[52]
Wang Y, Zhao W C, Tian X M, Song H J, Gao R X, Tang X S, Zhang X J, Hao Y, Tang Y H. Chem. Eng. J., 2020, 392: 123716.

doi: 10.1016/j.cej.2019.123716
[53]
Zhao Q. Doctoral Dissertation of Jilin University, 2015.
(赵琪. 吉林大学博士论文, 2015.).
[54]
Ji W H, Sun R H, Duan W J, Wang X, Wang T, Mu Y, Guo L P. Talanta, 2017, 170: 111.

doi: 10.1016/j.talanta.2017.04.005
[55]
Zhang S, Liu H C, Cai T P, Zhou Y Q, Li J M, Wang X X, Zhao S W, Bo C M, Gong B L. RSC Adv., 2021, 11(12): 6869.

doi: 10.1039/D0RA10268G
[56]
Zhang H P, Song H J, Tian X M, Wang Y, Hao Y, Wang W T, Gao R X, Yang W, Ke Y S, Tang Y H. Microchimica Acta, 2021, 188(1): 1.

doi: 10.1007/s00604-020-04655-3
[57]
Wang Y, Guo K C, Tian X M, Zhao W C, Kai S, Gao R X. Chinese Journal of Analytical Chemistry, 2020, 48: 1375.
(王悦, 郭恺辰, 田雪蒙, 赵文昌, 凯迪日耶·色提瓦力迪, 高瑞霞. 分析化学, 2020, 48: 1375.).
[58]
Tian X M, Gao R X, Wang Y, He Y L, Hussain S, Heinlein J, Tian J H, Pfefferle L D, Tang X S, Tang Y H. Green Chem., 2021, 23(10): 3623.

doi: 10.1039/D1GC00675D
[59]
Zhou T, Zhang F S, Liu H C, Li H Y, Xu Y, Zhao L, Ding J, Ding L, Li Y. J. Chromatogr. A, 2018, 1565: 29.

doi: 10.1016/j.chroma.2018.06.032
[60]
Zhou T, Ding J, Ni L, Yu J, Li H Y, Ding H, Chen Y H, Ding L. J. Chromatogr. A, 2017, 1497: 38.

doi: 10.1016/j.chroma.2017.03.069
[61]
Zhou T, Ding J, He Z Y, Li J Y, Liang Z H, Li C Y, Li Y, Chen Y H, Ding L. Chem. Eng. J., 2018, 334: 2293.

doi: 10.1016/j.cej.2017.11.185
[62]
Zhou T, Wang Y B, Li T T, Li H J, Yang C W, Sun D S, Wang D D, Liu C B, Che G B. Chem. Eng. J., 2021, 420: 129904.

doi: 10.1016/j.cej.2021.129904
[63]
Liu S Q, Huang Y Q, Qian C Y, Xiang Z M, Ouyang G F. Trac Trends Anal. Chem., 2020, 128: 115916.

doi: 10.1016/j.trac.2020.115916
[64]
Zheng J, Huang J L, Yang Q, Ni C Y, Xie X T, Shi Y R, Sun J F, Zhu F, Ouyang G F. Trac Trends Anal. Chem., 2018, 108: 135.

doi: 10.1016/j.trac.2018.08.021
[65]
Souza I D, Oliveira I G C, Queiroz M E C. Anal. Chimica Acta, 2021, 1165: 238110.

doi: 10.1016/j.aca.2020.11.042
[66]
Li J W, Wang Y L, Yan S, Li X J, Pan S Y. Food Chem., 2016, 192: 260.

doi: 10.1016/j.foodchem.2015.07.018
[67]
Li G Z, Row K H. Polymers, 2019, 11(9): 1434.

doi: 10.3390/polym11091434
[68]
Lu X, Sun J D, Sun X L. Trac Trends Anal. Chem., 2020, 127: 115882.

doi: 10.1016/j.trac.2020.115882
[69]
Lu Y, Lü L, He J X, Zhao T. J. Sep. Sci., 2020, 43(11): 2172.

doi: 10.1002/jssc.201901285
[70]
Sánchez-González J, Barreiro-Grille T, Cabarcos P, Tabernero M J, Bermejo-Barrera P, Moreda-Piñeiro A. Microchem. J., 2016, 127: 206.

doi: 10.1016/j.microc.2016.03.014
[71]
Seidi S, Tajik M, Baharfar M, Rezazadeh M. Trac Trends Anal. Chem., 2019, 118: 810.

doi: 10.1016/j.trac.2019.06.036
[72]
Sun H L, Feng J J, Han S, Ji X P, Li C Y, Feng J Q, Sun M. Microchimica Acta, 2021, 188(6): 1.

doi: 10.1007/s00604-020-04655-3
[73]
Arabi M, Ghaedi M, Ostovan A, Wang S B. J. Colloid Interface Sci., 2016, 480: 232.

doi: 10.1016/j.jcis.2016.07.017
[74]
Wang M Y, Chang X C, Wu X Y, Yan H Y, Qiao F X. J. Chromatogr. A, 2016, 1458: 9.

doi: 10.1016/j.chroma.2016.06.047
[75]
Cao J K, Yan H Y, Shen S G, Bai L G, Liu H Y, Qiao F X. Anal. Chimica Acta, 2016, 943: 136.

doi: 10.1016/j.aca.2016.09.016
[76]
Yang C, Lv T, Yan H Y, Wu G C, Li H N. J. Agric. Food Chem., 2015, 63(43): 9650.

doi: 10.1021/acs.jafc.5b02762
[77]
Wu B B, Muhammad T, Aihebaier S, Karim K, Hu Y T, Piletsky S. Anal. Methods, 2020, 12(40): 4913.

doi: 10.1039/D0AY01587C
[78]
Fan W Y, He M, You L N, Zhu X W, Chen B B, Hu B. J. Chromatogr. A, 2016, 1443: 1.

doi: 10.1016/j.chroma.2016.03.017
[79]
Liu Y J, Liu Z M, Xu Z G, Li G K. Progress in Chemistry, 2020, 32: 1334.
(刘育坚, 刘智敏, 许志刚, 李攻科. 化学进展, 2020, 32: 1334.).

doi: 10.7536/PC200101
[80]
Hasan C K, Ghiasvand A, Lewis T W, Nesterenko P N, Paull B. Anal. Chimica Acta, 2020, 1139: 222.

doi: 10.1016/j.aca.2020.08.021
[81]
Gomez-Caballero A, Diaz-Diaz G, Bengoetxea O, Quintela A, Unceta N, Goicolea M A, Barrio R J. J. Chromatogr. A, 2016, 1451: 23.

doi: S0021-9673(16)30593-3 pmid: 27207580
[82]
Yao J M, Zhang L X, Ran J F, Wang S S, Dong N. Microchimica Acta, 2020, 187(10): 1.

doi: 10.1007/s00604-019-3921-8
[83]
Carasek E, Merib J. Anal. Chimica Acta, 2015, 880: 8.

doi: 10.1016/j.aca.2015.02.049
[84]
Sajid M. Anal. Chimica Acta, 2017, 965: 36.

doi: 10.1016/j.aca.2017.02.023
[85]
Martín-Esteban A. Trac Trends Anal. Chem., 2021, 138: 116236.

doi: 10.1016/j.trac.2021.116236
[86]
Zhou T, Zhao Q, Zhao L, Liu H C, Wang B, Huang N, Ding J, Ding L, Li Y. Anal. Bioanal. Chem., 2018, 410(21): 5173.

doi: 10.1007/s00216-018-1171-y
[87]
Sánchez-González J, Odoardi S, Bermejo A M, Bermejo-Barrera P, Romolo F S, Moreda-Piñeiro A, Strano-Rossi S. Drug Test. Anal., 2019, 11(1): 33.

doi: 10.1002/dta.2448 pmid: 29962002
[88]
Sánchez-González J, Odoardi S, Bermejo A M, Bermejo-Barrera P, Romolo F S, Moreda-Piñeiro A, Strano-Rossi S. J. Chromatogr. A, 2018, 1550: 8.

doi: S0021-9673(18)30364-9 pmid: 29605179
[89]
Aihebaier S, Muhammad T, Wei A X, Mamat A, Abuduaini M, Pataer P, Yigaimu A, Yimit A. ACS Omega, 2019, 4(16): 16789.

doi: 10.1021/acsomega.9b01550
[1] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[2] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[3] Zhihua Song, Shenghong Li, Gangqiang Yang, Na Zhou, Lingxin Chen. Sample Pretreatment, Analysis and Detection of Ginsenosides [J]. Progress in Chemistry, 2020, 32(2/3): 239-248.
[4] Xiaowen Xie, Xiaoguo Ma, Lihui Guo. Molecularly Imprinting Polymers for Detection and Removal of Environmental Endocrine Disruptors [J]. Progress in Chemistry, 2019, 31(12): 1749-1758.
[5] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[6] Jing Yuan, Fangfang Liao, Yani Guo, Liyun Liang. Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation [J]. Progress in Chemistry, 2019, 31(1): 144-155.
[7] Xiao Li, Ling Ai, Jing Zhang, Xianpeng Zhang, Yuehui Lu, Weijie Song. Transparent Antifogging Materials [J]. Progress in Chemistry, 2018, 30(6): 864-871.
[8] Yang Wolong, Ji Xianbing, Xu Jinliang. Superhydrophilic Surfaces: From Nature to Biomimetics to Application [J]. Progress in Chemistry, 2016, 28(6): 763-772.
[9] Wang Yali, Li Zhen, Liu Zhihong. Water Solubilization of Upconversion Nanoparticles [J]. Progress in Chemistry, 2016, 28(5): 617-627.
[10] Ming Weina, Wang Xiaoyan, Ming Yongfei, Li Jinhua, Chen Lingxin. Preparation and Applications of Core-Shell Molecularly Imprinted Polymers [J]. Progress in Chemistry, 2016, 28(4): 552-563.
[11] Wang Ruiying, Zhang Chaoyan, Wang Shuping, Zhou Youya. Synthesis and Application of Magnetic Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(7): 945-952.
[12] Zhan Yuanyuan, Liu Yuyun, Lv Jiuan, Zhao Yong, Yu Yanlei. Photoresponsive Surfaces with Controllable Wettability [J]. Progress in Chemistry, 2015, 27(2/3): 157-167.
[13] Shen Aijin, Guo Zhimou, Liang Xinmiao. Development and Application of Hydrophilic Interaction Liquid Chromatographic Stationary Phases [J]. Progress in Chemistry, 2014, 26(01): 10-18.
[14] Xu Zhigang, Liu Zhimin, Yang Baomin, Zi Futing. Development of Dummy Template Molecularly Imprinted Techniques in Sample Pretreatment [J]. Progress in Chemistry, 2012, 24(08): 1592-1598.
[15] Si Fangfang, Zhang Liang, Zhao Ning, Chen Li, Xu Jian. Superhydrophilic Surfaces: Progress in Preparation Method and Application [J]. Progress in Chemistry, 2011, 23(9): 1831-1840.