中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Application of Novel Carbon Nanomaterials to Electrochemistry

Feng Xiaomiao1*, Li Ruimei1, Yang Xiaoyan2, Hou Wenhua2*   

  1. 1. Institute of Advanced Materials, School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
    2. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
PDF ( 1721 ) Cited
Export

EndNote

Ris

BibTeX

Recently, carbon nanomaterials have received great interest because of their unique mechanical, electrical, and chemical properties. Especially, some kinds of novel carbon materials including carbon nanofibers, carbon nanotubes, and graphene with large specific area, high conductivity, and good biocompatibility become research focus. These novel carbon nanomaterials have been applied in many fields due to their unique physical and chemical properties. Especially, carbon nanomaterials have shown their unique advantages in electrochemical field. This paper mainly review the application of carbon nanomaterials to electrochemistry including biosensor, supercapacitor, and fuel cell. Carbon nanomaterials have an important role in bioelectrochemical catalytic reaction due to that carbon nanomaterials have high specific area and excellent biocompatibility. Therefore, it can improve the electron transfer rate of enzyme. The biosensors based carbon nanomaterials have high sensitivity, broad linear range, and good stability and reproducibility. Carbon nanomaterial is the earlist and the best one in the supercapacitor electrode materials. The supercapacitor prepared by carbon nanomaterials has good cycle stability. The specific capacitance can be enhanced through the combination of carbon nanomaterials and pseudo-capacitors electrode materials. Carbon nanomaterials can act as the catalysts of fuel cell as well. It can improve the energy density, fuel utilization, and the ability to resist poisoning. Contents
1 Introduction
2 The application of carbon nanomaterials to electrochemical biosensor
2.1 The application of carbon nanotube and its composite to electrochemical biosensor
2.2 The application of carbon nanofiber to electrochemical biosensor
2.3 The application of graphene to electrochemical biosensor
3 The application of carbon nanomaterials to electrochemical supercapacitor
3.1 Supercapacitor of carbon nanomaterials
3.2 Supercapacitor of carbon nanocomposites
4 The application of carbon nanomaterials to fuel cell
5 Conclusion and outlook

CLC Number: 

[1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985, 318: 162-163
[2] Iijima S. Nature, 1991, 354: 56-58
[3] Ugarte D. Nature, 1992, 359: 707-709
[4] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103: 7743-7746
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[6] Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25: 1504-1508
[7] Chandra S, Bag S, Bhar R, Pramanik P. J. Nanopart. Res., 2011, 13: 2769-2777
[8] Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N M D. Carbon, 2005, 43: 153-160
[9] Zhao H Y, Xu X X, Zhang J X, Zheng Y F. Bioelectrochem., 2010, 78: 124-129
[10] McKnight T E, Melechko A V, Guillorn M A, Merkulov V I, Doktycz M J, Culbertson C T, Jacobson S C, Lowndes D H, Simpson M L. J. Phys. Chem. B., 2003, 107: 10722-10728
[11] Lim S, Yoon S H, Mochida I. J. Phys. Chem. B, 2004, 108: 1533-1536
[12] Hou H, Ge J J, Zeng J, Li Q, Reneker D H, Greiner A, Cheng S Z D. Chem. Mater., 2005, 17: 967-973
[13] Wang Z P, Yusop Z, Ghosh P, Hayashi Y, Tanemura M. Appl. Surf. Sci., 2011, 257: 3168-3173
[14] Wei D, Ivaska A. Chem. Anal., 2006, 51: 839-852
[15] Britto P J, Santhanam K S V, Ajayan P M. Bioelectrochem. Bioenerg., 1996, 41: 121-125
[16] Timur S, Anik U, Odaci D, Gorton L. Electrochem. Commun., 2007, 9: 1810-1815
[17] Zhao H Y, Xu X X, Zhang J X, Zheng W, Zheng Y F. Bioelectrochem., 2010, 78: 124-129
[18] Suresh S, Gupta A K, Rao V K, kumar O, Vijayaraghavan R. Talanta, 2010, 81: 703-708
[19] Zhou H, Zhang Z, Yu P, Su L, Ohsaka T, Mao L. Langmuir, 2010, 26: 6028-6032
[20] Deng S, Jian G, Lei J, Hu Z, Ju H. Biosens. Bioelectron., 2009, 25: 373-377
[21] Tang Y, Allen B L, Kauffman D R, Star A. J. Am. Chem. Soc., 2009, 131: 13200-13201
[22] Luo D, Wu L, Zhi J. ACS Nano, 2009, 3: 2121-2128
[23] Zengin H, Zhou W, Jin J, Czerw R, Smith J D W, Echegoyen L, Carroll D L, Foulger S H, Ballato J. Adv. Mater., 2002, 14: 1480-1483
[24] Yuan R, Zhong H A, Chai Y Q, Li W J, Zhong X, Zhang Y. Talanta, 2011, 85: 104-111
[25] Du D, Ye X X, Cai J, Liu J A, Zhang A D. Biosens. Bioelectron., 2010, 25: 2503-2508
[26] Dong J Q, Shen Q. J. Polym. Sci. Pol. Phys., 2009, 47: 2036-2046
[27] Liu J, Tian S, Knoll W. Langmuir, 2005, 21: 5596-5599
[28] Dequaire M, Degrand C, Limoges B. Anal. Chem., 2000, 72: 5521-5528
[29] Rakhi R B, Sethupathi K, Ramaprabhu S. J. Phys. Chem. B, 2009, 113: 3190-3194
[30] Yao Y L, Shiu K K. Electroanalysis, 2008, 20: 1542-1548
[31] Claussen J C, Franklin A D, Haque A, Porterfield D M, Fisher T S. ACS Nano, 2009, 3: 37-44
[32] Rajesh S, Kanugula A K, Bhargava K, Ilavazhagan G, Kotamraju S, Karunakaran C. Biosens. Bioelectron., 2010, 26: 689-695
[33] Xu L, Zhu Y, Yang X, Li C. Mater. Sci. Eng. C, 2009, 29: 1306-1310
[34] Vamvakaki V, Tsagaraki K, Chaniotakis N. Anal. Chem., 2006, 78: 5538-5542
[35] Wu Y, Mao X, Cui X, Zhu L. Sens. Actuators B, 2010, 145: 749-755
[36] Sheng Q L, Zheng J B, Shang guan X D, Lin W H, Li Y Y, Liua R X. Electrochimica Acta, 2010, 55: 3185-3191
[37] Zhou M, Zhai Y, Dong S. Anal. Chem., 2009, 81: 5603-5613
[38] Zhou K, Zhu Y, Yang X, Luo J, Li C, Luan S. Electrochimica Acta, 2010, 55: 3055-3060
[39] Shan C, Yang H, Han D, Zhang Q, Ivaskac A, Li N. Biosens. Bioelectron., 2010, 25: 1504-1508
[40] Helmholtz H. Annalen. Der. Physik., 1879, 243: 337-382
[41] Sprong M, Becker H E, Schothorst P F, Swaab H, Ziermans T B, Dingemans P M, Linszen D, Engeland H. Schizophrenia Res., 2008, 99: 38-47
[42] Malak-Polaczyk A, Vix-Guterl C, Frackowiak E. Energy Fuels, 2010, 24: 3346-3351
[43] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8: 3498-3502
[44] Gourdin G, Meehan A, Jiang T, Smith P, Qu D. J. Power Sources, 2011, 196: 523-529
[45] Yang M M, Cheng B, Song H H, Chen X H. Electrochim. Acta, 2010, 55: 7021-7027
[46] Yoo J J, Balakrishnan K, Huang J S, Meunier V, Sumpter B G, Srivastava A, Conway M, Reddy A L M, Yu J, Vajtai R, Ajayan P M. Nano Lett., 2011, 11: 1423-1427
[47] Lufrano F, Staiti P. Int. J. Electrochem. Sci., 2010, 5: 903-916
[48] Xu B, Wu F, Chen R J, Cao G P, Chen S, Yang Y S. J. Power Sources, 2010, 195: 2118-2124
[49] An H F, Wang Y, Wang X Y, Zheng L P, Yi L H, Bai L, Zhang X Y. J. Power Sources, 2010, 195: 6964-6969
[50] Lee K Y, Lin Y S, Chen Y M, Huang Y S. Physica E-Low-Dimensional Systems & Nanostructures, 2010, 42: 2799-2803
[51] Zhang L L, Zhou R, Zhao X S. J. Mater. Chem., 2010, 20: 5983-5992
[52] Si W J, Sun F J, Yuan X, Zhou J, Xing W, Zhuo S P. Chin. J. Inorg. Chem., 2011, 27: 219-225
[53] Wu X L, Wang W, Guo Y G, Wan L J. J. Nanosci. Nanotechnol., 2011, 11: 1897-1904
[54] Hantel M M, Kaspar T, Nesper R, Wokaun A, Kotz R. Electrochem. Commun., 2011, 13: 90-92
[55] Wang H B, Liu Z H, Chen X, Han P X, Dong S M, Cui G L. J. Solid State Electrochem., 2011, 15: 1179-1184
[56] Aboutalebi S H, Chidembo A T, Salari M, Konstantinov K, Wexler D, Liu H K, Dou S X. Energy Environ. Sci., 2011, 4: 1855-1865
[57] Lu W, Hartman R, Qu L, Dai L. J. Phys. Chem. Lett., 2011, 2: 655-660
[58] Kim J Y, Kim K H, Park S H, Kim K B. Electrochim. Acta, 2010, 55: 8056-8061
[59] Kiamahalleh M V, Sata S A, Buniran S, Zein S H S. Curr. Nanosci., 2010, 6: 553-559
[60] Xia X H, Tu J P, Wang X L, Gu C D, Zhao X B. J. Mater. Chem., 2011, 21: 671-679
[61] Wang Y, Guo C X, Liu J H, Chen T, Yang H B, Li C M. Dalton Trans., 2011, 40: 6388-6391
[62] Zheng J P, Jow T R. J. Power Sources, 1996, 62: 155-159
[63] Wu Z S, Wang D W, Ren W, Zhao J, Zhou G, Li F, Chen H M. Adv. Funct. Mater., 2010, 20: 3595-3602
[64] Bi R R, Wu X L, Cao F F, Jiang L Y, Guo Y G, Wan L J. J. Phys. Chem. C, 2010, 114: 2448-2451
[65] Amade R, Jover E, Caglar B, Mutlu T, Bertran E. J. Power Sources, 2011, 196: 5779-5783
[66] Li G R, Feng Z P, Ou Y N, Wu D C, Fu R W, Tong Y X. Langmuir, 2010, 26: 2209-2213
[67] Liang Y Y, Schwab M G, Zhi L J, Mugnaioli E, Kolb U, Feng X L, Mullen K. J. Am. Chem. Soc., 2010, 132: 15030-15037
[68] Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris J P. J. Power Sources, 1994, 47: 89-107
[69] Wang H L, Hao Q L, Yang X J, Lu L D, Wang X. Nanoscale, 2010, 2: 2164-2170
[70] Horng Y Y, Lu Y C, Hsu Y K, Chen C C, Chen L C, Chen K H. J. Power Sources, 2010, 195: 4418-4422
[71] Han Y Q, Hao L A, Zhang X G. Synth. Met., 2010, 160: 2336-2340
[72] Han Y Q, Ding B, Tong H, Zhang X G. J. Appl. Polym. Sci., 2011, 121: 892-898
[73] Yan J, Wei T, Fan Z J, Qian W Z, Zhang M L, Shen X D, Wei F. J. Power Sources, 2010, 195: 3041-3045
[74] Wang H L, Hao Q L, Yang X J, Lu L D, Wang X. ACS Appl. Mater. Interfaces, 2010, 2: 821-828
[75] Zheng L P, Wang X Y, An H F, Yi L H, Bai L. J. Solid State Electrochem., 2011, 15: 675-681
[76] Barnakov C N, Kozlov A P, Romanenko A I, Vasenin N T, Anufrienko V F, Ismagilov Z R. Kinet. Catal., 2010, 51: 312-317
[77] Gupta G, Slanac D A, Kumar P, Wiggins-Camacho J D, Kim J, Ryoo R, Stevenson K J, Johnston K P. J. Phys. Chem. C, 2010, 114: 10796-10805
[78] Zhou M, Guo J, Guo L, Bai J. Anal. Chem., 2008, 80: 4642-4650
[79] Chen W F, Wang J P, Hsu C H, Jhan J Y, Teng H S, Kuo P L. J. Phys. Chem. C, 2010, 114: 6976-6982
[80] Qu B, Xu Y T, Lin S J, Zheng Y F, Dai L Z. Synth. Met., 2010, 160: 732-742
[81] Kakati N, Maiti J, Jee S H, Lee S H, Yoon Y S. J. Alloys Compd., 2011, 509: 5617-5622
[82] Jha N, Jafri R I, Rajalakshmi N, Ramaprabhu S. Int. J. Hydrogen Energy, 2011, 36: 7284-7290
[83] Guo S J, Dong S J, Wang E W. ACS Nano, 2010, 4: 547-555
[84] Sebastian D, Calderon J C, Gonzalez-Exposito J A, Pastor E, Martinez-Huerta M V, Suelves I, Moliner R, Lazaro M J. Int. J. Hydrogen Energy, 2010, 35: 9934-9942
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[3] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[6] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[7] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[8] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[9] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[10] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[11] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[12] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[13] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[14] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[15] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.