中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1159-1174 DOI: 10.7536/PC200718 Previous Articles   Next Articles

• Review •

Application of Electrospun Fibers in Supercapacitors

Xiangye Li1, Tianjiao Bai1, Xin Weng1, Bing Zhang1, Zhenzhen Wang1, Tieshi He1,2,*()   

  1. 1 School of Chemistry & Materials Engineering, Bohai University, Jinzhou 121013, China
    2 Liaoning Engineering Technology Center of Supercapacitor, Jinzhou 121000, China
  • Received: Revised: Online: Published:
  • Contact: Tieshi He
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key R&D Program of China(2020YFF0413818); Natural Science Foundation of Liaoning Province, China(0518XN011); Natural Science Foundation of Liaoning Province, China(0519BS014); National Natural Science Foundation of China(21671025); National Natural Science Foundation of China(21471021); Innovation and Entrepreneurship Training Project of Liaoning Province, China(202010167019); Innovation and Entrepreneurship Training Project of Liaoning Province, China(S202010167045); Innovation and Entrepreneurship Training Project of Liaoning Province, China(S202010167046)
Richhtml ( 64 ) PDF ( 1326 ) Cited
Export

EndNote

Ris

BibTeX

The increasing demand for high-performance supercapacitor has promoted the rapid development of separators and electrode materials. Recently, electrospun nanofibers have been widely used as separators and electrode materials of supercapacitor, which is due to the high porosity, high electrochemical activity, large specific surface area and good structural stability. In this survey, the recent research progress in separator membranes and electrode materials of supercapacitor is reviewed. The discussion focuses on obtaining electrode materials for supercapacitor by electrospinning and other post-processing methods, including carbon nanofibers, carbon-based composite nanofibers, conductive polymer-based composite and metal oxide nanofibers. These investigation demonstrate that pore structure construction, activation treatment, and heteroatom doping can improve the specific surface area, electrochemical activity, wettability, and graphitization degree of carbon nanofibers, furthermore the electrochemical properties of electrode materials are enhanced. Moreover, combining carbon nanofibers with metal oxides, conductive polymers via blending, chemical deposition, electrochemical deposition, etc., can also improve capacitance, rate performance, and cycling stabilities of electrode materials. In addition, the existing problems of the regarding studies are pointed out. Finally, the future developments of electrospun nanofiber materials in supercapacitor is prospected.

Contents

1 Introduction

2 Separators

3 Electrode materials

3.1 Electrode materials of electric double layer capacitors

3.2 Electrode materials of pseudocapacitors

4 Conclusion and outlook

Fig. 1 SEM images of electrospun NFs and CNFs, corresponding cross-section of CNFs and the diameter distribution of the electrospun nanofibers[56]
Fig. 2 (a)Schematic illustration of the synthesis process for CNFs, (b)SEM images of CNFs, (c)specific capacitance of CNFs at different current densities, (d)specific capacitances at 1 A/g current density[63]
Fig. 3 (a) CV curves at different scan rates; (b) charge-discharge curves at different current densities; (c) Nyquist plot; (d) cycling stability at a current density of 6 A/g over 10 000 cycles[80]
Fig. 4 (a) Schematic illustration of the production processes for supercapacitor based on the N-S co-doped activated lignin-based carbon nanofibers, (b) SEM images of CNFs prepared with 0.30 wt% GNs, (c) Nitrogen adsorption-desorption isotherms, (d) cycling stability of the symmetric supercapacitor devices[99]
Fig. 5 (a) Schematic illustration, SEM and TEM images of Co3O4/CNF nanocomposite, (b) Specific capacitance at current density for different electrode materials, (c) cyclic performance of Co3O4/CNFs (4∶3) at 2 A/g Charge/discharge profiles[140]
Fig. 6 (a) cyclic performance of PANI-CNT before and after cycling for 1000 cycles; (b) Specific capacitance at current density for different electrode materials.
[1]
Shen L F, Yu L, Yu X Y, Zhang X G, Lou X W D. Angew. Chem. Int. Ed., 2015, 54(6):1868.

doi: 10.1002/anie.201409776
[2]
Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Energy Environ. Sci., 2015, 8(3):941.

doi: 10.1039/C4EE02986K
[3]
Peng X, Peng L L, Wu C Z, Xie Y. Chem. Soc. Rev., 2014, 43(10):3303.

doi: 10.1039/c3cs60407a pmid: 24614864
[4]
Jing C, Song X Y, Li K L, Zhang Y M, Liu X Y, Dong B Q, Dong F, Zhao S L, Yao H C, Zhang Y X. J. Mater. Chem. A, 2020, 8(4):1697.

doi: 10.1039/C9TA12192G
[5]
Zhang Y M, Wang F, Zhu H, Zhang D D, Chen J. Compos. A: Appl. Sci. Manuf., 2017, 101:297.

doi: 10.1016/j.compositesa.2017.06.026
[6]
Li L, Zhang M Y, Zhang X T, Zhang Z G. J. Power Sources, 2017, 364:234.

doi: 10.1016/j.jpowsour.2017.08.029
[7]
Zhang S, Zhu J Y, Qing Y, Wang L X, Zhao J, Li J, Tian W H, Jia D Z, Fan Z J. Adv. Funct. Mater., 2018, 28(52):1805898.

doi: 10.1002/adfm.v28.52
[8]
Li D, Liu Y R, Lin B P, Sun Y, Yang H, Zhang X Q. Prog. Chem., 2015, 27:404.
( 李丹, 刘玉荣, 林保平, 孙莹, 杨洪, 张雪勤. 化学进展. 2015, 27:404.)
[9]
Xiong G P, Meng C Z, Reifenberger R G, Irazoqui P P, Fisher T S. Electroanalysis, 2014, 26(1):30.

doi: 10.1002/elan.201300238
[10]
Li X Y, Yan Y, Zhang B. J. Mater. Sci., 2021, (56):1.
[11]
Augustyn V, Simon P, Dunn B. Energy Environ. Sci., 2014, 7(5):1597.

doi: 10.1039/c3ee44164d
[12]
Ike I S, Sigalas I, Iyuke S. Phys. Chem. Chem. Phys., 2016, 18(2):661.

doi: 10.1039/C5CP05459A
[13]
Majumdar D, Mandal M, Bhattacharya S K. ChemElectroChem, 2019, 6(6):1623.

doi: 10.1002/celc.v6.6
[14]
Chen ZX, Lu HB. Chem. J. Chin. Univ., 2013, 34:2020.
( 陈仲欣, 卢红斌. 高等学校化学学报, 2013, 34:2020.)
[15]
Wu N S, Low J, Liu T, Yu J G, Cao S W. Appl. Surf. Sci., 2017, 413:35.

doi: 10.1016/j.apsusc.2017.03.297
[16]
Li Y, Cao L, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y. J. Mater. Chem. A, 2014, 2:6540.

doi: 10.1039/C3TA15373H
[17]
He Y M, Chen W J, Gao C T, Zhou J Y, Li X D, Xie E Q. Nanoscale, 2013, 5(19):8799.

doi: 10.1039/c3nr02157b
[18]
Snook G A, Kao P, Best A S. J. Power Sources, 2011, 196(1):1.

doi: 10.1016/j.jpowsour.2010.06.084
[19]
Lu X F, Wang C, Favier F, Pinna N. Adv. Energy Mater., 2017, 7(2):1601301.

doi: 10.1002/aenm.201601301
[20]
Gu W, Yushin G. WIREs, 2014, 3:424.
[21]
Wu Z, Zhang X B. Acta Phys. Chimica Sin., 2017, 33: 305.
( 吴中, 张新波. 物理化学学报, 2017, 33: 305.)
[22]
Li X Q, Chang L, Zhao S L, Hao C L, Lu C G, Zhu Y H, Tang Z Y. Acta Phys. Chimica Sin., 2017, 33:130.
( 李雪芹, 常琳, 赵慎龙, 郝昌龙, 陆晨光, 朱以华, 唐智勇. 物理化学学报, 2017, 33:130.)
[23]
Arthi R, Jaikumar V, Muralidharan P. Energy Sources A: Recovery Util. Environ. Eff., 2019,1.
[24]
Peng H, Xiao L L, Sun K J, Ma G F, Wei G G, Lei Z Q. J. Power Sources, 2019, 435:226800.

doi: 10.1016/j.jpowsour.2019.226800
[25]
Shen C Q, Xu H, Liu L, Hu H S, Chen S Y, Su L W, Wang L B. J. Alloys Compd., 2020, 830:154599.

doi: 10.1016/j.jallcom.2020.154599
[26]
Li B E, Sun Z H, Zhao Y, Tian Y, Tan T Z, Gao F, Li J D. J. Nanoparticle Res., 2018, 21(1):1.

doi: 10.1007/s11051-018-4445-6
[27]
Zang X N, Jiang Y Q, Sanghadasa M, Lin L W. Sens. Actuat. A: Phys., 2020, 304:111886.

doi: 10.1016/j.sna.2020.111886
[28]
Mohamed Ismail M, Hemaanandhan S, Mani D, Arivanandhan M, Anbalagan G, Jayavel R. J. Sol Gel Sci. Technol., 2020, 93(3):703.

doi: 10.1007/s10971-019-05184-z
[29]
Liu Y Y, Zeng Z, Sharma R K, Gbewonyo S, Allado K, Zhang L F, Wei J J. J. Power Sources, 2019, 409:1.

doi: 10.1016/j.jpowsour.2018.10.084
[30]
He T S, Fu Y R, Meng X L, Yu X D, Wang X L. Electrochimica Acta, 2018, 282:97.

doi: 10.1016/j.electacta.2018.06.029
[31]
Pazhamalai P, Krishnamoorthy K, Mariappan V K, Sahoo S, Manoharan S, Kim S J. Adv. Mater. Interfaces, 2018, 5(12):1870056.

doi: 10.1002/admi.v5.12
[32]
Tian D, Lu X F, Li W M, Li Y, Wang C. Acta Phys. Chimica Sin., 2020, 36(2):71.
( 田地, 卢晓峰, 李闱墨, 李悦, 王策. 物理化学学报, 2020, 36(2):71.)
[33]
Wu C, Zhou T Z, Du Y, Dou S X, Zhang H, Jiang L, Cheng Q F. Nano Energy, 2019, 58:517.

doi: 10.1016/j.nanoen.2019.01.055
[34]
Gupta R, Kumar R, Sharma A, Verma N. Int. J. Energy Res., 2015, 39(5):668.

doi: 10.1002/er.v39.5
[35]
Gan Y, Wang C, Chen X, Liang P, Wan H Z, Liu X, Tan Q Y, Wu H, Rao H, Wang H B, Zhang J, Wang Y, van Aken P A, Wang H. Chem. Eng. J., 2020, 392:123661.

doi: 10.1016/j.cej.2019.123661
[36]
Gong X, Yang J L, Jiang Y L, Mu S C. Prog. Chem., 2014, 26:41.

doi: 10.7536/PC130641
( 龚雪, 杨金龙, 姜玉林, 木士春. 化学进展, 2014, 26:41.)

doi: 10.7536/PC130641
[37]
Ying Liu, Liang Zhan, Rui Zhang, Wen Ming. Carbon, 2007, 45:1.
[38]
Cai M, Yuan D, Zhang X, Pu Y, Liu X F, He H W, Zhang L X, Ning X. J. Power Sources, 2020, 461:228123.

doi: 10.1016/j.jpowsour.2020.228123
[39]
Mahant Y P, Kondawar S B, Nandanwar D V, Koinkar P. Mater. Renew. Sustain. Energy, 2018, 7(2):1.

doi: 10.1007/s40243-017-0108-2
[40]
Shi C, Zhang P, Huang S H, He X Y, Yang P T, Wu D Z, Sun D H, Zhao J B. J. Power Sources, 2015, 298:158.

doi: 10.1016/j.jpowsour.2015.08.008
[41]
He T S, Jia R, Lang X S, Wu X Y, Wang Y J. J. Electrochem. Soc., 2017, 164(13):E379.

doi: 10.1149/2.0631713jes
[42]
He T S, Fu Y R, Meng X L, Yu X D, Wang X L. Electrochimica Acta, 2018, 282:97.

doi: 10.1016/j.electacta.2018.06.029
[43]
Jabbarnia A, Khan W S, Ghazinezami A, Asmatulu R. J. Appl. Polym. Sci., 2016, 133(30):43707.
[44]
Yan J H, Dong K Q, Zhang Y Y, Wang X, Aboalhassan A A, Yu J Y, Ding B. Nat. Commun., 2019, 10(1):1.

doi: 10.1038/s41467-018-07882-8
[45]
Li Y J, Zhu G, Huang H L, Xu M, Lu T, Pan L K. J. Mater. Chem. A, 2019, 7(15):9040.

doi: 10.1039/C8TA12246F
[46]
Aboagye A, Liu Y Y, Ryan J G, Wei J J, Zhang L F. Mater. Chem. Phys., 2018, 214:557.

doi: 10.1016/j.matchemphys.2018.05.009
[47]
Nan W, Zhao Y, Ding Y C, Shende A R, Fong H, Shende R V. Mater. Lett., 2017, 205:206.

doi: 10.1016/j.matlet.2017.06.092
[48]
Hatori H, Kobayashi T, Hanzawa Y, Yamada Y, Iimura Y, Kimura T, Shiraishi M. J. Appl. Polym. Sci., 2001, 79(5):836.

doi: 10.1002/(ISSN)1097-4628
[49]
Kim B H, Yang K S, Ferraris J P. Electrochimica Acta, 2012, 75:325.

doi: 10.1016/j.electacta.2012.05.004
[50]
Abeykoon N C, Bonso J S, Ferraris J P. RSC Adv., 2015, 5(26):19865.

doi: 10.1039/C4RA16594B
[51]
Le T, Yang Y, Huang Z H, Kang F Y. J. Power Sources, 2015, 278:683.

doi: 10.1016/j.jpowsour.2014.12.055
[52]
Bing H J, Wu Y H, Zhou J, Ming L L, Sun S Q, Li X D. Atmos. Environ., 2014, 99:425.

doi: 10.1016/j.atmosenv.2014.10.014
[53]
Park S H, Jung H R, Lee W J. Electrochimica Acta, 2013, 102:423.

doi: 10.1016/j.electacta.2013.04.044
[54]
Joh H I, Song H K, Lee C H, Yun J M, Jo S M, Lee S, Na S I, Chien A T, Kumar S. Carbon, 2014, 70:308.

doi: 10.1016/j.carbon.2013.12.069
[55]
He T S, Yu X D, Bai T J, Li X Y, Fu Y R, Cai K D. Ionics, 2020, 26(8):4103.

doi: 10.1007/s11581-020-03529-1
[56]
Wang H, Wang W Y, Wang H J, Jin X, Niu H T, Wang H X, Zhou H, Lin T. ACS Appl. Mater. Interfaces., 2018, 1:431.
[57]
Zainab G, Babar A A, Ali N, Aboalhassan A A, Wang X F, Yu J Y, Ding B. J. Colloid Interface Sci., 2020, 561:659.

doi: 10.1016/j.jcis.2019.11.041
[58]
He G H, Song Y H, Chen S L, Wang L. J. Mater. Sci., 2018, 53(13):9721.

doi: 10.1007/s10853-018-2277-5
[59]
Ju Y W, Park S H, Jung H R, Lee W J. J. Electrochem. Soc., 2009, 156(6):A489.

doi: 10.1149/1.3116245
[60]
Ma C, Chen J N, Fan Q C, Guo J C, Liu W N, Cao E C, Shi J L, Song Y. J. Mater. Sci., 2018, 53(6):4527.

doi: 10.1007/s10853-017-1887-7
[61]
Xu T, Ding Y C, Liang Z P. Mater. Sci., 2020, 112:100656.
[62]
Jiang Q T, Pang X, Geng S T, Zhao Y H, Wang X M, Qin H, Liu B, Zhou J, Zhou T. Appl. Surf. Sci., 2019, 479:128.

doi: 10.1016/j.apsusc.2019.02.077
[63]
Zhang L J, Jiang Y Z, Wang L W, Zhang C, Liu S X. Electrochimica Acta, 2016, 196:189.

doi: 10.1016/j.electacta.2016.02.050
[64]
Gopalakrishnan A, Sahatiya P, Badhulika S. ChemElectroChem, 2018, 5(3):531.

doi: 10.1002/celc.201700962
[65]
Kim C H, Yang C M, Kim Y A, Yang K S. Appl. Surf. Sci., 2019, 497:143693.

doi: 10.1016/j.apsusc.2019.143693
[66]
Perananthan S, Bonso J S, Ferraris J P. Carbon, 2016, 106:20.

doi: 10.1016/j.carbon.2016.04.083
[67]
Abeykoon N C, Garcia V, Jayawickramage R A, Perera W, Cure J, Chabal Y J, Balkus K J, Ferraris J P. RSC Adv., 2017, 7(34):20947.

doi: 10.1039/C7RA01727H
[68]
Kim C, Yang K S. Appl. Phys. Lett., 2003, 83(6):1216.

doi: 10.1063/1.1599963
[69]
Ma C, Wang R R, Xie Z Y, Zhang H X, Li Z Y, Shi J L. J. Porous Mater., 2017, 24(6):1437.

doi: 10.1007/s10934-017-0384-3
[70]
Ma C, Li Y J, Shi J L, Song Y, Liu L. Chem. Eng. J., 2014, 249:216.

doi: 10.1016/j.cej.2014.03.083
[71]
Liu Y W, Liu Q, Wang L, Yang X F, Yang W Y, Zheng J J, Hou H L. ACS Appl. Mater. Interfaces, 2020, 12(4):4777.

doi: 10.1021/acsami.9b19977
[72]
Li X, Tian X D, Yang T, He Y T, Liu W H, Song Y, Liu Z J. ACS Sustainable Chem. Eng., 2019, 7(6):5742.

doi: 10.1021/acssuschemeng.8b05210
[73]
Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Carbon, 2003, 41(2):267.

doi: 10.1016/S0008-6223(02)00279-8
[74]
Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F. Carbon, 2005, 43(4):786.

doi: 10.1016/j.carbon.2004.11.005
[75]
Yoon S H, Lim S, Song Y, Ota Y, Qiao W M, Tanaka A, Mochida I. Carbon, 2004, 42(8/9):1723.

doi: 10.1016/j.carbon.2004.03.006
[76]
Azargohar R, Dalai A K. Microporous Mesoporous Mater., 2008, 110(2/3):413.

doi: 10.1016/j.micromeso.2007.06.047
[77]
Li Q. J. South. Univ., 2009, 39:1008.
[78]
Jayawickramage R A P, Balkus K J, Ferraris J P. Nanotechnology, 2019, 30(35):355402.

doi: 10.1088/1361-6528/ab2274 pmid: 31100735
[79]
Shi G F, Liu C, Wang G Y, Chen X F, Li L, Jiang X, Zhang P, Dong Y C, Jia S M, Tian H Q, Liu Y R, Wang Z, Zhang Q, Zhang H Q. Ionics, 2019, 25(4):1805.

doi: 10.1007/s11581-018-2675-3
[80]
Liu Y W, Liu Q, Wang L, Yang X F, Yang W Y, Zheng J J, Hou H L. ACS Appl. Mater. Interfaces, 2020, 12(4):4777.

doi: 10.1021/acsami.9b19977
[81]
Sun H J, Li S Y, Shen Y L, Miao F J, Zhang P, Shao G S. Appl. Surf. Sci., 2020, 501:144001.

doi: 10.1016/j.apsusc.2019.144001
[82]
Liu Y, Zhang Z Y, Fang Y R, Liu B K, Huang J D, Miao F J, Bao Y N, Dong B. Appl. Catal. B: Environ., 2019, 252:164.

doi: 10.1016/j.apcatb.2019.04.035
[83]
Lin T, Chen I W, Liu F, Yang C, Bi H, Xu F, Huang F. Science, 2015, 350(6267):1508.

doi: 10.1126/science.aab3798
[84]
Wang K, Li L W, Zhang T Z, Liu Z F. Energy, 2014, 70:612.

doi: 10.1016/j.energy.2014.04.034
[85]
Xin G X, Wang Y H, Jia S P, Tian P F, Zhou S Y, Zang J B. Appl. Surf. Sci., 2017, 422:654.

doi: 10.1016/j.apsusc.2017.06.084
[86]
Shilpa S, Sharma A. RSC Adv., 2016, 6(82):78528.

doi: 10.1039/C6RA17014E
[87]
Bai Y, Huang Z H, Kang F Y. Carbon, 2014, 66:705.

doi: 10.1016/j.carbon.2013.09.074
[88]
Shen C, Sun Y P, Yao W, Lu Y. Polymer, 2014, 55(12):2817.

doi: 10.1016/j.polymer.2014.04.042
[89]
Xiao Y, Sun P P, Cao M H. ACS Nano, 2014, 8(8):7846.

doi: 10.1021/nn501390j
[90]
Bianco G V, Losurdo M, Giangregorio M M, Capezzuto P, Bruno G. Phys. Chem. Chem. Phys., 2014, 16(8):3632.

doi: 10.1039/c3cp54451f pmid: 24413594
[91]
Li M, Xue J M. J. Phys. Chem. C, 2014, 118(5):2507.

doi: 10.1021/jp410198r
[92]
Guo H L, Su P, Kang X, Ning S K. J. Mater. Chem. A, 2013, 1:2248.

doi: 10.1039/C2TA00887D
[93]
Han J, Xu G, Ding B, Pan J, Dou H, Macfarlane D R. J. Mater. Chem. A, 2014, 2:5352.

doi: 10.1039/C3TA15271E
[94]
Luo W, Wang B, Heron C G, Allen M J, Morre J, Maier C S, Stickle W F, Ji X L. Nano Lett., 2014, 14(4):2225.

doi: 10.1021/nl500859p
[95]
Quan S, Zhang R, Lv Y, Deng Y, Zhao D. Carbon, 2015, 84:335.

doi: 10.1016/j.carbon.2014.12.013
[96]
Jiang Q, Liu M Z, Shao C L, Li X W, Liu H Y, Li X H, Liu Y C. Electrochimica Acta, 2020, 330:135212.

doi: 10.1016/j.electacta.2019.135212
[97]
Nie G D, Zhu Y, Tian D, Wang C. Chem. J. Chin. Univ., 2018, 39(7):1349.
( 乜广弟, 朱云, 田地, 王策. 高等学校化学学报, 2018, 39(7):1349.)
[98]
Li X L, Zhao Y J, Bai Y, Zhao X Y, Wang R H, Huang Y C, Liang Q H, Huang Z H. Electrochimica Acta, 2017, 230:445.

doi: 10.1016/j.electacta.2017.02.030
[99]
Zhang S, Sui L N, Dong H Z, He W B, Dong L F, Yu L Y. ACS Appl. Mater. Interfaces, 2018, 10(15):12983.

doi: 10.1021/acsami.8b00323
[100]
Tian X D, Zhao N, Song Y, Wang K, Xu D F, Li X, Guo Q G, Liu L. Electrochimica Acta, 2015, 185:40.

doi: 10.1016/j.electacta.2015.10.096
[101]
Hosseini S R, Ghasemi S, Vahdat Y. Synth. Met., 2018, 246:16.

doi: 10.1016/j.synthmet.2018.09.017
[102]
Yilmaz M, Hsu S H, Raina S, Howell M, Kang W P. J. Renew. Sustain. Energy, 2018, 10(6):063503.

doi: 10.1063/1.5050038
[103]
Zhou G J, Ye Z K, Shi W W, Liu J X, Xi F N. Prog. Chem., 2014, 26:950.
( 周国珺, 叶志凯, 石微微, 刘吉洋, 奚凤娜. 化学进展, 2014, 26:950.)

doi: 10.7536/PC131250
[104]
Tai Z X, Yan X, Lang J, Xue Q J. J. Power Source, 2012, 199:373.

doi: 10.1016/j.jpowsour.2011.10.009
[105]
Wang X, Zhang W, Chen M Z, Zhou X Y. Polymers, 2018, 10(12):1306.

doi: 10.3390/polym10121306
[106]
Lai C L, Zhou Z P, Zhang L F, Wang X X, Zhou Q X, Zhao Y, Wang Y C, Wu X F, Zhu Z T, Fong H. J. Power Sources, 2014, 247:134.

doi: 10.1016/j.jpowsour.2013.08.082
[107]
Zhu J, Dong Y, Zhang S, Fan Z. Acta Phys. Chimica Sin., 2020, 36:30.
[108]
Deng L B, Young R J, Kinloch I A, Abdelkader A M, Holmes S M, de Haro-Del Rio D A, Eichhorn S J. ACS Appl. Mater. Interfaces, 2013, 5(20):9983.

doi: 10.1021/am403622v
[109]
Dong Q, Wang G, Hu H, Yang J, Qian B Q, Ling Z, Qiu J S. J. Power Sources, 2013, 243:350.

doi: 10.1016/j.jpowsour.2013.06.060
[110]
Guo M X, Guo J X, Jia D Z, Zhao H Y, Sun Z P, Song X L, Li Y H. J. Mater. Chem. A, 2015, 3(42):21178.

doi: 10.1039/C5TA05743D
[111]
Chen S L, He S J, Hou H Q. Curr. Org. Chem., 2013, 17(13):1402.

doi: 10.2174/1385272811317130007
[112]
Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z, Lou X W D. Adv. Mater., 2012, 24(38):5166.

doi: 10.1002/adma.201202146
[113]
Wu Z, Li L, Yan J M, Zhang X B. Adv. Sci., 2017, 4(6):1600382.

doi: 10.1002/advs.201600382
[114]
Dipanwita, Majumdar, Manas, Mandal, Swapan, K., Bhattacharya. Chemelectrochem, 2019, 6:1623.

doi: 10.1002/celc.201801761
[115]
Wang J G, Yang Y, Huang Z H, Kang F Y. Carbon, 2013, 61:190.

doi: 10.1016/j.carbon.2013.04.084
[116]
Chen I L, Chen T Y, Wei Y C, Hu C C, Lin T L. Nanoscale, 2014, 6(5):2861.

doi: 10.1039/c3nr04479c pmid: 24468800
[117]
Choudhury A, Kim J H, Yang K S, Yang D J. Electrochimica Acta, 2016, 213:400.

doi: 10.1016/j.electacta.2016.06.111
[118]
Vidhyadharan B, Zain N K M, Misnon I I, Aziz R A, Ismail J, Yusoff M M, Jose Y. J. Alloys Compd., 2014, 610:143.

doi: 10.1016/j.jallcom.2014.04.211
[119]
Lee H, Kim Y J, Lee D J, Song J, Lee Y M, Kim H T, Park J K. J. Mater. Chem. A, 2014, 2(30):11891.

doi: 10.1039/C4TA01311E
[120]
Binitha G, Soumya M S, Madhavan A A, Praveen P, Balakrishnan A, Subramanian K R V, Reddy M V, Nair S V, Nair A S, Sivakumar N. J. Mater. Chem. A, 2013, 1(38):11698.

doi: 10.1039/c3ta12352a
[121]
Wang W, Guo S R, Lee I, Ahmed K, Zhong J B, Favors Z, Zaera F, Ozkan M, Ozkan C S. Sci. Rep., 2014, 4(1):1.
[122]
Pico F, Ibañez J, Lillo-Rodenas M A, Linares-Solano A, Rojas R M, Amarilla J M, Rojo J M. J. Power Sources, 2008, 176(1):417.

doi: 10.1016/j.jpowsour.2007.11.001
[123]
Sieben J M, Morallón E, Cazorla-Amorós D. Energy, 2013, 58:519.

doi: 10.1016/j.energy.2013.04.077
[124]
Zheng J P, Cygan P J, Jow T R. Cheminform, 1995, 142:2699.
[125]
An G H, Ahn H J. J. Electroanal. Chem., 2015, 744:32.

doi: 10.1016/j.jelechem.2015.03.009
[126]
Jun Y R, Kim B H. Bull. Korean Chem. Soc., 2016, 37(11):1820.

doi: 10.1002/bkcs.10981
[127]
Kim B H, Kim C H, Lee D G. J. Electroanal. Chem., 2016, 760:64.

doi: 10.1016/j.jelechem.2015.12.001
[128]
Li M L, Sun G Y, Yin P P, Ruan C P, Ai K L. ACS Appl. Mater. Interfaces, 2013, 5(21):11462.

doi: 10.1021/am403739g
[129]
Boukhalfa S, Evanoff K, Yushin G. Energy Environ. Sci., 2012, 5(5):6872.

doi: 10.1039/c2ee21110f
[130]
Noerochim L, Wang J Z, Wexler D, Rahman M M, Chen J, Liu H K. J. Mater. Chem., 2012, 22(22):11159.

doi: 10.1039/c2jm16470a
[131]
Li L, Peng S, Hao B W, Le Y, Madhavi S, Xiong W L. Adv. Energy Mater., 2015, 5:1.
[132]
Zhao L, Yu J, Li W J, Wang S G, Dai C L, Wu J W, Bai X D, Zhi C Y. Nano Energy, 2014, 4:39.

doi: 10.1016/j.nanoen.2013.12.008
[133]
Jiang H, Zhao T, Ma J, Yan C, Li C. Chem. Commun., 2011, 47:1264.

doi: 10.1039/C0CC04134C
[134]
Guo C Y, Ma H T, Zhang Q T, Li M F, Jiang H R, Chen C Z, Wang S F, Min D Y. Nanomaterials, 2020, 10(3):594.

doi: 10.3390/nano10030594
[135]
Jeong J H, Kim B H. J. Electroanal. Chem., 2018, 809:130.

doi: 10.1016/j.jelechem.2017.12.063
[136]
Youe W J, Kim S J, Lee S M, Chun S J, Kang J, Kim Y S. Int. J. Biol. Macromol., 2018, 112:943.

doi: 10.1016/j.ijbiomac.2018.02.048
[137]
Kim S G, Jun J, Kim Y K, Kim J, Lee J S, Jang J. ACS Appl. Mater. Interfaces, 2020, 12(18):20613.
[138]
Zhao J S, Tian Y, Liu A F, Song L, Zhao Z S. Mater. Sci. Semicond. Process., 2019, 96:78.
[139]
Kebabsa L, Kim J, Lee D, Lee B. Appl. Surf. Sci., 2020, 511:145313.

doi: 10.1016/j.apsusc.2020.145313
[140]
Abouali S, Akbari Garakani M, Zhang B, Xu Z L, Kamali Heidari E, Huang J Q, Huang J Q, Kim J K. ACS Appl. Mater. Interfaces, 2015, 7(24):13503.

doi: 10.1021/acsami.5b02787
[141]
Hao C, Zhou S S, Wang J J, Wang X H, Gao H W, Ge C W. Ind. Eng. Chem. Res., 2018, 57(7):2517.

doi: 10.1021/acs.iecr.7b04412
[142]
Talha A, Ahmed A, Hou B, Chavan H, Cheol Y. Small, 2018, 14:28.
[143]
Tao K, Han X, Yang Y J, Zhou J J, Ma Q X. Chemistry, 2018. 24:18106.
[144]
Chen H Y, Wang J P, Han X R, Liao F, Zhang Y F, Gao L, Xu C J. Ceram. Int., 2019, 45(7):8577.
[145]
Xu J S, Sun Y D, Lu M J, Wang L, Zhang J, Tao E, Qian J H, Liu X Y. Acta Mater., 2018, 152:162.

doi: 10.1016/j.actamat.2018.04.025
[146]
Liao F, Han X R, Zhang Y F, Han X H, Xu C J, Chen H Y. Ceram. Int., 2019, 45(6):7244.

doi: 10.1016/j.ceramint.2019.01.005
[147]
Yu H Q, Zhao H Y, Wu Y B, Chen B J, Sun J S. J. Phys. Chem. Solids, 2020, 140:109385.

doi: 10.1016/j.jpcs.2020.109385
[148]
Dubal D P, Lee S H, Kim J G, Kim W B, Lokhande C D. J. Mater. Chem., 2012, 22(7):3044.

doi: 10.1039/c2jm14470k
[149]
Jaymand M, Massoumi B, Davtalab S, Entezami A A. RSC Advances, 2015, 5:36715.

doi: 10.1039/C5RA02926K
[150]
Bhattacharya S, Roy I, Tice A, Chapman C, Udangawa R, Chakrapani V, Plawsky J L, Linhardt R J. ACS Appl. Mater. Interfaces, 2020, 12(17):19369.

doi: 10.1021/acsami.9b21696
[151]
Silas K, Simotwo, Christopher DelRe, Vibha Kalra. ACS Appl. Mater. Interfaces., 2020, 8:22261.

doi: 10.1021/acsami.6b07607
[152]
Sun H J, Li S Y, Shen Y L, Miao F J, Zhang P, Shao G S. Appl. Surf. Sci., 2020, 501:144001.

doi: 10.1016/j.apsusc.2019.144001
[153]
Simotwo S K, Kalra V. Electrochimica Acta, 2018, 268:131.

doi: 10.1016/j.electacta.2018.01.157
[154]
Chen L, Li D P, Chen L N, Si P C, Feng J K, Zhang L, Li Y H, Lou J, Ci L J. Carbon, 2018, 138:264.

doi: 10.1016/j.carbon.2018.06.022
[155]
Tao R Q, Ning H L, Fang Z Q, Chen J Q, Cai W, Zhou Y C, Zhu Z N, Yao R H, Peng J B. J. Phys. Chem. C, 2017, 121(16):8992.

doi: 10.1021/acs.jpcc.6b12793
[156]
Kim M, Lee C, Jang J. Adv. Funct. Mater., 2014, 24:2489.

doi: 10.1002/adfm.201303282
[157]
Yang C, Shen J, Wang C, Fei H, Bao H, Wang G. J. Mater. Chem. A, 2014, 2:1458.

doi: 10.1039/C3TA13953K
[1] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[2] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[5] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[6] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[7] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[8] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[9] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[10] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[11] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[12] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[13] Linli Guo, Xin Zhang, Min Xiao, Shuanjin Wang, Dongmei Han, Yuezhong Meng. Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(7): 1212-1220.
[14] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[15] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.