中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 426-441 DOI: 10.7536/PC200612 Previous Articles   Next Articles

• Review •

Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells

Yu Bai1, Shuanjin Wang1,*(), Min Xiao1,*(), Yuezhong Meng1, Chengxin Wang1   

  1. 1 Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University,Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Contact: Shuanjin Wang, Min Xiao
  • Supported by:
    the National Key Research and Development Program(Japan-China Joint Research Program)(2017YFE0197900); Link Project of the National Natural Science Foundation of China and Guangdong Province(U1601211); and the National Key Research and Development Program(2018YFA0702002)
Richhtml ( 54 ) PDF ( 1630 ) Cited
Export

EndNote

Ris

BibTeX

High temperature proton exchange membrane fuel cells(HT-PEMFCs) have many advantages over traditional proton exchange membrane fuel cells, which can not only enhance the catalysts tolerance to carbon monoxide poisoning, but also simplify the water and heat management as well as improve the energy conversion efficiency. Proton exchange membrane(PEM) is one of the key components of PEMFCs. Phosphoric acid(PA) doped PEMs have recently shown remarkable advantages due to the high proton conductivity and longevity at high operating temperatures(100~200 ℃) and low relative humidity. Generally, high PA doping level can improve the proton conductivity of PEMs, whereas the mechanical strength of the membranes dramatically deteriorates as an expense, therefore, enormous research on the synthesis of modified polymer electrolyte membranes with improved comprehensive performance has been carried out. This review focuses on the research progress of PA doped high temperature proton exchange membranes(HT-PEMs) such as polybenzimidazole and alkaline poly(aryl ether). Particularly, the application of porous materials including metal organic frameworks(MOFs) and covalent organic frameworks(COFs) in PEMs is also summarized. Finally, the remaining challenges in this filed are indicated.

Contents

1 Introduction

2 Proton conduction mechanism in proton exchange membranes

3 Challenges of HT?PEMs

4 Research progress on modification of phosphoric acid?based proton exchange membranes for HT?PEMFCs

4.1 Polybenzimidazole?based HT?PEMs

4.2 Non?polybenzimidazole?based HT?PEMs

5 Application of novel porous materials in HT?PEMFCs

5.1 Porous membranes based on PBI

5.2 MOFs

5.3 COFs

6 Conclusion and outlook

Fig.1 Repeat unit of m-PBI showing Lewis basic nitrogen atoms(green), “bonded acid”(blue), and “free acid”(red) at an acid doping level of 4 [16]
Fig.2 Conductivity mechanism of PA doped polybenzimidazoles:(a) water-acid proton transfer(b) proton transfer through a phosphoric acid chain and(c) benzimidazole ring-phosphoric acid proton transfer[4]
Fig.3 Synthesis of Ph-PBI and Me-PBI[40]
Fig.4 Synthesis of p-PPBI[42]
Fig.5 Chemical structures of SPBIs:(a) PBI-2Θ-1SO3H,(b) PBI-2Θ-2SO3H,(c) PBI-3Θ-1SO3H and(d) PBI-3Θ-3SO3H[44]
Fig.6 Synthesis of 2OHPBI[45]
Fig.7 Synthesis of OHPyPBI[46]
Fig.8 Interaction of P-MWCNTs with phosphoric acid doped PBI membranes, resulting in the formation of localized networks for efficient proton transport along the sidewalls of PMWCNTs[62]
Fig.9 Schematic of graphite oxide(GO) structure[63]
Fig.10 Presumed structures of self-reacted 2BIM-2Cl in crosslinked PBI(a) linear;(b) branched;(c) self-cross-linked[71]
Fig.11 Chemical structure of hyperbranched cross-linker Br-HPP[72]
Fig.12 Chemical structures of(a) branched F6PBI;(b) benzoxazine. The crosslinking sites are colored by blue and red, respectively
Fig.13 Schematic illustration of(a) ionically crosslinked blend membranes, and(b) the resulting covalently crosslinked blend membranes after heat cure[75]
Fig.14 Schematic illustration of cross-linked triazole modified poly(2,6-dimethyl-1,4-phenylene oxide) membranes(XTPPO)[14]
Fig.15 Proposed structural model of [Zn(H2PO4)2(C2N3H3)2]n(Zn∶P∶C∶N=1∶1.6∶4.1∶5.8), whereas the uncoordinated H3PO4 occupies the space where the monodentate H2P4- existed[118]
Fig.16 Chemical structure of Z-COF[132]
[1]
Bp. BP Statistical Review of World Energy 2018. Bp Espaa, 2019.
[2]
Rosli R E, Sulong A B, Daud W R W, Zulkifley M A, Husaini T, Rosli M I, Majlan E H, Haque M A. Int. J. Hydrog. Energy, 2017, 42(14):9293.
[3]
Haque M A, Sulong A B, Loh K S, Majlan E H, Husaini T, Rosli R E. Int. J. Hydrog. Energy, 2017, 42(14):9156.
[4]
Asensio J A, Sánchez E M, GÓmez-Romero P. Chem. Soc. Rev., 2010, 39(8):3210.
[5]
Bose S, Kuila T, Nguyen T X H, Kim N H, Lau K T, Lee J H. Prog. Polym. Sci., 2011, 36(6):813.
[6]
Spendelow J S, Papageorgopoulos D C. Fuel Cells, 2011, 11(6):775.
[7]
Kongkanand A, Mathias M F. J. Phys. Chem. Lett., 2016, 7(7):1127.
[8]
Li Q F, He R H, Jensen J O, Bjerrum N J. Chem. Mater., 2003, 15(26):4896.
[9]
Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly A B. J. Power Sources, 2001, 103(1):1.
[10]
Yang J S, Wang Y H, Yang G H, Zhan S F. Int. J. Hydrog. Energy, 2018, 43(17):8464.
[11]
Du M Q, Yang L, Luo X, Wang K L, Chang G J. Polym. J., 2019, 51(1):69.
[12]
Wang J, Jiang H X, Xu Y X, Yang J S, He R H. Appl. Surf. Sci., 2018, 452:473.
[13]
Bu F Z, Zhang Y R, Hong L H, Zhao W C, Li D, Li J L, Na H, Zhao C J. J. Membr. Sci., 2018, 545:167.
[14]
Jang J, Kim D H, Ahn M K, Min C M, Lee S B, Byun J, Pak C, Lee J S. J. Membr. Sci., 2020, 595:117508.
[15]
Zhang B, Edwards B J. J. Electrochem. Soc., 2015, 162(9):F1088.
[16]
Nawn G, Pace G, Lavina S, Vezzù K, Negro E, Bertasi F, Polizzi S, di Noto V. Macromolecules, 2015, 48(1):15.
[17]
Hu Y, Li X, Yan L, Yue B. Fuel Cells, 2017, 17(1):3.
[18]
Agmon N. Chem. Phys. Lett., 1995, 244(5/6):456.
[19]
Smitha B, Sridhar S, Khan A A. Macromolecules, 2004, 37(6):2233.
[20]
Zhen D X. Doctoral Dissertation of Dalian University of Technology, 2018.(甄栋兴. 大连理工大学博士论文, 2018.).
[21]
Pei H Q, Hong L, Lee J Y. J. Power Sources, 2006, 160(2):949.
[22]
Hooshyari K, Javanbakht M, Shabanikia A, Enhessari M. J. Power Sources, 2015, 276:62.
[23]
Bouchet R, Miller S, Duclot M, Souquet J L. Solid State Ionics, 2001, 145(1/4):69.
[24]
Bouchet R. Solid State Ionics, 1999, 118(3/4):287.
[25]
Hughes C E, Haufe S, Angerstein B, Kalim R, Mähr U, Reiche A, Baldus M. J. Phys. Chem. B, 2004, 108(36):13626.
[26]
Ma Y L, Wainright J S, Litt M H, Savinell R F. J. Electrochem. Soc., 2004, 151(1):A8.
[27]
He R. J. Membr. Sci., 2003, 226(1/2):169.
[28]
Jeong Y H, Jung J H, Choi E, Han S, Begley A I, Yoo S J, Jang J H, Kim H J, Nam S W, Lee K Y, Kim J Y. J. Power Sources, 2015, 299:480.
[29]
Wang M K. Mater. Rep, 1992, 6:47.
( 王睦铿 . 材料导报, 1992, 6:47.).
[30]
Quartarone E, Mustarelli P. Energy Environ. Sci., 2012, 5(4):6436.
[31]
Yang J S, Li Q F, Cleemann L N, Jensen J O, Pan C, Bjerrum N J, He R H. Adv. Energy Mater., 2013, 3(5):622.
[32]
He R, Li Q, Bach A, Jensen J, Bjerrum N. J. Membr. Sci., 2006, 277(1/2):38.
[33]
Xiao L X, Zhang H F, Scanlon E, Ramanathan L S, Choe E W, Rogers D, Apple T, Benicewicz B C. Chem. Mater., 2005, 17(21):5328.
[34]
Kim T H, Kim S K, Lim T W, Lee J C. J. Membr. Sci., 2008, 323(2):362.
[35]
Yang J S, Li Q F, Cleemann L N, Xu C X, Jensen J O, Pan C, Bjerrum N J, He R H. J. Mater. Chem., 2012, 22(22):11185.
[36]
Li X, Qian G, Chen X, Benicewicz B C. Fuel Cells, 2013, 13(5):832.
[37]
Zhang Q, Liu B J, Hu W, Xu W, Jiang Z H, Xing W, Guiver M D. J. Membr. Sci., 2013, 428:629.
[38]
Li X P, Liu C, Zhang S H, Zong L S, Jian X G. J. Membr. Sci., 2013, 442:160.
[39]
Liu C, Li X P, Xu J, Jian X G. Eur. Polym. J., 2011, 47(9):1852.
[40]
Li X B, Ma H W, Wang H L, Zhang S T, Jiang Z H, Liu B J, Guiver M D. RSC Adv., 2015, 5(66):53870.
[41]
Tang Y Y. Master’s Dissertation of Lanzhou University, 2017.(汤一尧. 兰州大学硕士论文, 2017.).
[42]
Li X P, Liu C, Zhang S H, Yu G P, Jian X G. J. Membr. Sci., 2012, 423/424:128.
[43]
Maity S, Jana T. Macromolecules, 2013, 46(17):6814.
[44]
Angioni S, Villa D C, Barco S D, Quartarone E, Righetti P P, Tomasi C, Mustarelli P. J. Mater. Chem. A, 2014, 2(3):663.
[45]
Yu S, Benicewicz B C. Macromolecules, 2009, 42(22):8640.
[46]
Yang J S, Xu Y X, Zhou L, Che Q T, He R H, Li Q F. J. Membr. Sci., 2013, 446:318.
[47]
Ngamsantivongsa P, Lin H L, Leon Yu T. J. Membr. Sci., 2015, 491:10.
[48]
Xu H J, Chen K C, Guo X X, Fang J H, Yin J. Polymer, 2007, 48(19):5556.
[49]
Dai H, Zhang H, Zhong H, Jin H, Li X, Xiao S, Mai Z. Fuel Cells, 2010, 10(5):754.
[50]
Nicotera I, Kosma V, Simari C, Angioni S, Mustarelli P, Quartarone E. J. Phys. Chem. C, 2015, 119(18):9745.
[51]
Sun X W, Simonsen S, Norby T, Chatzitakis A. Membranes, 2019, 9(7):83.
[52]
Chu F Q, Lin B C, Qiu B, Si Z H, Qiu L H, Gu Z Z, Ding J N, Yan F, Lu J M. J. Mater. Chem., 2012, 22(35):18411.
[53]
Lee S, Seo K, Ghorpade R V, Nam K H, Han H. Mater. Lett., 2020, 263:127167.
[54]
Pinar F J, Cañizares P, Rodrigo M A, Ubeda D, Lobato J. RSC Adv., 2012, 2(4):1547.
[55]
Plackett D, Siu A, Li Q F, Pan C, Jensen J O, Nielsen S F, Permyakova A A, Bjerrum N J. J. Membr. Sci., 2011, 383(1/2):78.
[56]
Cai Y B, Yue Z Y, Teng X, Xu S A. J. Electrochem. Soc., 2018, 165(11):F914.
[57]
Verma A, Scott K. J. Solid State Electrochem., 2010, 14(2):213.
[58]
Qian W, Shang Y M, Fang M, Wang S B, Xie X F, Wang J H, Wang W X, Du J Y, Wang Y W, Mao Z Q. Int. J. Hydrog. Energy, 2012, 37(17):12919.
[59]
Xu C X, Wu X, Wang X, Mamlouk M, Scott K. J. Mater. Chem., 2011, 21(16):6014.
[60]
Stenina I A, Yaroslavtsev A B. Inorg. Mater., 2017, 53(3):253.
[61]
Guerrero Moreno N, Gervasio D, Godínez García A, PÉrez Robles J F. J. Power Sources, 2015, 300:229.
[62]
Kannan R, Kagalwala H N, Chaudhari H D, Kharul U K, Kurungot S, Pillai V K. J. Mater. Chem., 2011, 21(20):7223.
[63]
Xu C X, Cao Y C, Kumar R, Wu X, Wang X, Scott K. J. Mater. Chem., 2011, 21(30):11359.
[64]
Abouzari-Lotf E, Zakeri M, Nasef M M, Miyake M, Mozarmnia P, Bazilah N A, Emelin N F, Ahmad A. J. Power Sources, 2019, 412:238.
[65]
Yang J S, Liu C, Gao L P, Wang J, Xu Y X, He R H. RSC Adv., 2015, 5(122):101049.
[66]
Schechter A. Solid State Ionics, 2002, 147(1/2):181.
[67]
Chuang S W, Hsu S L C, Yang M L. Eur. Polym. J., 2008, 44(7):2202.
[68]
Wang J T W, Hsu S L C. Electrochimica Acta, 2011, 56(7):2842.
[69]
Yang J S, Jiang H X, Gao L P, Wang J, Xu Y X, He R H. Int. J. Hydrog. Energy, 2018, 43(6):3299.
[70]
Li X B, Ma H W, Wang P, Liu Z C, Peng J W, Hu W, Jiang Z H, Liu B J. ACS Appl. Mater. Interfaces, 2019, 11(34):30735.
[71]
Li X B, Ma H W, Wang P, Liu Z C, Peng J W, Hu W, Jiang Z H, Liu B J, Guiver M D. Chem. Mater., 2020,(32):1182.
[72]
Hu M S, Li T Y, Neelakandan S, Wang L, Chen Y M. J. Membr. Sci., 2020, 593:117435.
[73]
Wang L, Liu Z R, Liu Y, Wang L. J. Membr. Sci., 2019, 583:110.
[74]
Kerres J, Ullrich A, Meier F, Häring T. Solid State Ionics, 1999, 125(1/4):243.
[75]
Krishnan N N, Joseph D, Duong N M H, Konovalova A, Jang J H, Kim H J, Nam S W, Henkensmeier D. J. Membr. Sci., 2017, 544:416.
[76]
Li X B, Wang P, Liu Z C, Peng J W, Shi C Y, Hu W, Jiang Z H, Liu B J. J. Power Sources, 2018, 393:99.
[77]
Sinigersky V, Budurova D, Penchev H, Ublekov F, Radev I. J. Appl. Polym. Sci., 2013, 129(3):1223.
[78]
Hasiotis C, Li Q F, Deimede V, Kallitsis J K, Kontoyannis C G, Bjerrum N J. J. Electrochem. Soc., 2001, 148(5):A513.
[79]
Zheng H T, Luo H Z, Mathe M. J. Power Sources, 2012, 208:176.
[80]
Liu D, Tanaka M, Kawakami H. J. Photopol. Sci. Technol., 2015, 28(2):181.
[81]
Arunbabu D, Sannigrahi A, Jana T. J. Phys. Chem. B, 2008, 112(17):5305.
[82]
Acar O, Sen U, Bozkurt A, Ata A L. Int. J. Hydrog. Energy, 2009, 34(6):2724.
[83]
Wang L, Meng Y Z, Gao C M, Zhu G M. Acta Chim. Sinica, 2007, 65(14):1403.
王雷, 孟跃中, 高春梅, 朱光明. 化学学报, 2007, 65(14):1403.
[84]
Suzuki K, Iizuka Y, Tanaka M, Kawakami H. J. Mater. Chem., 2012, 22(45):23767.
[85]
Kowsari E, Zare A, Ansari V. Int. J. Hydrog. Energy, 2015, 40(40):13964.
[86]
Guo Z B, Xu X, Xiang Y, Lu S F, Jiang S P. J. Mater. Chem. A, 2015, 3(1):148.
[87]
Dai Y, Wang J, Tao P P, He R H. J. Colloid Interface Sci., 2019, 553:503.
[88]
Bai H J, Wang H I N, Zhang J, Wu C X, Zhang J J, Xiang Y, Lu S F. J. Membr. Sci., 2018, 558:26.
[89]
Tu C H, Hsu S L C, Bulycheva E, Belomoina N. Polym. Eng. Sci., 2019, 59(10):2169.
[90]
Mecerreyes D, Grande H, Miguel O, Ochoteco E, Marcilla R, Cantero I. Chem. Mater., 2004, 16(4):604.
[91]
Zarrin H, Jiang G P, Lam G Y Y, Fowler M, Chen Z W. Int. J. Hydrog. Energy, 2014, 39(32):18405.
[92]
Jheng L C, Chang W J Y, Hsu S L C, Cheng P Y. J. Power Sources, 2016, 323:57.
[93]
Maurya S, Shin S H, Lee J Y, Kim Y, Moon S H. RSC Adv., 2016, 6(7):5198.
[94]
Li J, Li X J, Yu S C, Hao J K, Lu W T, Shao Z G, Yi B L. Energy Convers. Manag., 2014, 85:323.
[95]
Das A, Ghosh P, Ganguly S, Banerjee D, Kargupta K. J. Appl. Polym. Sci., 2018, 135(5):45773.
[96]
Shen C H, Jheng L C, Hsu S L C, Tse-Wei Wang J. J. Mater. Chem., 2011, 21(39):15660.
[97]
Wang S, Zhao C J, Ma W J, Zhang G, Liu Z G, Ni J, Li M Y, Zhang N, Na H. J. Membr. Sci., 2012, 411/412:54.
[98]
Zeng L, Zhao T S, An L, Zhao G, Yan X H. Energy Environ. Sci., 2015, 8(9):2768.
[99]
Barati S, Abdollahi M, Khoshandam B, Mehdipourghazi M. Int. J. Hydrog. Energy, 2018, 43(42):19681.
[100]
Cai Y B, Yue Z Y, Teng X, Xu S A. Eur. Polym. J., 2018, 103:207.
[101]
Escorihuela J, Sahuquillo Ó, García-BernabÉ A, GimÉnez E, Compañ V. Nanomaterials, 2018, 8(10):775.
[102]
Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, LlabrÉs i Xamena F X, Gascon J. Nat. Mater., 2015, 14(1):48.
[103]
Filak L K, Mühlgassner G, Bacher F, Roller A, Galanski M, Jakupec M A, Keppler B K, Arion V B. Organometallics, 2011, 30(2):273.
[104]
Xu Z Q, Meng W, Li H J, Hou H W, Fan Y T. Inorg. Chem., 2014, 53(7):3260.
[105]
Na K, Choi K M, Yaghi O M, Somorjai G A. Nano Lett., 2014, 14(10):5979.
[106]
Ponomareva V G, Kovalenko K A, Chupakhin A P, Dybtsev D N, Shutova E S, Fedin V P. J. Am. Chem. Soc., 2012, 134(38):15640.
[107]
Yang F, Huang H L, Wang X Y, Li F, Gong Y H, Zhong C L, Li J R. Cryst. Growth Des., 2015, 15(12):5827.
[108]
Xu G, Otsubo K, Yamada T, Sakaida S, Kitagawa H. J. Am. Chem. Soc., 2013, 135(20):7438.
[109]
Panda T, Kundu T, Banerjee R. Chem. Commun., 2013, 49(55):6197.
[110]
Nagarkar S S, Unni S M, Sharma A, Kurungot S, Ghosh S K. Angew. Chem. Int. Ed., 2014, 53(10):2638.
[111]
Bazaga-García M, Colodrero R M P, Papadaki M, Garczarek P, Zoń J, Olivera-Pastor P, Losilla E R, LeÓn-Reina L, Aranda M A G, Choquesillo-Lazarte D, Demadis K D, Cabeza A. J. Am. Chem. Soc., 2014, 136(15):5731.
[112]
Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2009, 131(29):9906.
[113]
Umeyama D, Horike S, Inukai M, Hijikata Y, Kitagawa S. Angew. Chem. Int. Ed., 2011, 50(49):11706.
[114]
Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L, Shimizu G K H. Nat. Chem., 2009, 1(9):705.
[115]
Ramaswamy P, Wong N E, Gelfand B S, Shimizu G K H. J. Am. Chem. Soc., 2015, 137(24):7640.
[116]
Phang W J, Jo H, Lee W R, Song J H, Yoo K, Kim B, Hong C S. Angew. Chem. Int. Ed., 2015, 54(17):5142.
[117]
Escorihuela J, Narducci R, Compañ V, Costantino F. Adv. Mater. Interfaces, 2019, 6(2):1801146.
[118]
Inukai M, Horike S, Itakura T, Shinozaki R, Ogiwara N, Umeyama D, Nagarkar S, Nishiyama Y, Malon M, Hayashi A, Ohhara T, Kiyanagi R, Kitagawa S. J. Am. Chem. Soc., 2016, 138(27):8505.
[119]
Li Z, He G W, Zhang B, Cao Y, Wu H, Jiang Z Y, Zhou T T. ACS Appl. Mater. Interfaces, 2014, 6(12):9799.
[120]
Dong X Y, Li J J, Han Z, Duan P G, Li L K, Zang S Q. J. Mater. Chem. A, 2017, 5(7):3464.
[121]
Sánchez-Laínez J, Zornoza B, TÉllez C, Coronas J. J. Membr. Sci., 2018, 563:427.
[122]
Sánchez-Laínez J, Zornoza B, Carta M, Malpass-Evans R, McKeown N B, TÉllez C, Coronas J. Ind. Eng. Chem. Res., 2018, 57(49):16909.
[123]
Sánchez-Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, TÉllez C, Coronas J. J. Membr. Sci., 2016, 515:45.
[124]
Mendoza-Corteés J L, Han S S, Furukawa H, Yaghi O M, Goddard W A III. J. Phys. Chem. A, 2010, 114(40):10824.
[125]
Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7(11):905.
[126]
Montoro C, Rodríguez-San-miguel D, Polo E, Escudero-Cid R, Ruiz-González M L, Navarro J A R, OcÓn P, Zamora F. J. Am. Chem. Soc., 2017, 139(29):10079.
[127]
Zhong H, Fu Z H, Taylor J M, Xu G, Wang R H. Adv. Funct. Mater., 2017, 27(32):1701465.
[128]
Shinde D B, Aiyappa H B, Bhadra M, Biswal B P, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J. Mater. Chem. A, 2016, 4(7):2682.
[129]
Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y, Kunjir S M, Banerjee R. J. Am. Chem. Soc., 2014, 136(18):6570.
[130]
Ma H P, Liu B L, Li B, Zhang L M, Li Y G, Tan H Q, Zang H Y, Zhu G S. J. Am. Chem. Soc., 2016, 138(18):5897.
[131]
Chandra S, Kundu T, Dey K, Addicoat M, Heine T, Banerjee R. Chem. Mater., 2016, 28(5):1489.
[132]
Li Y, Wu H, Yin Y, Cao L, He X, Shi B, Li J, Xu M, Jiang Z. J. Membr. Sci., 2018, 568:1.
[133]
Sasmal H S, Aiyappa H B, Bhange S N, Karak S, Halder A, Kurungot S, Banerjee R. Angew. Chem. Int. Ed., 2018, 57(34):10894.
[134]
Biswal B P, Chaudhari H D, Banerjee R, Kharul U K. Chem. Eur. J., 2016, 22(14):4695.
[135]
Han S Y, Yue B H, Yan L M. Acta Phis-Chim. Sinica, 2014, 30(1):8.
韩帅元, 岳宝华, 严六明. 物理化学学报, 2014, 30(1):8.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[3] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[4] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[5] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[6] Xiuting Dong, Wen Zhang, Song Zhao, Xinlei Liu, Yuxin Wang. Shaping Methods for Metal-Organic Framework Composites [J]. Progress in Chemistry, 2021, 33(12): 2173-2187.
[7] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[8] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[9] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[10] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[11] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[12] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[13] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[14] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[15] Anrui Zhang, Yuejie Ai. Structure Control of Covalent Organic Frameworks(COFs) and Their Applications in Environmental Chemistry [J]. Progress in Chemistry, 2020, 32(10): 1564-1581.