中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2604-2618 DOI: 10.7536/PC220504 Previous Articles   Next Articles

• CONTENTS •

Wearable Biosensors Based on Smart Fibers and Textiles

Huayue Sun1, Xianxin Xiang1, Tingyi Yan1, Lijun Qu1,2(), Guangyao Zhang1,2(), Xueji Zhang3   

  1. 1 Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University,Qingdao 266071, China
    2 State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University,Qingdao 266071, China
    3 School of Biomedical Engineering, Shenzhen University,Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Contact: Lijun Qu, Guangyao Zhang
  • Supported by:
    National Natural Science Foundation of China(22204089); National Natural Science Foundation of China(21890742); Natural Science Foundation of Shandong Province(ZR2020QB092); China Postdoctoral Science Foundation(2021M691689); Postdoctoral Applied Research Project of Qingdao(202142); State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University)(ZKT23); State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University)(GZRC202025)
Richhtml ( 37 ) PDF ( 562 ) Cited
Export

EndNote

Ris

BibTeX

With the development of social economy, people pay more and more attention to physical health and demand more and more intelligence, portability and accuracy of medical devices, in this context, the market demand for wearable biosensors is rising. Smart fibers and textiles can meet the requirements of air permeability and wearability, and can be used in wearable biosensors to monitor people’s physical condition in real time. For vital signs monitoring, they can be used to reflect physiological status such as heartbeat, pulse, respiration and body movements in real time. For body fluid detection, the components in sweat, tears and saliva can be analyzed in real time. They can also analyze the exhaled products. Using the characteristics of wearing the sensor on the body, people can monitor their health while living and working normally. Compared with traditional biosensors, wearable biosensors based on smart fibers and textiles can be used for on-site real-time monitoring, and play an important role in preventing diseases, improving clinical outcomes and quality of life, increasing productivity, reducing medical burden and reducing medical costs. Here, this review mainly introduces the application of smart fibers and textiles in wearable biosensors in recent years, and according to three aspects (vital signs monitoring, body fluids detection and exhaled products detection), we introduce their sensing strategies such as colorimetric sensing, fluorescence sensing, piezoelectric sensing, etc. Finally, we summarize the application status and problems of smart fibers and textiles in wearable biosensors, and look forward to their future development.

Contents

1 Introduction

2 Vital signs monitoring

2.1 Breathing and heartbeat

2.2 Pulse and blood pressure

2.3 Temperature

2.4 Humidity

2.5 Body movements

3 Body fluid detection

3.1 Sweat

3.2 Saliva

3.3 Urine

3.4 Tear

4 Exhaled products detection

4.1 Ammonia

4.2 Acetone

4.3 COVID-19 detection

5 Conclusion and outlook

Table 1 Comparison of acoustic performance of different fiber microphones
Fig. 1 Monitoring of pulse vibration and various human movements[39]
Fig. 2 Different woven structures for the fabrics constructed with core-shell yarns[41]
Fig. 3 (A) Schematic description of the fabrication of the TIC-AF and SFA e-textile[46]. (B) Applications of the SFA e-textile in smart firefighting clothing for energy harvesting, real-time fire warning, and precise rescue location[46]. (C) Schematic diagram of manufacturing process of electrostatic sensor[47]. (D) Schematic illustration of the pressure-sensitive mechanism in a hierarchical fiber-based sensor system[47]. (E) Photograph of two vials with different weights and temperatures simultaneously placed on the sensor array, and the corres-ponding pressure and temperature sensing signals[47]
Fig. 4 (A) Schematic demonstration of preparation of the CNC and the sensing mechanisms for humidity and chemical vapor sensors[51]. (B) Photograph of the as-prepared CNC-30 with excellent flexibility and one water droplet on the CNC surface (inset)[51]. (C) The CNC based humidity sensor is fixed inside the mask[51]
Fig. 5 (A) Continuous and real-time wireless monitoring of cough and mask wearing by second harmonic[64]. (B) Photograph of the assembled smart face mask where the harmonic sensor is pasted on the inner layer of a surgical face mask[64]
Fig. 6 (A) Schematic illustrating the Janus wettability of a natural lotus leaf[68]. (B) Janus electronic textiles were used for sweat analysis and detection[68]. (C) The NCGP glucose sensor integrated into the elastic fabric was attached to the volunteer’s arm[69]. (D) Schematic representation of the cortisol aptamer sensor[70]. (E) Photos of wearing hydrogel patches before and after sweating[72]. (F) Optical images of the normalized %RGB value at various pH and various concentrations of Cl-, glucose, and Ca2+[72]
Fig. 7 The experimental design of self-powered wearable biosensor in baby diaper for monitoring neonatal jaundice[84]
Fig. 8 Schematic diagram of the assay process using the eye patch biosensor[87]
[1]
Zhang Y, Hu Z, Xiang H, Zhai G, Zhu M. Dyes. Pigm., 2019, 162: 705.
[2]
Wang Y, Ren J, Lv Z, Cao L, Lin S, Pei Y, Zhang Q, Shao Z, Ling S. Chem. Eng. J., 2022, 435: 134901.
[3]
Zhang Y, Li T, Zhang S, Jiang L, Xia J, Xie J, Chen K, Bao L, Lei J, Wang J. Chem. Eng. J., 2022, 436: 135226.
[4]
Sim D, Brothers M C, Slocik J M, Islam A E, Maruyama B, Grigsby C, Naik R, Kim S. Adv. Sci., 2022, 9: 2104426.
[5]
Wang H, Zhang Y, Liang X, Zhang Y,. ACS Nano, 2021, 15: 12497.
[6]
Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Adv. Mater., 2020, 32: 1901971.
[7]
Zhang M, Zhao M, Jian M, Wang C, Yu A, Yin Z, Liang X, Wang H, Xia K, Liang X, Zhai J, Zhang Y. Matter, 2019, 1: 168.
[8]
Liang X, Zhu M, Li H, Dou J, Jian M, Xia K, Li S, Zhang Y. Adv. Funct. Mater., 2022, 2200162.
[9]
Wang H, Wang H, Wang Y, Su X, Wang C, Zhang M, Jian M, Xia K, Liang X, Lu H, Li S, Zhang Y. ACS Nano, 2020, 14: 3219.
[10]
Taylor L W, Williams S M, Yan J S, Dewey O S, Vitale F, Pasquali M. Nano Lett., 2021, 21: 7093.
[11]
Liman M L R, Islam M T. J. Mater. Chem. A, 2022, 10: 2697.
[12]
Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Nat. Biomed. Eng., 2020, 4: 159.
[13]
Wu Y, Mechael S, Carmichael T B. Acc. Chem. Res., 2021, 54: 4051.
[14]
Fang Y, Chen G, Bick M, Chen J. Chem. Soc. Rev., 2021, 50: 9357.
[15]
Miao D, Cheng N, Wang X, Yu J, Ding B. Nano Lett., 2022, 22: 680.
[16]
Shi B Li, Chen A, Jen T C, Liu X, Shen G. Nano Lett., 2021, 14: 34.
[17]
Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang Z L. Adv. Mater., 2022, 2109355.
[18]
Wu Y, Dai X, Sun Z, Zhu S, Xiong L, Liang Q, Wong M-C, Huang L-B, Qin Q, Hao J. Nano Energy, 2022, 98: 107240.
[19]
Cornacchia M, Ozcan K, Zheng Y, Velipasalar S. IEEE Sensors Journal, 2017, 17: 386.
[20]
Koralli P, Mouzakis D E. Chemosensors, 2021, 9: 99.
[21]
Fang Y, Xu J, Xiao X, Zou Y, Zhao X, Zhou Y, Chen J. Adv. Mater., 2022, 2200252.
[22]
Ning C, Cheng R, Jiang Y, Sheng F, Yi J, Shen S, Zhang Y, Peng X, Dong K, Wang Z L. ACS Nano, 2022, 16: 2811.
[23]
Zhang S, Li L, Lu Y, Liu D, Zhang J, Hao D, Zhang X, Xiong L, Huang J. Appl. Mater. Today, 2022, 26: 101391.
[24]
颜廷义(Yan T Y,), 张光耀(Zhang G Y,), 喻琨(Yu K,), 李梦洁(Li M J,), 曲丽君(Qu L J,), 张学记(Zhang X J). 化学进展(Progress in Chemistry), 2022, 34: 884.

doi: 10.7536/PC210407
[25]
Yan W, Noel G, Loke G, Meiklejohn E, Khudiyev T, Marion J, Rui G, Lin J, Cherston J, Sahasrabudhe A, Wilbert J, Wicaksono I, Hoyt R W, Missakian A, Zhu L, Ma C, Joannopoulos J, Fink Y. Nature, 2022, 603: 616.
[26]
Ren K, West J E, Yu S M. J. Acoust. Soc. Am., 2014, 135: EL 291 - 7.
[27]
Sultana A, Alam M M, Ghosh S K, Middya T R, Mandal D. Energy, 2019, 166: 963.

doi: 10.1016/j.energy.2018.10.124
[28]
Hayber S E, Tabaru T E, Keser S, Saracoglu O G. Journal of Lightwave Technology, 2018, 36: 5650.
[29]
Zou J, Ling F, Shi X, Xu K, Wu H, Chen P, Zhang B, Ta D, Peng H. Small, 2021, 17: e2102052.
[30]
Nan N, He J, You X, Sun X, Zhou Y, Qi K, Shao W, Liu F, Chu Y, Ding B. Adv. Mater. Technol., 2019, 4: 1800338.
[31]
田明伟(Tian M W,), 张高晶(Zhang G J,), 曲丽君(Qu L J,), 王冰心(Wang B X,), 施养承(Shi Y C). 纺织高校基础科学学报(Basic Sciences Journal of Textile Universities), 2021, 34: 51.
[32]
Charlton P H, Kyriaco P A, Mant J, Marozas V, Chowienczyk P, Alastruey J. P IEEE, 2022, 110: 355.

doi: 10.1109/JPROC.2022.3149785 pmid: 35356509
[33]
Yuan X, Wu P, Gao Q, Xu J, Guo B, He Y. Mater. Horiz., 2022, 9: 961.
[34]
Zhang Y, Van Doremaele E, Ye G, Stevens T, Song J, Chiechi R, Van De Burgt Y. Adv. Mater., 2022, 2200393.
[35]
Chun K Y, Seo S, Han C S. Adv. Mater., 2022, 2110082.
[36]
Mokhtari F, Spinks G M, Fay C, Cheng Z, Raad R, Xi J, Foroughi J. Adv. Mater. Technol. 2020, 5: 1900900.
[37]
Wang L, Dou W, Chen J, Lu K, Zhang F, Abdulaziz M, Su W, Li A, Xu C, Sun Y. Mat. Sci. Eng. C-Mater, 2020, 117: 111345.
[38]
Song Z, Li W, Kong H, Chen M, Bao Y, Wang N, Wang W, Liu Z, Ma Y, He Y, Kang Z, Niu L. Chem. Eng. J., 2022, 444: 136481.
[39]
Wang Z, Si Y, Zhao C, Yu D, Wang W, Sun G. ACS Appl. Mater. Interfaces, 2019, 11: 27200.
[40]
Fan W J, He Q, Meng K Y, Tan X L, Zhou Z H, Zhang G Q, Yang J, Wang Z L. Sci. Adv., 2020, 6: eaay2840.
[41]
Lou M, Abdalla I, Zhu M, Wei X, Yu J, Li Z, Ding B. ACS Appl Mater Interfaces, 2020, 12: 19965.
[42]
Chen G, Au C, Chen J. Trends Biotechnol., 2021, 39: 1078.
[43]
Diao J A, Marwaha J S, Kvedar J C. Npj. Digit. Med., 2022, 5: 26.
[44]
Jung Y, Choi J, Yoon Y, Park H, Lee J, Ko S H. Nano Energy, 2022, 95: 107002.
[45]
Sandroni C, Nolan J P, Andersen L W, Bottiger B W, Cariou A, Cronberg T, Friberg H, Genbrugge C, Lilja G, Morley P T, Nikolaou N, Olasveengen T M, Skrifvars M B, Taccone F S, Soar J. Intens. Care. Med., 2022, 48: 261.
[46]
He H, Liu J, Wang Y, Zhao Y, Qin Y, Zhu Z, Yu Z, Wang J. ACS Nano, 2022, 16: 2953.
[47]
Wang Z, Zhang L, Liu J, Li C. Nanoscale, 2019, 11: 14242.
[48]
Kim D H, Bae J, Lee J, Ahn J, Hwang W T, Ko J, Kim I D. Adv. Funct. Mater., 2022, 2200463.
[49]
Santos-Vega M, Martinez P P, Vaishnav K G, Kohli V, Desai V, Bouma M J, Pascual M. Nat. Commun., 2022, 13: 533.

doi: 10.1038/s41467-022-28145-7 pmid: 35087036
[50]
Zhao Q, Jiang Y, Duan Z, Yuan Z, Zha J, Wu Z, Huang Q, Zhou Z, Li H, He F, Su Y, Tan C, Tai H. Chem. Eng. J., 2022, 438: 135588.
[51]
Huang X, Li B, Wang L, Lai X, Xue H, Gao J. ACS Appl. Mater. Interfaces, 2019, 11: 24533.
[52]
Lee Y, Park Y J, Kim C, Sod J H, Yeome B, Koo H J. Polymer, 2019, 164: 1.
[53]
Chen Z-C, Chang T-L, Su K-W, Lee H-S, Wang J-C. Sens. Actuat. B-Chem., 2021, 327: 128934.
[54]
Li Z, Askim J R, Suslick K S. Chem. Rev., 2019, 119: 231.
[55]
Wei Z, Zhou Z K, Li Q, Xue J, Di Falco A, Yang Z, Zhou J, Wang X. Small, 2017, 13: 1700109.
[56]
Jiang Y, Cheng Y, Liu S, Zhang H, Zheng X, Chen M, Khorloo M, Xiang H, Tang B Z, Zhu M. Natl. Sci. Rev., 2021, 8: nwaa135.
[57]
Maddirala G, Searle T, Wang X, Alici G, Sencadas V. Appl. Mater. Today, 2022, 26: 101361.
[58]
Pang Y, Xu X, Chen S, Fang Y, Shi X, Deng Y, Wang Z-L, Cao C. Nano Energy, 2022, 96: 107137.
[59]
Sang M, Zhang J, Liu S, Zhou J, Wang Y, Deng H, Li J, Li J, Xuan S, Gong X. Chem. Eng. J., 2022, 440: 135869.
[60]
Sun J, Cheng Y, Wang R R, Wang Y. CN 106705829 B, 2019.
[61]
Walter P, Podsiadly B, Zych M, Kaminski M, Skalski A, Raczynski T, Janczak D, Jakubowska M. Sensors, 2022, 22: 800.
[62]
Xu Y, Feng Q, Zhang C, Liu T. Compos. Commun., 2021, 25: 100693.
[63]
Wang P, Li G, Liu J, Hou Z, Meng C, Guo S, Liu C, Fan S. Adv. Mater. Interfaces, 2021, 2100998.
[64]
Ye Z, Ling Y, Yang M, Xu Y, Zhu L, Yan Z, Chen P Y. ACS Nano, 2022, 16: 5874.
[65]
Huang X, Liu Y, Zhou J, Nejad S K, Wong T H, Huang Y, Li H, Yiu C K, Park W, Li J, Su J, Zhao L, Yao K, Wu M, Gao Z, Li D, Li J, Shi R, Yu X. Npj. Flex. Election, 2022, 6: 10.
[66]
Komkova M A, Eliseev A, Poyarkov A, Daboss E V, Evdokimov P V, Eliseev A, Karyakin A. Biosens. Bioelectron., 2022, 202: 113970.
[67]
Liu Y, Huang X, Zhou J, Yiu C K, Song Z, Huang W, Nejad S K, Li H, Wong T H, Yao K, Zhao L, Yoo W, Park W, Li J, Huang Y, Lam H R, Song E, Guo X, Wang Y, Dai Z, Chang L, Li W J, Xie Z, Yu X. Adv. Sci., 2022, 9: 2104635.
[68]
He X, Fan C, Xu T, Zhang X. Nano Lett., 2021, 21: 8880.
[69]
Shu Y, Su T, Lu Q, Shang Z, Xu Q, Hu X. Anal. Chem., 2021, 93: 16222.
[70]
An J E, Kim K H, Park S J, Seo S E, Kim J, Ha S, Bae J, Kwon O S. ACS Sens., 2022, 7: 99.
[71]
Huynh V L, Trung T Q, Meeseepong M, Lee H B, Nguyen T D, Lee N E. Adv. Funct. Mater., 2020, 30: 2004684.
[72]
Wang L, Xu T, He X, Zhang X. J. Mater. Chem. C, 2021, 9: 14938.
[73]
Ardalan S, Hosseinifard M, Vosough M, Golmohammadi H. Biosens Bioelectron, 2020, 168: 112450.
[74]
Avataneo V, Fanelli E, De Nicolo A, Rabbia F, Palermiti A, Pappaccogli M, Cusato J, De Rosa F G, D’avolio A, Veglio F. Front. Pharmacol., 2021, 12: 755184.
[75]
Ganelin-Cohen E, Tartakovsky E, Klepfish E, Golderman S, Rozenberg A, Kaplan B. Front. Immunol., 2022, 821499.
[76]
Sun M, Pei X, Xin T, Liu J, Ma C, Cao M, Zhou M. Anal. Chem., 2022, 94: 1890.
[77]
Mani V, Beduk T, Khushaim W, Ceylan A E, Timur S, Wolfbeis O S, Salama K N. Trends Anal. Chem., 2021, 135: 116164.
[78]
Mishra R K, Sempionatto J R, Li Z, Brown C, Galdino N M, Shah R, Liu S, Hubble L J, Bagot K, Tapert S, Wang J. Talanta, 2020, 211: 120757.
[79]
Ghorbanizamani F, Moulahoum H, Timur S. IEEE Sens. J., 2022, 22: 1146.
[80]
Shukla R P, Aroosh M, Matzafi A, Ben‐Yoav H. Adv. Funct. Mater., 2021, 31: 2004146.
[81]
Uribarri J, Oh M S. J. Am. Soc. Nephrol., 2021, 32: 1025.

doi: 10.1681/ASN.2020101509 pmid: 33769949
[82]
Xu Q, Pan Y, Liu X, Gao Y, Luan X, Zeng F, Zhou D, Long W, Wang Y, Song Y. Angew. Chem. Int. Ed., 2022, 61: e202114239.
[83]
Su H, Sun F, Lu Z, Zhang J, Zhang W, Liu J. Sens. Actuat. B-Chem., 2022, 357: 131459.
[84]
Ning Z, Long Z, Yang G, Xing L, Xue X. Biosensors, 2022, 12: 164.
[85]
Tseng R C, Chen C C, Hsu S M, Chuang H S. Sensors, 2018, 18: 2651.
[86]
Chu M X, Miyajima K, Takahashi D, Arakawa T, Sano K, Sawada S, Kudo H, Iwasaki Y, Akiyoshi K, Mochizuki M, Mitsubayashi K. Talanta, 2011, 83: 960.
[87]
Xu J, Tao X, Liu X, Yang L. Anal Chem, 2022, 94: 8659.
[88]
Song G, Jiang D, Wu J, Sun X, Deng M, Wang L, Hao C, Shi J, Liu H, Tian Y, Chen M. Chem. Eng. J., 2022, 440: 135979.
[89]
Zhang D, Yang Y, Xu Z, Wang D, Du C. J. Mater. Chem. A, 2022, DOI: 10.1039/D2TA01788A.

doi: 10.1039/D2TA01788A
[90]
Wang S, Jiang Y, Tai H, Liu B, Duan Z, Yuan Z, Pan H, Xie G, Du X, Su Y. Nano Energy, 2019, 63: 103829.
[91]
Drmosh Q A, Olanrewaju Alade I, Qamar M, Akbar S. Chem. Asian. J., 2021, 16: 1519.
[92]
Zagorskis A, Januševi? ius T, Danila V. Processes, 2021, 10: 57.
[93]
Zhang C, Zheng Y, Ding Y, Zheng X, Xiang Y, Tong A. Talanta, 2022, 236: 122845.
[94]
Lin Y, Chen J, Tavakoli M M, Gao Y, Zhu Y, Zhang D, Kam M, He Z, Fan Z. Adv. Mater., 2019, 31: 1804285.
[95]
Su Y, Yang T, Zhao X, Cai Z, Chen G, Yao M, Chen K, Bick M, Wang J, Li S, Xie G, Tai H, Du X, Jiang Y, Chen J. Nano Energy, 2020, 74: 104941.
[96]
Nguyen P Q, Soenksen L R, Donghia N M, Angenent-Mari N M, De Puig H, Huang A, Lee R, Slomovic S, Galbersanini T, Lansberry G, Sallum H M, Zhao E M, Niemi J B, Collins J J. Nat. Biotechnol., 2021, 39: 1366.

doi: 10.1038/s41587-021-00950-3 pmid: 34183860
[97]
He G, Wang L, Bao X, Lei Z, Ning F, Li M, Zhang X, Qu L. Composites Part B, 2022, 232,109618.
[98]
Jiang F, Zhou X, Lv J, Chen J, Chen J, Kongcharoen H, Zhang Y, Lee P S. Adv. Mater., 2022,2200042.
[99]
Prakash J, Rao P T, Ghorui S, Bahadur J, Jain V, Dasgupta K. Sens. Actuat. B-Chem., 2022, 359: 131606.
[100]
Wang Y, Ren J, Ye C, Pei Y, Ling S. Nano-Micro Lett., 2021, 13: 72.
[101]
Zhao T, Fu Y, Sun C, Zhao X, Jiao C, Du A, Wang Q, Mao Y, Liu B. Biosens. Bioelectron., 2022, 205: 114115.
[1] Tingyi Yan, Guangyao Zhang, Kun Yu, Mengjie Li, Lijun Qu, Xueji Zhang. Smartphone-Based Point-of-Care Testing [J]. Progress in Chemistry, 2022, 34(4): 884-897.