中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 285-300 DOI: 10.7536/PC210116 Previous Articles   Next Articles

• Review •

Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage

Caiwei Wang1,2, Dongjie Yang1,2(), Xueqing Qiu3,4, Wenli Zhang3,4   

  1. 1 School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510640, China
    2 Guangdong Provincial Engineering Research Center for Green Fine Chemicals,Guangzhou 510640, China
    3 School of Chemical Engineering and Light Industry, Guangdong University of Technology,Guangzhou 510006, China
    4 Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology,Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Contact: Dongjie Yang
  • Supported by:
    National Key Research and Development Program of China(2018YFB1501503); National Natural Science Foundation of China(22038004); National Natural Science Foundation of China(21878114); Research and Development Program in Key Fields of Guangdong Province(2020B1111380002); Natural Science Foundation of Guangdong Province(2017A030308012); Natural Science Foundation of Guangdong Province(2018B030311052)
Richhtml ( 59 ) PDF ( 1053 ) Cited
Export

EndNote

Ris

BibTeX

Lignin is a renewable resource with the advantages of low cost, high carbon content, high aromaticity and easy collection. Lignin is regarded as one of the most important raw carbonaceous materials for industry to prepare new porous carbon materials in a large scale. It is of great strategic significance to alleviate the consumption of fossil fuel resources and deepen the sustainable development. Porous carbon materials have an extraordinary application prospect in the fields of energy storage materials, because of their high conductivity, high specific surface area, abundant porosity, excellent stability, etc. In this review, the latest research advances and developments for the preparation of lignin-derived porous carbon materials (LPCM) by template, activation and hydrothermal methods are reviewed pivotally. Meanwhile, the influences of pyrolysis parameters on the micro-structure of LPCM are summarized in detail. Furthermore, the applications of LPCM as the electrode materials for lithium-ion batteries, sodium-ion batteries and supercapacitors are illustrated emphatically. However, there exist some bottlenecks that the preparation processes of LPCM are complicated and their energy storage performances are relatively poor. Thus, the optimization of ion/electron diffusion kinetics, the synergistic effect of multiple energy storage mechanisms and the development of the green and facile preparation processes are proposed to conquer these challenges. The development of advanced carbonization techniques to construct the reasonable hierarchical porous structure, precise regulating the suitable interlayer spacing and the highly ordered arrangement of carbon layers, functionally modifying surface microenvironment, and the direct establishment of the relationship between carbonization parameters and electrochemical performance are the research directions to prepare LPCM with the high energy storage performances in the future.

Contents

1 Introduction

2 Preparation of lignin-derived porous carbon materials (LPCM)

2.1 Activation methods

2.2 Template methods

2.3 Hydrothermal method

3 Applications of LPCM in energy storage materials

3.1 Lithium-ion batteries

3.2 Sodium-ion batteries

3.3 Supercapacitors

4 Conclusion and outlook

Table 1 Structural properties of LPCM prepared by direct carbonization and physical activation
Table 2 Structural properties of LPCM prepared by chemical activation
Fig. 1 Schematic diagram of LPCM prepared by hard template
Fig. 2 Schematic diagram of flower-like LPCM prepared by hard template using lamellar MgO[37]
Fig. 3 Schematic diagram of LPCM prepared by soft template[38]
Fig. 4 Schematic diagram of LPCM prepared by dual templates[36]
Table 3 Performances of LPCM anodes in lithium-ion batteries
Fig. 5 (a) Schematic diagram of LPCM prepared by ZnCO3, (b, c) TEM images of HLPC-ZnCO3-600, (d) Cycling performance of HLPC-ZnCO3-600 at 0.2 A/g, (e) Rate performance of HLPC-ZnCO3-600[56]
Fig. 6 (a) Schematic diagram of SiO2@LPCM prepared by dual templates, (b, c) SEM images of LHC/SiO2-21, (d) TEM image of LHC/SiO2-21, (e) Cycling performance of LHC/SiO2-21 at 0.1 A/g, (f) Rate performance of LHC/SiO2-21[58]
Table 4 Performances of lignin-derived hard carbon anodes in sodium-ion batteries
Fig. 7 (a) Schematic diagram of hard carbon prepared from alkali lignin and sodium lignosulphonate, (b) SEM image of alkali lignin derived hard carbon, (c) SEM image of sodium lignosulphonate derived hard carbon, (d) TEM image of alkali lignin derived hard carbon, (e) Initial coulombic efficiency, (f) Cycling performances at 1/10 C[68]
Fig.8 (a, b) SEM and TEM images of lignin-derived hard carbon prepared at 900 ℃ and 1300 ℃, (c) Cycling performances at 0.05 A/g, (d) Rate performances[69]
Fig. 9 Evolution of sodium-ion storage mechanisms in hard carbon prepared at different temperature[78]
Table 5 Performances of LPCM electrodes in supercapacitors
Raw materials Preparation conditions Specific surface area (m2/g) Total pore
volume (cm3/g)
Capacity (F/g) Scan rate (A/g) Electrolyte ref
Alkali lignin/KOH Carbonization at 600 ℃, 1 h; lignin char:KOH=1:3, activation at 800 ℃, 2 h 2223 1.06 276 1 6 M KOH 84
Alkali lignin/KOH Carbonization at 500 ℃, 1 h; lignin char:KOH=1:4, activation at 800 ℃, 1 h 3775 2.70 287 0.2 6 M KOH 85
Organosolv lignin/
KOH
Carbonization at 400 ℃, 1 h; Lignin:KOH=1:3, activation at 700 ℃, 1 h, 10 ℃/min 2265 - 336 1 6 M KOH 86
Enzymatic hydrolysis lignin/KOH Hydrothermal pretreatment at 200 ℃, 24 h; hydrothermally treated lignin:KOH=1:2, activation at 800 ℃, 1 h, 3 ℃/min 2218 - 312 1 6 M KOH 50
Enzymatic hydrolysis lignin/KOH Hydrothermal pretreatment at 180 ℃, 18 h, hydrothermally treated lignin:KOH=1:2, activation at 800 ℃, 1 h, 5 ℃/min 1660 0.78 420 0.1 6 M KOH 87
Sodium lignosulphonate Carbonization at 700 ℃, 1 h, 5 ℃/min 903 0.53 247 0.05 7 M KOH 85
Sodium lignosulphonate Pre-oxidation at 120 ℃, 2 h, 5 ℃/min, 200 ℃, 4 h, 0.5 ℃/min; carbonization at 700 ℃, 1 h, 5 ℃/min 1255 0.87 276 0.1 7 M KOH 89
Alkali lignin Carbonization at 400 ℃, 1 h, 2 ℃/min; 700 ℃, 1 h, 4 ℃/min 1269 0.60 245 0.2 6 M KOH 90
Alkali lignin/F127 Lignin:F127=45:72, Carbonization at 400 ℃, 1 ℃/min; 1000 ℃, 15 min, 2 ℃/min 185 0.28 77.1 - 6 M KOH 88
Alkali lignin/F127/CO2 Lignin:F127=45:72, Carbonization at 400 ℃, 1 ℃/min; 1000 ℃, 15 min, 2 ℃/min, activation at 875 ℃, 4 L/min 624 0.73 102.3 6 M KOH
Alkali lignin/F127/KOH Lignin:F127=45:72, carbonization at 400 ℃, 1 ℃/min; 1000 ℃, 15 min, 2 ℃/min, lignin/F127:KOH=1:2, activation at 1000 ℃, 10 ℃/min 1148 1.00 91.7 6 M KOH
Sodium lignosulphonate/ZnC2O4 Lignin:ZnC2O4=1:2, carbonization at 650 ℃, 2 h, 5 ℃/min 1069 406 320 1 6 M KOH 91
Fig. 10 (a) Schematic diagram of LPCM prepared by hydrothermal treatment and KOH activation, (b) SEM image, (c) Rate performance, (d) Performance of assembled symmetric supercapacitor[87]
Fig. 11 (a) Schematic diagram of LPCM prepared by gas exfoliation and in-situ ZnO template method, (b) SEM image of PLC-650-2, (c, d ) TEM images of PLC-650-2, (e) Rate performance, (f) Performance of assembled symmetric supercapacitor[91]
[1]
Upton B M, Kasko A M. Chem. Rev., 2016, 116(4): 2275.

doi: 10.1021/acs.chemrev.5b00345
[2]
Yan J, Meng Q L, Shen X J, Chen B F, Sun Y, Xiang J F, Liu H Z, Han B X. Sci. Adv., 2020, 6(45): 1951.
[3]
Fan L L, Zhang Y N, Liu S Y, Zhou N, Chen P, Cheng Y L, Addy M, Lu Q, Omar M M, Liu Y H, Wang Y P, Dai L L, Anderson E, Peng P, Lei H W, Ruan R. Bioresour. Technol., 2017, 241: 1118.

doi: 10.1016/j.biortech.2017.05.129
[4]
Li Y X, Zhou M S, Pang Y X, Qiu X Q. ACS Sustainable Chem. Eng., 2017, 5(4): 3321.

doi: 10.1021/acssuschemeng.6b03180
[5]
Li Y Y, Yang D J, Qiu X Q. Chemical Journal of Chinese Universities, 2017, 38(5): 880.
( 李圆圆, 杨东杰, 邱学青. 高等学校化学学报, 2017, 38(5): 880.)
[6]
Li Y Y, Qiu X Q, Qian Y, Xiong W L, Yang D J. Chem. Eng. J., 2017, 327: 1176.

doi: 10.1016/j.cej.2017.07.022
[7]
Qian Y, Qiu X Q, Zhu S P. Green Chem., 2015, 17(1): 320.

doi: 10.1039/C4GC01333F
[8]
Yu J, Wang X H, Yu P M, Qiu X Q, Yang D J, Qian Y. Fine Chemicals, 2019(10): 2089.
( 余爵, 王显华, 余佩敏, 邱学青, 杨东杰, 钱勇. 精细化工, 2019(10): 2089. )
[9]
Rodriguez-Reinoso F, Molina-Sabio M, González M T. Carbon, 1995, 33(1): 15.

doi: 10.1016/0008-6223(94)00100-E
[10]
Shen W Z, Zheng J T, Qin Z F, Wang J G. J. Colloid Interface Sci., 2003, 264(2): 467.

doi: 10.1016/S0021-9797(03)00376-X
[11]
Plaza-Recobert M, Trautwein G, PÉrez-Cadenas M, Alcañiz-Monge J. Fuel Process. Technol., 2017, 159: 345.

doi: 10.1016/j.fuproc.2017.02.006
[12]
Kijima M, Hirukawa T, Hanawa F, Hata T. Bioresour. Technol., 2011, 102(10): 6279.

doi: 10.1016/j.biortech.2011.03.023
[13]
Rodríguez-Mirasol J, Cordero T, Rodriguez J J. Carbon, 1993, 31(1): 53.

doi: 10.1016/0008-6223(93)90155-4
[14]
Fu K F, Yue Q Y, Gao B Y, Sun Y Y, Zhu L J. Chem. Eng. J., 2013, 228: 1074.

doi: 10.1016/j.cej.2013.05.028
[15]
Xie X F, Goodell B, Zhang D J, Nagle D C, Qian Y H, Peterson M L, Jellison J. Bioresour. Technol., 2009, 100(5): 1797.

doi: 10.1016/j.biortech.2008.09.057
[16]
Gergova K, Petrov N, Eser S. Carbon, 1994, 32(4): 693.

doi: 10.1016/0008-6223(94)90091-4
[17]
Carrott P J M, Suhas Carrott M M L R, Guerrero C I, Delgado L A. J. Anal. Appl. Pyrolysis, 2008, 82(2): 264.

doi: 10.1016/j.jaap.2008.04.004
[18]
Baklanova O N, Plaksin G V, Drozdov V A, Duplyakin V K, Chesnokov N V, Kuznetsov B N. Carbon, 2003, 41(9): 1793.

doi: 10.1016/S0008-6223(03)00149-0
[19]
Rodriguez-Mirasol J, Cordero T, Rodriguez J J. Energy Fuels, 1993, 7(1): 133.

doi: 10.1021/ef00037a021
[20]
Li X F, Xu Q, Fu Y, Guo Q X. Environ. Prog. Sustainable Energy, 2014, 33(2): 519.

doi: 10.1002/ep.v33.2
[21]
Gao Y, Yue Q Y, Gao B Y, Sun Y Y, Wang W, Li Q, Wang Y. Chem. Eng. J., 2013, 217: 345.

doi: 10.1016/j.cej.2012.09.038
[22]
Hayashi J, Kazehaya A, Muroyama K, Watkinson A P. Carbon, 2000, 38(13): 1873.

doi: 10.1016/S0008-6223(00)00027-0
[23]
Khezami L, Chetouani A, Taouk B, Capart R. Powder Technol., 2005, 157(1/3): 48.

doi: 10.1016/j.powtec.2005.05.009
[24]
Gonzalez-Serrano E, Cordero T, Rodríguez-Mirasol J, Rodríguez J J. Ind. Eng. Chem. Res., 1997, 36(11): 4832.

doi: 10.1021/ie970261q
[25]
Otowa T, Tanibata R, Itoh M. Gas Sep. Purif., 1993, 7(4): 241.

doi: 10.1016/0950-4214(93)80024-Q
[26]
Lozano-CastellÓ D, Calo J M, Cazorla-AmorÓs D, Linares-Solano A. Carbon, 2007, 45(13): 2529.

doi: 10.1016/j.carbon.2007.08.021
[27]
Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-AmorÓs D, Linares-Solano A, BÉguin F. Carbon, 2005, 43(4): 786.

doi: 10.1016/j.carbon.2004.11.005
[28]
Marceddu M, Saba M, Quochi F, Lai A, Huang J, Talapin D V, Mura A, Bongiovanni G. Nanotechnology, 2012, 23(1): 015201.

doi: 10.1088/0957-4484/23/1/015201
[29]
Yan J, Wang Q, Wei T, Fan Z J. Adv. Energy Mater., 2014, 4(4): 201470017.
[30]
Wang J C, Kaskel S. J. Mater. Chem., 2012, 22(45): 23710.

doi: 10.1039/c2jm34066f
[31]
Hubicki Z, Jakowicz A, Łodyga A. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 1999: 497.
[32]
Yu Z L, Li G C, Fechler N, Yang N, Ma Z Y, Wang X, Antonietti M, Yu S H. Angew. Chem. Int. Ed., 2016, 55(47): 14874.

doi: 10.1002/anie.v55.47
[33]
Hou J H, Cao C B, Idrees F, Ma X L. ACS Nano, 2015, 9(3): 2556.

doi: 10.1021/nn506394r
[34]
Knox J H, Ross P. Adv. Chromatogr., 1997, 37: 121.

pmid: 8995773
[35]
Xie A, Dai J D, Chen Y, Liu N, Ge W N, Ma P, Zhang R L, Zhou Z P, Tian S J, Li C X, Yan Y S. Adv. Powder Technol., 2019, 30(1): 170.

doi: 10.1016/j.apt.2018.10.020
[36]
Song Y G, Liu J L, Sun K, Xu W. RSC Adv., 2017, 7(76): 48324.

doi: 10.1039/C7RA09464G
[37]
Zhang B P, Yang D J, Qiu X Q, Qian Y, Wang H, Yi C H, Zhang D Q. Carbon, 2020, 162: 256.

doi: 10.1016/j.carbon.2020.02.038
[38]
Peng L, Hung C T, Wang S W, Zhang X M, Zhu X H, Zhao Z W, Wang C Y, Tang Y, Li W, Zhao D Y. J. Am. Chem. Soc., 2019, 141(17): 7073.

doi: 10.1021/jacs.9b02091
[39]
Saha D, Li Y C, Bi Z H, Chen J H, Keum J K, Hensley D K, Grappe H A, Meyer H M III, Dai S, Paranthaman M P, Naskar A K. Langmuir, 2014, 30(3): 900.

doi: 10.1021/la404112m
[40]
Saha D, Warren K E, Naskar A K. Carbon, 2014, 71: 47.

doi: 10.1016/j.carbon.2014.01.005
[41]
Song J, Kahveci D, Chen M L, Guo Z, Xie E Q, Xu X B, Besenbacher F, Dong M D. Langmuir, 2012, 28(14): 6157.

doi: 10.1021/la300469s pmid: 22397625
[42]
Qin H F, Jian R H, Bai J R, Tang J H, Zhou Y, Zhu B L, Zhao D J, Ni Z J, Wang L B, Liu W Q, Zhou Q F, Li X. ACS Omega, 2018, 3(1): 1350.

doi: 10.1021/acsomega.7b01870
[43]
Wang C W, Zhang S Y, Wu S Y, Cao Z Y, Zhang Y F, Li H, Jiang F H, Lyu J F. Bioresour. Technol., 2018, 263: 289.

doi: 10.1016/j.biortech.2018.05.008
[44]
Wang C W, Zhang S Y, Wu S Y, Cao Z Y, Zhang Y F, Li H, Jiang F H, Lyu J F. Bioresour. Technol., 2018, 254: 231.

doi: 10.1016/j.biortech.2018.01.088
[45]
Pereira Lopes R, Astruc D. Coord. Chem. Rev., 2021, 426: 213585.

doi: 10.1016/j.ccr.2020.213585
[46]
Guiotoku M, Hansel F A, Novotny E H, de Freitas Maia C M B. Pesq. Agropec. Bras., 2012, 47(5): 687.

doi: 10.1590/S0100-204X2012000500008
[47]
Wu S Y, Zhang S Y, Wang C W, Mu C, Huang X H. Fuel Process. Technol., 2018, 171: 293.

doi: 10.1016/j.fuproc.2017.11.025
[48]
Wang C W, Zhang S Y, Wu S Y, Sun M Y, Lyu J F. Fuel, 2020, 282: 118775.

doi: 10.1016/j.fuel.2020.118775
[49]
García A, Nieto A, Vila M, Vallet-Regí M. Carbon, 2013, 51: 410.

doi: 10.1016/j.carbon.2012.08.074
[50]
Zhang L M, You T T, Zhou T, Zhou X, Xu F. ACS Appl. Mater. Interfaces, 2016, 8(22): 13918.

doi: 10.1021/acsami.6b02774
[51]
Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhang J G, Qi Y, Xiao J. Science, 2020, 370(6522): 1313.

doi: 10.1126/science.abc3167
[52]
Zhang W L, Yin J, Lin Z Q, Lin H B, Lu H Y, Wang Y, Huang W M. Electrochim. Acta, 2015, 176: 1136.

doi: 10.1016/j.electacta.2015.08.001
[53]
Xi Y B, Yang D J, Qiu X Q, Wang H, Huang J H, Li Q. Ind. Crops Prod., 2018, 124: 747.

doi: 10.1016/j.indcrop.2018.08.018
[54]
Chang Z Z, Yu B J, Wang C Y. Electrochim. Acta, 2015, 176: 1352.

doi: 10.1016/j.electacta.2015.07.076
[55]
Xi Y B, Wang Y Y, Yang D J, zhang Z K, Liu W F, Li Q, Qiu X Q. J. Alloys Compd., 2019, 785: 706.

doi: 10.1016/j.jallcom.2019.01.039
[56]
Xi Y B, Huang S, Yang D J, Qiu X Q, Su H J, Yi C H, Li Q. Green Chem., 2020, 22(13): 4321.

doi: 10.1039/D0GC00945H
[57]
Chen T, Hu J Z, Zhang L, Pan J, Liu Y Y, Cheng Y T. J. Power Sources, 2017, 362: 236.

doi: 10.1016/j.jpowsour.2017.07.049
[58]
Huang S, Yang D J, Zhang W L, Qiu X Q, Li Q, Li C Q. Microporous Mesoporous Mater., 2021, 317: 111004.

doi: 10.1016/j.micromeso.2021.111004
[59]
Dahn J R, Zheng T, Liu Y, Xue J S. Science, 1995, 270(5236): 590.

doi: 10.1126/science.270.5236.590
[60]
Adelhelm P, Hu Y S, Chuenchom L, Antonietti M, Smarsly B M, Maier J. Adv. Mater., 2007, 19(22): 4012.

doi: 10.1002/(ISSN)1521-4095
[61]
Li Y Y, Li Z S, Shen P K. Adv. Mater., 2013, 25(17): 2474.

doi: 10.1002/adma.v25.17
[62]
Chou C Y, Kuo J R, Yen S C. ACS Sustainable Chem. Eng., 2018, 6(4): 4759.

doi: 10.1021/acssuschemeng.7b03887
[63]
Li C Q, Yang D J, Xi Y B, Qin Y L, Qiu X Q. Chem. J. Chin. Univ., 2018, 39(12): 2725.

doi: 10.1002/cjoc.v39.10
( 李常青, 杨东杰, 席跃宾, 秦延林, 邱学青. 高等学校化学学报, 2018, 39(12): 2725.)
[64]
Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-González J, Rojo T. Energy Environ. Sci., 2012, 5(3): 5884.

doi: 10.1039/c2ee02781j
[65]
Li L, Zheng Y, Zhang S L, Yang J P, Shao Z P, Guo Z P. Energy Environ. Sci., 2018, 11(9): 2310.

doi: 10.1039/C8EE01023D
[66]
Navarro-Suárez A M, Saurel D, Sánchez-Fontecoba P, Castillo-Martínez E, Carretero-González J, Rojo T. J. Power Sources, 2018, 397: 296.

doi: 10.1016/j.jpowsour.2018.07.023
[67]
Jia H, Sun N, Dirican M, Li Y, Chen C, Zhu P, Yan C Y, Zang J, Guo J S, Tao J S, Wang J S, Tang F C, Zhang X W. ACS Appl. Mater. Interfaces, 2018, 10(51): 44368.

doi: 10.1021/acsami.8b13033
[68]
Ghimbeu C M, Zhang B, Yuso A M, Rety B, Tarascon J M. Carbon, 2019, 153: 634.

doi: 10.1016/j.carbon.2019.07.026
[69]
Yoon D, Hwang J, Chang W, Kim J. ACS Appl. Mater. Interfaces, 2018, 10(1): 569.

doi: 10.1021/acsami.7b14776
[70]
Du L L, Wu W, Luo C, Xu D W, Guo H Y, Wang R, Zhang T, Wang J, Deng Y H. J. Electrochem. Soc., 2019, 166(2): A423.

doi: 10.1149/2.1361902jes
[71]
Ren W N, Zhang H F, Guan C, Cheng C W. Adv. Funct. Mater., 2017, 27(32): 1702116.

doi: 10.1002/adfm.v27.32
[72]
Ding J, Wang H L, Li Z, Kohandehghan A, Cui K, Xu Z W, Zahiri B, Tan X H, Lotfabad E M, Olsen B C, Mitlin D. ACS Nano, 2013, 7(12): 11004.

doi: 10.1021/nn404640c pmid: 24191681
[73]
Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147(4): 1271.

doi: 10.1149/1.1393348
[74]
Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147(12): 4428.

doi: 10.1149/1.1394081
[75]
Stevens D A, Dahn J R. J. Electrochem. Soc., 2001, 148(8): A803.

doi: 10.1149/1.1379565
[76]
Zhang B, Ghimbeu C M, Laberty C, Vix-Guterl C, Tarascon J M. Adv. Energy Mater., 2016, 6(1): 1501588.

doi: 10.1002/aenm.201501588
[77]
Cao Y L, Xiao L F, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z M, Saraf L V, Yang Z G, Liu J. Nano Lett., 2012, 12(7): 3783.

doi: 10.1021/nl3016957
[78]
Sun N, Guan Z, Liu Y W, Cao Y L, Zhu Q Z, Liu H, Wang Z X, Zhang P, Xu B. Adv. Energy Mater., 2019, 9(32): 1970125.

doi: 10.1002/aenm.v9.32
[79]
Sagues W J, Jain A, Brown D, Aggarwal S, Suarez A, Kollman M, Park S, Argyropoulos D S. Green Chem., 2019, 21(16): 4253.

doi: 10.1039/C9GC01806A
[80]
Torres-Canas F, Bentaleb A, Föllmer M, Roman J, Neri W, Ly I, DerrÉ A, Poulin P. Carbon, 2020, 163: 120.

doi: 10.1016/j.carbon.2020.02.077
[81]
Miller J R, Simon P. Science, 2008, 321(5889): 651.

doi: 10.1126/science.1158736 pmid: 18669852
[82]
Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Owusu K A, Mai L Q, Yu Y. Adv. Energy Mater., 2019, 9(36): 1901081.

doi: 10.1002/aenm.v9.36
[83]
Yin J, Zhang W L, Alhebshi N A, Salah N, Alshareef H N. Small Methods, 2020, 4(3): 1900853.

doi: 10.1002/smtd.v4.3
[84]
Yu B J, Chang Z Z, Wang C Y. Mater. Chem. Phys., 2016, 181: 187.

doi: 10.1016/j.matchemphys.2016.06.048
[85]
Zhang W L, Zhao M Z, Liu R Y, Wang X F, Lin H B. Colloids Surf. A: Physicochem. Eng. Aspects, 2015, 484: 518.

doi: 10.1016/j.colsurfa.2015.08.030
[86]
Wang K L, Cao Y H, Wang X M, Castro M A, Luo B, Gu Z R, Liu J, Hoefelmeyer J D, Fan Q H. J. Power Sources, 2016, 307: 462.

doi: 10.1016/j.jpowsour.2016.01.008
[87]
Guo N N, Li M, Sun X K, Wang F, Yang R. Green Chem., 2017, 19(11): 2595.

doi: 10.1039/C7GC00506G
[88]
Pang J, Zhang W F, Zhang J L, Cao G P, Han M F, Yang Y S. Green Chem., 2017, 19(16): 3916.

doi: 10.1039/C7GC01434A
[89]
Pang J, Zhang W F, Zhang H, Zhang J L, Zhang H M, Cao G P, Han M F, Yang Y S. Carbon, 2018, 132: 280.

doi: 10.1016/j.carbon.2018.02.077
[90]
Liu F Y, Wang Z X, Zhang H T, Jin L, Chu X, Gu B N, Huang H C, Yang W Q. Carbon, 2019, 149: 105.

doi: 10.1016/j.carbon.2019.04.023
[91]
Fu F B, Yang D J, Zhang W L, Wang H, Qiu X Q. Chem. Eng. J., 2020, 392: 123721.

doi: 10.1016/j.cej.2019.123721
[92]
Si W J, Zhou J, Zhang S M, Li S J, Xing W, Zhuo S P. Electrochim. Acta, 2013, 107: 397.

doi: 10.1016/j.electacta.2013.06.065
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[4] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[5] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[6] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[7] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[8] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[9] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[10] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[11] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[12] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[13] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[14] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[15] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.