中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2503-2516 DOI: 10.7536/PC220415 Previous Articles   Next Articles

• Review •

From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications

Xing Zhan1, Wei Xiong1,3(), Michael K.H Leung2,3()   

  1. 1 School of Environmental Science and Technology, Dalian University of Technology,Dalian 116024, China
    2 School of Energy and Environment, City University of Hong Kong, Hong Kong, China
    3 City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
  • Received: Revised: Online: Published:
  • Contact: Wei Xiong, Michael K.H Leung
  • Supported by:
    National Natural Science Foundation of China(21875200); National Natural Science Foundation of China(22006007)
Richhtml ( 68 ) PDF ( 801 ) Cited
Export

EndNote

Ris

BibTeX

The social demand for energy is highly increasing because of the rapid development of economy. On the other hand, environmentally safe treatment of industrial wastewater is required to raise to a higher standard. Photocatalytic fuel cell (PFC), which adopts the photocatalytic electrode in the fuel cell configuration, can achieve the dual functions of efficient degradation of organic pollutant and simultaneous electricity generation. Therefore, PFC promises to have potential applications in harmless disposal and resource utilization of wastewater. The photocatalytic electrode is the core component of PFC system. The enhancement for the light activation of the photocatalytic electrode and the improvement of the separation rate of photogenerated carriers become the key strategies to improve the performance. In addition, the reactor design and optimization of operational parameters are also beneficial to improve the PFC performance. In this review, the basic principle of PFC has been introduced, and the progress of PFC in the treatment of environmental pollutants has also been reviewed. The optimization of PFC system for enhancing the pollution control performance and electricity generation efficiency has also been discussed in detail. This review provides theoretical guidance for further research of efficient and stable PFC systems for the wastewater treatment and energy recovery.

Contents

1 Introduction

2 The structure and working principle of PFC

3 The classification of the PFC

3.1 Single photoelectrode PFC system

3.2 Dual-photoelectrode fuel cells

4 Performance optimization of PFC system

4.1 Optimization of semiconductor electrode

4.2 Optimization of electrocatalytic cathode

4.3 Optimization of reactor structure

4.4 Optimization of the operational parameters

5 The application of PFC

5.1 Degradation of organic pollutants

5.2 Hydrogen production

5.3 Heavy metal reduction

6 Conclusion and outlook

Fig. 1 Basic structure and principle of PFC
Fig. 2 The basic structure and principle of single photoelectrode PFC system (a) and dual-photoelectrode PFC system (b)
Fig. 3 Mechanism diagram of common material-electrolyte interface engineering PFC system: (a) Fenton-PFC system; (b) PS-PFC system
Fig. 4 (a) Typical H-shape PFC reactor; (b) aqueous-film rotating disk PFC reactor; (c,d) Optofluidic based micro-PFC reactor
Fig. 5 (a)Planar microreactor; (b) multiple channel reactor; (c) tree shape channels microreactor; (d) snake shape channels microreactor
[1]
Pirsaheb M, Hossini H, Asadi F, Janjani H. Toxin Rev., 2017, 36(3): 210.
[2]
Kumar V, Sahu P, Singh P K, Markandeya. Int. J. Environ. Res., 2020, 14(6): 653.

doi: 10.1007/s41742-020-00290-1
[3]
Imaeda D, Kunisue T, Ochi Y, Iwata H, Tsydenova O, Takahashi S, Amano M, Petrov E A, Batoev V B, Tanabe S. Environ. Pollut., 2009, 157(3): 737.

doi: 10.1016/j.envpol.2008.11.027
[4]
Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Courcot D, Garcon G. Environ. Chem. Lett., 2018, 16(2): 439.

doi: 10.1007/s10311-017-0697-0
[5]
Cheng M, Zeng G M, Huang D L, Lai C, Xu P, Zhang C, Liu Y. Chem. Eng. J., 2016, 284: 582.

doi: 10.1016/j.cej.2015.09.001
[6]
Yang Y, Li X, Zhou C Y, Xiong W P, Zeng G M, Huang D L, Zhang C, Wang W J, Song B A, Tang X, Li X P, Guo H. Water Res., 2020, 184:116200.

doi: 10.1016/j.watres.2020.116200
[7]
Yan X J, Bao R L, Yu S L, Li Q F, Jing Q F. Russ. J. Phys. Chem. A, 2012, 86(9): 1479.

doi: 10.1134/S0036024412070333
[8]
Xue S Y, Wu C Z, Pu S Y, Hou Y Q, Tong T, Yang G, Qin Z J, Wang Z M, Bao J M. Environ. Pollut., 2019, 250: 338.

doi: 10.1016/j.envpol.2019.04.010
[9]
Zhen G Y, Lu X Q, Zhao Y C, Chai X L, Niu D J. Bioresour. Technol., 2012, 116: 259.

doi: 10.1016/j.biortech.2012.01.170
[10]
Wu Y W, Zhong L L, Yuan J L, Xiang W H, Xin X, Liu H M, Luo H Y, Li L Y, Chen M, Zhong D J, Zhang X H, Zhong N a B, Chang H X. Environ. Chem. Lett., 2021, 19(2): 1335.

doi: 10.1007/s10311-020-01141-3
[11]
Wang Z, Xie X F, Wang X, Mahmood A, Qiu H X, Sun J. J. Photochem. Photobiol. A, 2019, 384.
[12]
Zhou J H, Li D D, Zhao W N, Jing B H, Ao Z M, An T C. ACS Appl. Mater. Interfaces., 2021, 13(20): 23843.

doi: 10.1021/acsami.1c05617
[13]
Xie L N, Du T, Wang J, Ma Y Y, Ni Y S, Liu Z L, Zhang L, Yang C Y, Wang J L. Chem. Eng. J., 2021, 426:130617.

doi: 10.1016/j.cej.2021.130617
[14]
Kaneko M, Nemoto J, Ueno H, Gokan N, Ohnuki K, Horikawa M, Saito R, Shibata T. Electrochem. Commun., 2006, 8(2): 336.

doi: 10.1016/j.elecom.2005.12.004
[15]
Liu Y B, Li J H, Zhou B X, Li X J, Chen H C, Chen Q P, Wang Z S, Li L, Wang J L, Cai W M. Water Res., 2011, 45(13): 3991.

doi: 10.1016/j.watres.2011.05.004
[16]
Chen Q P, Li J H, Li X J, Huang K, Zhou B X, Cai W M, Shangguan W F. Environ. Sci. Technol., 2012, 46(20): 11451.

doi: 10.1021/es302651q
[17]
Osman M H, Shah A A, Walsh F C. Biosens. Bioelectron., 2010, 26(3): 953.

doi: 10.1016/j.bios.2010.08.057 pmid: 20864328
[18]
Xu L, Zhao Y Q, Doherty L, Hu Y S, Hao X D. Crit. Rev. Environ. Sci. Technol., 2016, 46(1): 60.

doi: 10.1080/10643389.2015.1061884
[19]
Liu Y B, Li J H, Zhou B X, Chen H C, Wang Z S, Cai W M. Chem. Commun., 2011, 47(37): 10314.

doi: 10.1039/c1cc13388h
[20]
Wang B, Zhang H, Lu X Y, Xuan J, Leung M K H. Chem. Eng. J., 2014, 253: 174.

doi: 10.1016/j.cej.2014.05.041
[21]
Yu Y X, Xie F J, Chen R, Zhu X, Liao Q, Ye D D, Li J W, Song S H. J. Power Sources, 2021, 487:229438.

doi: 10.1016/j.jpowsour.2020.229438
[22]
Zhang D, Wang Y M, Wang Y, Zhang Y, Song X M. J. Alloys. Compd., 2020, 815:152377.

doi: 10.1016/j.jallcom.2019.152377
[23]
Xia L G, Bai J, Li J H, Zeng Q Y, Li X J, Zhou B X. Appl. Catal., B, 2016, 183: 224.

doi: 10.1016/j.apcatb.2015.10.050
[24]
Xie S, Ouyang K. J. Colloid Interface Sci., 2017, 500: 220.

doi: 10.1016/j.jcis.2017.04.002
[25]
He Y, Yuan R H, Leung M K H. Mater. Lett., 2019, 236: 394.

doi: 10.1016/j.matlet.2018.10.096
[26]
Wu Z Y, Zhao G H, Zhang Y J, Liu J, Zhang Y N, Shi H J. J. Mater. Chem. A, 2015, 3(7): 3416.

doi: 10.1039/C4TA06604A
[27]
Qian B Z, Xu Q, Wu Y, Zhang Y, Li H, Wang Y, Wang B X, Li S, Song X M. J. Power Sources, 2020, 478:228756.

doi: 10.1016/j.jpowsour.2020.228756
[28]
Mondal P, Ghorui U K, Satra J, Mardanya S, Srivastava D N, Bhadu G R, Adhikary B. ACS Appl. Nano Mater., 2020, 3(4): 3876.

doi: 10.1021/acsanm.0c00604
[29]
Singh R, Dutta S. Fuel, 2018, 220: 607.

doi: 10.1016/j.fuel.2018.02.068
[30]
Yu M T, Shang C Q, Ma G, Meng Q G, Chen Z H, Jin M L, Shui L L, Zhang Y G, Zhang Z, Yuan M Z, Wang X, Zhou G F. Appl. Surf. Sci., 2019, 481: 255.

doi: 10.1016/j.apsusc.2019.03.056
[31]
Pan D L, Xiao S N, Chen X F, Li R P, Cao Y N, Zhang D Q, Pu S S, Li Z C, Li G S, Li H X. Environ. Sci. Technol., 2019, 53(7): 3697.

doi: 10.1021/acs.est.8b05685
[32]
Lee S L, Ho L N, Ong S A, Wong Y S, Voon C H, Khalik W F, Yusoff N A, Nordin N. Chemosphere, 2017, 166: 118.

doi: 10.1016/j.chemosphere.2016.09.082
[33]
Lam S M, Sin J C, Lin H, Li H X, Zeng H H. Chemosphere, 2020, 245:125565.

doi: 10.1016/j.chemosphere.2019.125565
[34]
Liang X H, Liu J C, Zeng D P, Li C, Chen S Y, Li H. Electrochim. Acta., 2016, 198: 40.

doi: 10.1016/j.electacta.2016.03.023
[35]
Chen X, Chen R, Zhu X, Liao Q, Zhang Y X, Ye D D, Zhang B, Yu Y X, Li J W. J. Catal., 2019, 372: 182.

doi: 10.1016/j.jcat.2019.02.031
[36]
Wang H N, Chen X, Chen R, Zhu X, Liao Q, Ye D D, Zhang B, Yu Y X, Zhang W, Li J W. J. Power Sources, 2019, 435:226766.

doi: 10.1016/j.jpowsour.2019.226766
[37]
Zhao X, Li X, Wang Y, Lin J, Liu J, Shao H X. Environ. Sci. Water Res. Technol., 2020, 6(7): 1869.

doi: 10.1039/D0EW00130A
[38]
Andrade T S, Sa B a C, Sena I C, Neto A R S, Nogueira F G E, Lianos P, Pereira M C. J. Electroanal. Chem., 2021, 881:114948.

doi: 10.1016/j.jelechem.2020.114948
[39]
Liang D W, Han G D, Zhang Y J, Rao S Y, Lu S F, Wang H N, Xiang Y. Appl. Energy., 2016, 168: 544.

doi: 10.1016/j.apenergy.2016.01.118
[40]
Tang L N, Liu L F, Chen Q Y, Yang F L, Quan X. Electrochim. Acta., 2020, 362:137037.

doi: 10.1016/j.electacta.2020.137037
[41]
Yang W, Wang Y. Appl. Catal., B, 2021, 282:119574.

doi: 10.1016/j.apcatb.2020.119574
[42]
Hou Y P, Gan Y Y, Yu Z B, Chen X X, Qian L, Zhang B G, Huang L R, Huang J. J. Power Sources, 2017, 371: 26.

doi: 10.1016/j.jpowsour.2017.10.033
[43]
Chen Q P, Bai J, Li J H, Huang K, Li X J, Zhou B X, Cai W M. Chem. Eng. J., 2014, 252: 89.

doi: 10.1016/j.cej.2014.04.046
[44]
Zeng Q Y, Lyu L, Gao Y W, Chang S, Hu C. Appl. Catal., B, 2018, 238: 309.

doi: 10.1016/j.apcatb.2018.07.005
[45]
Lu Y, Chu Y C, Zheng W Z, Huo M X, Huo H L, Qu J, Yu H B, Zhao Y H. Electrochim. Acta., 2019, 320:134617.

doi: 10.1016/j.electacta.2019.134617
[46]
Jin C, Qin Y, Yang J H. Progress in Chemistry, 2014, 26(Z1): 225.
(金超, 秦瑶, 杨金虎. 化学进展, 2014, 26(Z1): 225.).
[47]
Zhu Y F, Zhou L, Jiang Q S. Ceram. Int., 2020, 46(1): 1158.

doi: 10.1016/j.ceramint.2019.09.084
[48]
Yu Y, Wu H H, Zhu B L, Wang S R, Huang W P, Wu S H, Zhang S M. Catal. Lett., 2008, 121(1-2): 165.

doi: 10.1007/s10562-007-9316-1
[49]
Welderfael T, Pattabi M, Pattabi R M, Thilipan G a K. J. Water Process. Eng., 2016, 14: 117.

doi: 10.1016/j.jwpe.2016.11.001
[50]
Xia J X, Yin S, Li H M, Xu H, Xu L, Xu Y G. Dalton Trans., 2011, 40(19): 5249.

doi: 10.1039/c0dt01511c
[51]
Wang Q Y, Liu Z Y, Feng H, Jin R C, Zhang S H, Gao S M. Ceram. Int., 2019, 45(3): 3995.

doi: 10.1016/j.ceramint.2018.11.075
[52]
Qi L H, Yin Z X, Zhang S, Ouyang Q Y, Li C Y, Chen Y J. J. Mater. Res., 2014, 29(6): 745.

doi: 10.1557/jmr.2014.50
[53]
Wang Y C, Wang Y R, Zhao J J, Chen M, Huang X B, Xu Y M. Appl. Catal., B, 2021, 284:119691.

doi: 10.1016/j.apcatb.2020.119691
[54]
Zerjav G, Roskaric M, Zavasnik J, Kovac J, Pintar A. Appl. Surf. Sci., 2022, 579:152196.

doi: 10.1016/j.apsusc.2021.152196
[55]
Kadam A N, Bhopate D P, Kondalkar V V, Majhi S M, Bathula C D, Tran A V, Lee S W. J. Ind. Eng. Chem., 2018, 61: 78.
[56]
Xu C Y, Zhang X H, Zhu M N, Zhang L, Sui P F, Feng R F, Zhang Y W, Luo J L. Appl. Catal., B, 2021, 298:120533.

doi: 10.1016/j.apcatb.2021.120533
[57]
Park H, Son N, Park B H, Joo S W, Kang M. Appl. Surf. Sci., 2021, 541:148347.

doi: 10.1016/j.apsusc.2020.148347
[58]
Ovando-Medina V M, Dector A, Antonio-Carmona I D, Romero-Galarza A, Martinez-Gutierrez H, Olivares-Ramirez J M. Int. J. Hydrogen Energy, 2019, 44(59): 31423.

doi: 10.1016/j.ijhydene.2019.10.003
[59]
He X H, Kai T H, Ding P. Environ. Chem. Lett., 2021, 19(6): 4563.

doi: 10.1007/s10311-021-01295-8
[60]
Yuan Y, Guo R T, Hong L F, Ji X Y, Lin Z D, Li Z S, Pan W G. Mater. Today Energy, 2021, 21:100829.
[61]
Ouyang K, Xie S, Wang P, Zhu J, Zhan P. Int. J. Hydrogen Energy, 2019, 44(14): 7288.

doi: 10.1016/j.ijhydene.2019.01.241
[62]
Huang M J, Zhou C H, Wen R T, Tian J Y, Huang W D, Wei H Y, Lu J S. J. Electrochem. Soc., 2022, 169(2):026502.

doi: 10.1149/1945-7111/ac4b21
[63]
Zha L N, Bai J, Zhou C H, Zhang Y, Li J H, Wang P B, Zhang B, Zhou B X. Chemosphere, 2022, 289:133119.

doi: 10.1016/j.chemosphere.2021.133119
[64]
Khalil M, Naumi F, Pratomo U, Ivandini T A, Kadja G T M, Mulyana J Y. Appl. Surf. Sci., 2021, 542:148746.

doi: 10.1016/j.apsusc.2020.148746
[65]
Lam S M, Sin J C, Zeng H H, Lin H, Li H X, Qin Z Z, Lim J W, Mohamed A R. Sep. Purif. Technol., 2021, 265:118495.

doi: 10.1016/j.seppur.2021.118495
[66]
Mikrut P, Mitoraj D, Beranek R, Macyk W. Appl. Surf. Sci., 2021, 566:150662.

doi: 10.1016/j.apsusc.2021.150662
[67]
Li K, Xu Y L, He Y, Yang C, Wang Y L, Jia J P. Environ. Sci. Technol., 2013, 47(7): 3490.

doi: 10.1021/es303968n
[68]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058
[69]
Xia T, Zhang Y L, Murowchick J, Chen X B. Catal. Today., 2014, 225: 2.

doi: 10.1016/j.cattod.2013.08.026
[70]
Zhu Y Y, Ling Q, Liu Y F, Wang H, Zhu Y F. Appl. Catal., B, 2016, 187: 204.

doi: 10.1016/j.apcatb.2016.01.012
[71]
Zhao K, Zeng Q Y, Bai J, Li J H, Xia L G, Chen S, Zhou B X. Water Res., 2017, 108: 293.

doi: S0043-1354(16)30847-8 pmid: 27839830
[72]
Li N, Tang S F, Rao Y D, Qi J B, Wang P K, Jiang Y, Huang H M, Gu J M, Yuan D L. Electrochim. Acta., 2018, 270: 330.

doi: 10.1016/j.electacta.2018.03.083
[73]
Xu P, Xu H, Zheng D Y. J. Power Sources, 2019, 421: 156.

doi: 10.1016/j.jpowsour.2019.03.033
[74]
Li L S, Chen S, Zhang Y, Li J H, Bai J, Zhou T S, Wang J C, Zhou C H, Xia L G, Xu Q J, Rahim M, Zhou B X. Appl. Catal., B, 2020, 268: 10.
[75]
Li J W, Li R Z, Zou L M, Liu X Y. Catalysts, 2019, 9(10): 20.

doi: 10.3390/catal9010020
[76]
Zhao D J, Yin G P, Wei J. Prog. Chem., 2009, 21(12): 2753.
(赵东江, 尹鸽平, 魏杰. 化学进展, 2009, 21(12): 2753.).
[77]
Hu Y Z, Zhang J J, Shen T, Li Z R, Chen K, Lu Y, Zhang J, Wang D L. ACS Appl. Mater. Interfaces., 2021, 13(25): 29551.

doi: 10.1021/acsami.1c05353
[78]
Wang N, Ma S B, Zuo P J, Duan J Z, Hou B R. Adv. Sci., 2021, 8(15):2100076.

doi: 10.1002/advs.202100076
[79]
Khalik W F, Ho L N, Ong S A, Voon C H, Wong Y S, Yusuf S Y, Yusoff N, Lee S L. Chemosphere, 2018, 202: 467.

doi: 10.1016/j.chemosphere.2018.03.113
[80]
Ge Y Z, Ye W Y, Shah Z H, Lin X J, Lu R W, Zhang S F. ACS Appl. Mater. Interfaces., 2017, 9(4): 3749.

doi: 10.1021/acsami.6b15020
[81]
Li Z, Ge R X, Su J W, Chen L. Adv. Mater. Interfaces., 2020, 7(14):2000396.

doi: 10.1002/admi.202000396
[82]
Tang T T, Li K, Shen Z M, Sun T H, Wang Y L, Jia J P. J. Power Sources, 2016, 301: 54.

doi: 10.1016/j.jpowsour.2015.09.126
[83]
Zhang J, Li L W, Zheng J L, Yang P L, Wu X H, Cheng C X, Li J, Tian Y J, Wang F. Chem. Eng. J., 2019, 361: 1198.

doi: 10.1016/j.cej.2018.12.178
[84]
Li L S, Bai J, Chen S, Zhang Y, Li J H, Zhou T S, Wang J C, Guan X H, Zhou B X. Chem. Eng. J., 2020, 399:125839.

doi: 10.1016/j.cej.2020.125839
[85]
Seger B, Kamat P V. J. Phys. Chem. C, 2009, 113(43): 18946.

doi: 10.1021/jp907367k
[86]
Antoniadou M, Lianos P. Photochem. Photobiol. Sci., 2011, 10(3): 431.

doi: 10.1039/c0pp00148a
[87]
Tang T, Li K, Ying D, Sun T, Wang Y, Jia J. Int. J. Hydrogen Energy, 2014, 39(19): 10258.

doi: 10.1016/j.ijhydene.2014.04.134
[88]
Li K, Zhang H B, Tang T T, Xu Y L, Ying D W, Wang Y L, Jia J P. Water Res., 2014, 62: 1.

doi: 10.1016/j.watres.2014.05.044
[89]
Li K, Zhang H B, Tang Y P, Ying D W, Xu Y L, Wang Y L, Jia J P. Appl. Catal., B, 2015, 164: 82.

doi: 10.1016/j.apcatb.2014.09.017
[90]
Zhang J, Yang P L, Zheng J L, Li J, Lv S, Jin T X, Zou Y N, Xu P Y, Cheng C X, Zhang Y Q. Chem. Eng. J., 2020, 392: 9.
[91]
Li K, Zhang H B, Ma Y P, Sun T H, Jia J P. Electrochim. Acta, 2019, 303: 329.

doi: 10.1016/j.electacta.2019.02.102
[92]
Li L, Wang G Y, Chen R, Zhu X, Wang H, Liao Q, Yu Y X. Lab Chip, 2014, 14(17): 3368.

doi: 10.1039/C4LC00595C
[93]
Liu J, Xia M, Chen R, Zhu X, Liao Q, Ye D D, Zhang B, Zhang W, Yu Y X. Sep. Purif. Technol., 2019, 229:115821.

doi: 10.1016/j.seppur.2019.115821
[94]
Wang N, Zhang X M, Wang Y, Yu W X, Chan H L W. Lab Chip, 2014, 14(6): 1074.

doi: 10.1039/C3LC51233A
[95]
Jayamohan H, Smith Y R, Hansen L C, Mohanty S K, Gale B K, Misra M. Appl. Catal., B, 2015, 174: 167.
[96]
Lei L, Wang N, Zhang X M, Tai Q D, Tsai D P, Chan H L W. Biomicrofluidics, 2010, 4(4):043004.

doi: 10.1063/1.3491471
[97]
Azzouz I, Habba Y G, Capochichi-Gnambodoe M, Marty F, Vial J, Leprince-Wang Y, Bourouina T. Microsyst. Nanoeng., 2018, 4:17093.

doi: 10.1038/micronano.2017.93
[98]
Li J F, An Z Y, Sun J Y, Tan C Y, Gao D, Tan Y, Jiang Y Y. ACS Appl. Mater. Interfaces., 2020, 12(31): 35475.

doi: 10.1021/acsami.0c10162
[99]
Rambabu P, Patel S, Gogoi D, Uppaluri R V S, Peela N R. Int. J. Hydrogen Energy, 2022, 47(4): 2152.

doi: 10.1016/j.ijhydene.2021.10.171
[100]
Yusuf A, Garlisi C, Palmisano G. Catal. Today., 2018, 315: 79.

doi: 10.1016/j.cattod.2018.05.041
[101]
Padoin N, Soares C. Chem. Eng. J., 2017, 310: 381.

doi: 10.1016/j.cej.2016.06.013
[102]
Zhang H, Xuan J, Xu H, Leung M K H, Leung D Y C, Zhang L, Wang H Z, Wang L. Appl. Energy., 2013, 112: 1131.

doi: 10.1016/j.apenergy.2013.01.077
[103]
Zaidani M, Hasan A, Al-Musharfy M, Sassi M. J. Pet. Sci. Eng., 2020, 184:106576.

doi: 10.1016/j.petrol.2019.106576
[104]
Chiuta S, Everson R C, Neomagus H, Le Grange L A, Bessarabov D G. Int. J. Hydrogen Energy, 2014, 39(22): 11390.

doi: 10.1016/j.ijhydene.2014.05.146
[105]
Makarem M A, Farsi M, Rahimpour M R. Int. J. Hydrogen Energy, 2021, 46(37): 19749.

doi: 10.1016/j.ijhydene.2020.07.221
[106]
Sateesh J, Guha K, Dutta A, Sengupta P, Rao K S. Microsyst. Technol., 2019, 25(7): 2553.

doi: 10.1007/s00542-018-4261-z
[107]
Pistoresi C, Fan Y L, Luo L G. Chem. Eng. Process., 2015, 95: 63.

doi: 10.1016/j.cep.2015.05.014
[108]
Li L, Fan W G, Xuan J, Leung M K H, Zheng K Q, She Y Y. Appl. Energy., 2017, 206: 413.

doi: 10.1016/j.apenergy.2017.08.175
[109]
Guima K E, Gomes L E, Fernandes J A, Wender H, Martins C A. ACS Appl. Mater. Interfaces., 2020, 12(49): 54563.

doi: 10.1021/acsami.0c14464
[110]
Lee S L, Ho L N, Ong S A, Wong Y S, Voon C H, Khalik W F, Yusoff N A, Nordin N. Chemosphere, 2018, 194: 675.

doi: 10.1016/j.chemosphere.2017.11.166
[111]
Chen X, Yao J, Xia B, Gan J, Gao N, Zhang Z. J. Hazard. Mater., 2020, 383:121220.

doi: 10.1016/j.jhazmat.2019.121220
[112]
Li J, Li J, Chen Q, Bai J, Zhou B. J. Hazard. Mater., 2013, 262: 304.

doi: 10.1016/j.jhazmat.2013.08.066
[113]
Zha L N, Bai J, Zhou C H, Zhang Y, Li J H, Wang P B, Zhang B, Zhou B X. Chemosphere, 2022, 289: 133119.

doi: 10.1016/j.chemosphere.2021.133119
[114]
Xia M, Chen R, Zhu X, Liao Q, An L, Wang Z B, He X F, Jiao L. Sci. Bull., 2016, 61(21): 1699.

doi: 10.1007/s11434-016-1178-8
[115]
Lee S L, Ho L N, Ong S A, Wong Y S, Voon C H, Khalik W F, Yusoff N A, Nordin N. Chemosphere, 2018, 209: 935.

doi: 10.1016/j.chemosphere.2018.06.157
[116]
Jang J, Kang Y, Han J H, Jang K, Kim C M, Kim I S. Desalination, 2020, 491:114540.

doi: 10.1016/j.desal.2020.114540
[117]
Feng H, Chen M, Chen R, Zhu X, Liao Q, Ye D, Zhang B, An L, Yu Y, Zhang W. Ind. Eng. Chem. Res., 2020, 59(1): 137.

doi: 10.1021/acs.iecr.9b06146
[118]
Chen F Y, Li J H, Xia L G, Wang J C, Chen S, Zhang Y, Bai J, Li L S, Zhou T S, Rahim M, Xu Q J, Zhou B X. Appl. Catal., B, 2020, 277:119227.

doi: 10.1016/j.apcatb.2020.119227
[119]
Guo D L, Liu Y B, Ji H D, Wang C C, Chen B, Shen C S, Li F, Wang Y X, Lu P, Liu W. Environ. Sci. Technol., 2021, 55(6): 4045.

doi: 10.1021/acs.est.1c00349
[120]
Zhang Y, Li J H, Bai J, Li L S, Xia L G, Chen S, Zhou B X. Water Res., 2017, 125: 259.

doi: S0043-1354(17)30717-0 pmid: 28865375
[121]
Xia B, Yao J J, Han C X, Zhang Z, Chen X Y, Fang Y J. Chem. Pap., 2018, 72(2): 359.

doi: 10.1007/s11696-017-0285-6
[122]
Kee M-W, Lam S-M, Sin J-C, Zeng H, Mohamed A R. J. Photochem. Photobiol. A, 2020, 391:112353.

doi: 10.1016/j.jphotochem.2019.112353
[123]
Lui G, Jiang G P, Fowler M, Yu A P, Chen Z W. J. Power Sources, 2019, 425: 69.

doi: 10.1016/j.jpowsour.2019.03.091
[124]
Zhang J, Zheng J L, Yang W. Chem. Eng. J., 2021, 403:126368.

doi: 10.1016/j.cej.2020.126368
[125]
Vinu R, Madras G. Environ. Sci. Technol., 2008, 42(3): 913.

pmid: 18323122
[126]
He H B, Luo Z Z, Tang Z Y, Yu C L. Appl. Surf. Sci., 2019, 490: 460.

doi: 10.1016/j.apsusc.2019.05.260
[127]
Wang G H, Fan W Z, Li Q, Deng N S. Chemosphere, 2019, 216: 707.

doi: 10.1016/j.chemosphere.2018.10.199
[128]
Wang D W, Li Y, Puma G L, Lianos P, Wang C, Wang P F. J. Hazard. Mater., 2017, 323: 681.

doi: 10.1016/j.jhazmat.2016.10.037
No related articles found!