中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2085-2102 DOI: 10.7536/PC200857 Previous Articles   Next Articles

• Review •

Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors

Chen Liu1, Qiangxiang Li4, Di Zhang1, Yujie Li3, Jinquan Liu2(), Xilin Xiao2()   

  1. 1 School of Chemistry and Chemical Engineering, University of South China,Hengyang 421001, China
    2 Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China,Hengyang 421001, China
    3 School of Resource & Environment and Safety Engineering, University of South China,Hengyang 421001, China
    4 Ningxia Medical University Affiliated People’s Hospital of Autonomous Region,Yinchuan 750001, China
  • Received: Revised: Online: Published:
  • Contact: Jinquan Liu, Xilin Xiao
  • About author:
    † These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(11475079); Open Project Program of the State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University(2018010)
Richhtml ( 16 ) PDF ( 721 ) Cited
Export

EndNote

Ris

BibTeX

MCM-41 mesoporous silica nanoparticles(MSNs) have drawn a great deal of attention in biosensors, because of their specific structures and unique physical chemistry properties. Combined with various functional materials or molecules, such as DNA,signal probes and various active nanoparticles, MCM-41 MSNs can be developed into the multifunctional nanomaterials in the application of DNA biosensors. In particular, the spherical and porous film of MCM-41 MSNs have the advantages of high loading capacity, controlled release of pores and high specific surface area, which can effectively load various signal probes, control the spread of particles and fix numerous active nanomaterials. As a result, it will greatly improve the sensitivity of DNA biosensors. This review is intended to focus on the recent progress in synthetic methods, template removal, surface modification and application of MCM-41 MSNs. Firstly, the common methods synthesis and template removal of the spherical and porous film of MCM-41 MSNs are summarized along with a brief introduction on their merits and drawbacks. Secondly, surface modification methods are described, including surface stabilization and surface functionalization. Thirdly, the application of the spherical and porous film of MCM-41 MSNs based on the signal probe delivery system, molecular sieve and active nanomaterials’ carrier to improve sensitivity in DNA biosensors are concluded. The final part outlines the challenges and perspectives.

Content

1 Introduction

2 Syntheses of MCM-41 MSNs

2.1 Spherical MCM-41 MSNs

2.2 Porous film of MCM-41 MSNs

3 Methods of removing templates

3.1 High-temperature calcination

3.2 Solvent extraction method

3.3 Microwave removal

3.4 Ultrasonic removal

3.5 Oxidation treatment

3.6 Others

4 Surface modification and functionalization

4.1 Surface functional modification

4.2 Surface modification for specific targeting

5 Application of MCM-41 MSNs in DNA biosensors

5.1 Signal probe carrier

5.2 Molecular sieve

5.3 Active nanomaterials carrier

6 Conclusion and outlook

Fig. 1 The fluorescent signal delivery system of spherical MCM-41 MSNs loaded with fluorescent probes[161]
Fig. 2 The electrochemiluminescence signal delivery system of ITO/MCM-41-MSNs film loaded with electrochemiluminescence probe[169]
Fig. 3 The carrier for photo-electrochemistry signal amplification based on spherical MCM-41 MSNs fixed with AuNPs and quantum dots[209]
[1]
Tang Q, Yuan Y L, Xiao X L, Guo P, Hu J B, Ma D D, Gao Y Y. Microchimica Acta, 2013, 180(11/12): 1059.

doi: 10.1007/s00604-013-1021-8
[2]
Ye S J, Li H X, Cao W. Biosens. Bioelectron., 2011, 26(5): 2215.

doi: 10.1016/j.bios.2010.09.037
[3]
Zhang X R, Zhao Y Q, Zhou H R, Qu B. Biosens. Bioelectron., 2011, 26(5): 2737.

doi: 10.1016/j.bios.2010.09.051
[4]
Elicia L S,. Wong J,. Justin Gooding. Anal. Chem. 2006, 78: 2138.

pmid: 16579591
[5]
Downs M E A, Kobayashi S, Karube I. Anal. Lett., 1987, 20(12): 1897.

doi: 10.1080/00032718708078036
[6]
Lin X H, Wu P, Chen W, Zhang Y F, Xia X H. Talanta, 2007, 72(2): 468.

doi: 10.1016/j.talanta.2006.11.015
[7]
Dzudzevic Cancar H, Soylemez S, Akpinar Y, Kesik M, Göker S, Gunbas G, Volkan M, Toppare L. ACS Appl. Mater. Interfaces, 2016, 8(12): 8058.

doi: 10.1021/acsami.5b12383
[8]
Wang Z M, Zhang D, Xiao X L, Su C L, Li Z Y, Xue J H, Hu N, Peng P C, Liao L F, Wang H Q. Microchem. J., 2020, 155: 104767.
[9]
Xiao X L, Zhu G Z, Liao L F, Liu B, Yuan Y L, Wang Y S, He J, He B, Wu Y M. Electrochimica Acta, 2012, 74: 105.

doi: 10.1016/j.electacta.2012.04.006
[10]
Su C L, Li Z Y, Zhang D, Wang Z M, Zhou X, Liao L F, Xiao X L. Biosens. Bioelectron., 2020, 148: 111819.
[11]
Ting B P, Zhang J, Gao Z Q, Ying J Y. Biosens. Bioelectron., 2009, 25(2): 282.

doi: 10.1016/j.bios.2009.07.005
[12]
Wan Y, Wang P J, Su Y, Wang L H, Pan D, Aldalbahi A, Yang S L, Zuo X L. ACS Appl. Mater. Interfaces, 2015, 7(46): 25618.

doi: 10.1021/acsami.5b08817
[13]
Wang M Q, Du X Y, Liu L Y, Sun Q, Jiang X C. Chin. J. Anal. Chem., 2008, 36(7): 890.

doi: 10.1016/S1872-2040(08)60048-1
[14]
Ali A, Ansari A A, Kaushik A, Solanki P R, Barik A, Pandey M K, Malhotra B D. Mater. Lett., 2009, 63(28): 2473.

doi: 10.1016/j.matlet.2009.08.038
[15]
Cheng G F, Huang C H, Zhao J, Tan X L, He P G, Fang Y Z. Chin. J. Anal. Chem., 2009, 37(2): 169.

doi: 10.1016/S1872-2040(08)60083-3
[16]
Zhang W, Yang T, Zhuang X M, Guo Z Y, Jiao K. Biosens. Bioelectron., 2009, 24(8): 2417.

doi: 10.1016/j.bios.2008.12.024 pmid: 19167208
[17]
García-Mendiola T, Bravo I, LÓpez-Moreno J M, Pariente F, Wannemacher R, Weber K, Popp J, Lorenzo E. Sens. Actuat. B: Chem., 2018, 256: 226.

doi: 10.1016/j.snb.2017.10.105
[18]
Xiang Q, Huang J Y, Huang H Y, Mao W W, Ye Z Z. RSC Adv., 2018, 8(4): 1820.

doi: 10.1039/C7RA11945C
[19]
Zhang C, Lou J, Tu W W, Bao J C, Dai Z H. Anal., 2015, 140(2): 506.

doi: 10.1039/C4AN01284D
[20]
Sengiz C, Congur G, Eksin E, Erdem A. Electroanalysis, 2015, 27(8): 1855.

doi: 10.1002/elan.v27.8
[21]
Wang H J, Qian D, Xiao X L, Gao S Q, Cheng J L, He B, Liao L F, Deng J. Biosens. Bioelectron., 2017, 94: 663.

doi: 10.1016/j.bios.2017.03.055
[22]
Peng P C, Liao L F, Yu Z H, Jiang M, Deng J, Xiao X L. Int. J. Environ. Anal. Chem., 2019, 99(15): 1495.

doi: 10.1080/03067319.2019.1622697
[23]
Shao K, Wang B R, Nie A, Ye S Y, Ma J, Li Z H, Lv Z, Han H Y. Biosens. Bioelectron., 2018, 118: 160.

doi: 10.1016/j.bios.2018.07.029
[24]
Wu S, Li C, Shi H, Huang Y, Li G X. Anal. Chem., 2018, 90(16): 9929.

doi: 10.1021/acs.analchem.8b02127
[25]
Yan T T, Zhu L Y, Ju H X, Lei J P. Anal. Chem., 2018, 90(24): 14493.

doi: 10.1021/acs.analchem.8b04338
[26]
Dong S B, Zhao R T, Zhu J G, Lu X, Li Y, Qiu S F, Jia L L, Jiao X, Song S P, Fan C H, Hao R Z, Song H B. ACS Appl. Mater. Interfaces, 2015, 7(16): 8834.

doi: 10.1021/acsami.5b01438
[27]
Giovanni M, Setyawati M I, Tay C Y, Qian H, Kuan W S, Leong D T. Adv. Funct. Mater., 2015, 25(25): 3840.

doi: 10.1002/adfm.v25.25
[28]
Zhang L B, Guo S J, Zhu J B, Zhou Z X, Li T, Li J, Dong S J, Wang E K. Anal. Chem., 2015, 87(22): 11295.

doi: 10.1021/acs.analchem.5b02468
[29]
Amini B, Kamali M, Salouti M, Yaghmaei P. Biosens. Bioelectron., 2017, 92: 679.

doi: 10.1016/j.bios.2016.10.030
[30]
Li M H, Wang Y S, Cao J X, Chen S H, Tang X, Wang X F, Zhu Y F, Huang Y Q. Biosens. Bioelectron., 2015, 72: 29.
[31]
Tang Q, Yuan Y L, Xiao X L, Guo P, Hu J B, Ma D D, Gao Y Y. Microchimica Acta, 2013, 180(11/12): 1059.

doi: 10.1007/s00604-013-1021-8
[32]
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. J. Am. Chem. Soc., 1992, 114(27): 10834.

doi: 10.1021/ja00053a020
[33]
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359(6397): 710.

doi: 10.1038/359710a0
[34]
Liu S Q, Lebedev O I, Mertens M, Meynen V, Cool P, Tendeloo G V, Vansant E F. Microporous Mesoporous Mater., 2008, 116(1/3): 141.

doi: 10.1016/j.micromeso.2008.03.034
[35]
Zukal A, Thommes M, Čejka J. Microporous Mesoporous Mater., 2007, 104(1/3): 52.

doi: 10.1016/j.micromeso.2007.01.004
[36]
Yang J, Frost R L, Tao H, Wen M H. Chin. J. Pro. Eng., 2006, 6(2): 268.
[37]
Díaz de Greñu B, de los Reyes R, Costero A M, AmorÓs P, Ros-Lis J V. Nanomaterials, 2020, 10(6): 1092.

doi: 10.3390/nano10061092
[38]
Roth W J, Kresge C T, Vartuli J C, Leonowicz M E, Fung A S, McCullen S B. Studies in Surface Science and Catalysis.Amsterdam: Elsevier, 1995. 301.
[39]
Vartuli J C, Schmitt K D, Kresge C T, Roth W J, Leonowicz M E, McCullen S B, Hellring S D, Beck J S, Schlenker J L, Olson D H, Sheppard E W. Studies in Surface Science and Catalysis.Amsterdam: Elsevier, 1994. 53.
[40]
Sheng X Y, Gao J R, Han L, Jia Y X, Sheng W J. Microporous Mesoporous Mater., 2011, 143(1): 73.

doi: 10.1016/j.micromeso.2011.02.008
[41]
Jaroniec M, Kruk M, Sayari A. Studies in Surface Science and Catalysis.Amsterdam: Elsevier, 1998. 325.
[42]
Cakiryilmaz N, Arbag H, Oktar N, Dogu G, Dogu T. Catal. Today, 2019, 323: 191.

doi: 10.1016/j.cattod.2018.06.004
[43]
Borawake D D, Gupta A, Thorat S S. J. Biol. Chem. Chron, 2018, 4(3): 24.
[44]
Farjadian F, Ahmadpour P, Samani S M, Hosseini M. Microporous Mesoporous Mater., 2015, 213: 30.

doi: 10.1016/j.micromeso.2015.04.002
[45]
Pizzoccaro-Zilamy M A, Huiskes C, Keim E G, Sluijter S N, van Veen H, Nijmeijer A, Winnubst L, Luiten-Olieman M W J. ACS Appl. Mater. Interfaces, 2019, 11(20): 18528.

doi: 10.1021/acsami.9b03526
[46]
Yang X, He D G, Cao J, He X X, Wang K M, Zou Z. RSC Adv., 2015, 5(103): 84553.

doi: 10.1039/C5RA15016G
[47]
Castillo R R, Lozano D, González B, Manzano M, Izquierdo-Barba I, Vallet-Regí M. Expert. Opin. Drug Deliv., 2019, 16(4): 415.

doi: 10.1080/17425247.2019.1598375 pmid: 30897978
[48]
Kumar P, Tambe P, Paknikar K M, Gajbhiye V. J. Control. Release, 2018, 287: 35.

doi: 10.1016/j.jconrel.2018.08.024
[49]
He D G, He X X, Wang K M, Chen M, Cao J, Zhao Y X. J. Mater. Chem., 2012, 22(29): 14715.

doi: 10.1039/c2jm32185h
[50]
Özalp V C, Çam D, Hernandez F J, Hernandez L I, Schäfer T, Öktem H A. Anal., 2016, 141(8): 2595.

doi: 10.1039/C6AN00273K
[51]
Xiong Y, Deng C H, Zhang X M, Yang P Y. ACS Appl. Mater. Interfaces, 2015, 7(16): 8451.

doi: 10.1021/acsami.5b00515
[52]
Du Y, Guo S J, Qin H X, Dong S J, Wang E K. Chem. Commun., 2012, 48(6): 799.

doi: 10.1039/C1CC15303J
[53]
Anandan S, Okazaki M. Microporous Mesoporous Mater., 2005, 87(2): 77.

doi: 10.1016/j.micromeso.2005.07.036
[54]
Selvam P, Bhatia S K, Sonwane C G. Ind. Eng. Chem. Res., 2001, 40(15): 3237.

doi: 10.1021/ie0010666
[55]
Bayramoglu G, Ozalp V C, Dincbal U, Arica M Y. ACS Biomater. Sci. Eng., 2018, 4(4): 1437.

doi: 10.1021/acsbiomaterials.8b00018
[56]
Tasbasi B B, Guner B C, Sudagidan M, Ucak S, Kavruk M, Ozalp V C. Anal. Biochem., 2019, 587: 113449.
[57]
Saadaoui M, Fernández I, Sánchez A, Díez P, Campuzano S, Raouafi N, PingarrÓn J M, Villalonga R. Electrochem. Commun., 2015, 58: 57.

doi: 10.1016/j.elecom.2015.06.006
[58]
Stöber W, Fink A, Bohn E. J. Colloid Interface Sci., 1968, 26(1): 62.

doi: 10.1016/0021-9797(68)90272-5
[59]
Mathew A, Parambadath S, Park S S, Ha C S. Microporous Mesoporous Mater., 2014, 200: 124.

doi: 10.1016/j.micromeso.2014.08.033
[60]
Mody H M, Kannan S, Bajaj H C, Manu V, Jasra R V. J. Porous Mater., 2008, 15(5): 571.

doi: 10.1007/s10934-007-9135-1
[61]
Xu J Q, Chu W, Luo S Z. J. Mol. Catal. A: Chem., 2006, 256(1/2): 48.

doi: 10.1016/j.molcata.2006.03.078
[62]
Zhu Y F, Shi J L, Chen H R, Shen W H, Dong X P. Microporous Mesoporous Mater., 2005, 84(1/3): 218.

doi: 10.1016/j.micromeso.2005.05.001
[63]
Sun Z H, Wang L F, Liu P P, Sun B, Jiang D Z, Xiao F S. Chin. J. Chem., 2006, 24(11): 1653.

doi: 10.1002/(ISSN)1614-7065
[64]
Xu Y Q, Cao Y, Xia Z N. J. Central South Univ., 2012, 19(8): 2130.

doi: 10.1007/s11771-012-1255-3
[65]
Na Rungsi A, Luengnaruemitchai A, Wongkasemjit S, Chollacoop N, Chen S Y, Yoshimura Y. Appl. Catal. A: Gen., 2018, 563: 80.

doi: 10.1016/j.apcata.2018.06.028
[66]
Yoon S S, Son W J, Biswas K, Ahn W S. Bull. Korean Chem. Soc. 2008, 29(3): 609.

doi: 10.5012/bkcs.2008.29.3.609
[67]
Fowler C E, Khushalani D, Mann S. Chem. Commun., 2001(19): 2028.
[68]
MelÉndez-Ortiz H I, García-Cerda L A, Olivares-Maldonado Y, Castruita G, Mercado-Silva J A, Perera-Mercado Y A. Ceram. Int., 2012, 38(8): 6353.

doi: 10.1016/j.ceramint.2012.05.007
[69]
Xie W L, Zang X Z. Food Chem., 2016, 194: 1283.

doi: 10.1016/j.foodchem.2015.09.009
[70]
Ma C Z, Han L, Jiang Z, Huang Z H, Feng J, Yao Y, Che S N. Chem. Mater., 2011, 23(16): 3583.

doi: 10.1021/cm201356n
[71]
Teng Z G, Zheng G F, Dou Y Q, Li W, Mou C Y, Zhang X H, Asiri A M, Zhao D Y. Angew. Chem. Int. Ed., 2012, 51(9): 2173.

doi: 10.1002/anie.201108748
[72]
Kao K C, Lin C H, Chen T Y, Liu Y H, Mou C Y. J. Am. Chem. Soc., 2015, 137(11): 3779.

doi: 10.1021/jacs.5b01180
[73]
Walcarius A, Sibottier E, Etienne M, Ghanbaja J. Nat. Mater., 2007, 6(8): 602.

pmid: 17589513
[74]
Robertson C, Lodge A W, Basa P, Carravetta M, Hector A L, Kashtiban R J, Sloan J, Smith D C, Spencer J, Walcarius A. RSC Adv., 2016, 6(114): 113432.
[75]
Vilà N, AndrÉ E, Ciganda R, Ruiz J, Astruc D, Walcarius A. Chem. Mater., 2016, 28(8): 2511.

doi: 10.1021/acs.chemmater.6b00716
[76]
Zhou P, Yao L N, Su B. ACS Appl. Mater. Interfaces, 2020, 12(3): 4143.

doi: 10.1021/acsami.9b20165
[77]
Saadaoui M, Fernández I, Luna G M, Díez P, Campuzano S, Raouafi N, Sánchez A, PingarrÓn J M, Villalonga R. Anal. Bioanal. Chem., 2016, 408(26): 7321.

doi: 10.1007/s00216-016-9608-7 pmid: 27236313
[78]
Vilà N, Walcarius A. Electrochimica Acta, 2015, 179: 304.

doi: 10.1016/j.electacta.2015.02.169
[79]
He Y Y, Ding L H, Su B. Sci. China Chem., 2015, 58(10): 1593.

doi: 10.1007/s11426-015-5365-2
[80]
Yan F, Zheng W J, Yao L N, Su B. Chem. Commun., 2015, 51(100): 17736.

doi: 10.1039/C5CC08425C
[81]
Cai Q, Lin W Y, Xiao F S, Pang W Q, Chen X H, Zou B S. Microporous Mesoporous Mater., 1999, 32(1/2): 1.

doi: 10.1016/S1387-1811(99)00082-7
[82]
Porta F, Lamers G E M, Morrhayim J, Chatzopoulou A, Schaaf M den Dulk H, Backendorf C, Zink J I, Kros A. Adv. Healthc. Mater., 2013, 2(2): 281.

doi: 10.1002/adhm.v2.2
[83]
Tian B Z, Liu X Y, Yu C Z, Gao F, Luo Q, Xie S H, Tu B, Zhao D Y. Chem. Commun., 2002, (11): 1186.
[84]
Jabariyan S, Zanjanchi M A. Ultrason. Sonochemistry, 2012, 19(5): 1087.

doi: 10.1016/j.ultsonch.2012.01.012
[85]
Christopher A A, Davis M E. Chem. Mater., 2006, 18: 5634.

doi: 10.1021/cm061722d
[86]
Schmidt R, Stöcker M, Hansen E, Akporiaye D, Ellestad O H. Microporous Mater., 1995, 3(4/5): 443.

doi: 10.1016/0927-6513(94)00055-Z
[87]
AlOthman Z A, Apblett A W. Appl. Surf. Sci., 2010, 256(11): 3573.

doi: 10.1016/j.apsusc.2009.12.157
[88]
Barczak M. New J. Chem., 2018, 42(6): 4182.

doi: 10.1039/C7NJ04642A
[89]
Mirzajani R, Pourreza N, Zayadi A, Malakooti R, Mahmoodi H. Desalination Water Treat., 2016, 57(13): 5903.

doi: 10.1080/19443994.2015.1005690
[90]
Lin H P, Mou C Y, Liu S B, Tang C Y, Lin C Y. Microporous Mesoporous Mater., 2001, 44/45: 129.

doi: 10.1016/S1387-1811(01)00176-7
[91]
He J, Yang X B, Evans D G, Duan X. Mater. Chem. Phys., 2003, 77(1): 270.

doi: 10.1016/S0254-0584(01)00557-0
[92]
Du P D, Khieu D Q, Hoa T T. J. Sci., 2011, 69, 6.
[93]
Liu J Q, Cheng H, He D G, He X X, Wang K M, Liu Q Q, Zhao S Q, Yang X D. Anal. Chem., 2017, 89(17): 9062.

doi: 10.1021/acs.analchem.7b01739
[94]
Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink J I, Nel A E. ACS Nano, 2009, 3(10): 3273.

doi: 10.1021/nn900918w
[95]
Kawi S. Chem. Commun., 1998, (13): 1407.
[96]
Huang Z, Huang L, Shen S C, Poh C C, Hidajat K, Kawi S, Ng S C. Microporous Mesoporous Mater., 2005, 80(1/3): 157.

doi: 10.1016/j.micromeso.2004.12.016
[97]
Meretei E, Halász J, MÉhn D, KÓnya Z, Korányi T I, Nagy J B, Kiricsi I. J. Mol. Struct., 2003, 651/653: 323.

doi: 10.1016/S0022-2860(03)00108-X
[98]
Kecht J, Bein T. Microporous Mesoporous Mater., 2008, 116(1/3): 123.

doi: 10.1016/j.micromeso.2008.03.027
[99]
Keene M T J, Denoyel R, Llewellyn P L. Chem. Commun., 1998,(20): 2203.
[100]
Büchel G, Denoyel R, Llewellyn P L, Rouquerol J. J. Mater. Chem., 2001, 11(2): 589.
[101]
Lang N, Tuel A. Chem. Mater., 2004, 16(10): 1961.

doi: 10.1021/cm030633n
[102]
Meng H, Xue M, Xia T, Ji Z X, Tarn D Y, Zink J I, Nel A E. ACS Nano, 2011, 5(5): 4131.

doi: 10.1021/nn200809t
[103]
Zhang Y X, Hou Z Y, Ge Y K, Deng K R, Liu B, Li X J, Li Q S, Cheng Z Y, Ma P G, Li C X, Lin J. ACS Appl. Mater. Interfaces, 2015, 7(37): 20696.

doi: 10.1021/acsami.5b05522
[104]
Ariapad A, Zanjanchi M A, Arvand M. Desalination, 2012, 284: 142.

doi: 10.1016/j.desal.2011.08.048
[105]
Goworek J, Kierys A, Kusak R. Microporous Mesoporous Mater., 2007, 98(1/3): 242.

doi: 10.1016/j.micromeso.2006.09.011
[106]
Costa J A S, de Jesus R A, Santos D O, Mano J F, Romão L P C, Paranhos C M. Microporous Mesoporous Mater., 2020, 291: 109698.
[107]
Hikosaka R, Nagata F, Tomita M, Kato K. Colloids Surf. B: Biointerfaces, 2016, 140: 262.

doi: 10.1016/j.colsurfb.2015.12.054
[108]
Otalvaro J O, Avena M, Brigante M. J. Environ. Chem. Eng., 2019, 7(5): 103325.
[109]
Yokoi T, Kubota Y, Tatsumi T. Appl. Catal. A: Gen., 2012, 421/422: 14.

doi: 10.1016/j.apcata.2012.02.004
[110]
Vilà N, Allain C, Audebert P, Walcarius A. Electrochem. Commun., 2015, 59: 9.

doi: 10.1016/j.elecom.2015.06.012
[111]
Vilà N, Ghanbaja J, Walcarius A. Adv. Mater. Interfaces, 2016, 3(2): 201670010.
[112]
Ma X H, Zhao Y B, Xiao G F, Wu Z S. Acta Phys. Chim. Sin., 2008, 24(3): 492.

doi: 10.3866/PKU.WHXB20080325
[113]
Xie M, Shi H, Li Z, Shen H J, Ma K, Li B, Shen S, Jin Y. Colloids Surf. B: Biointerfaces, 2013, 110: 138.

doi: 10.1016/j.colsurfb.2013.04.009
[114]
Tian X N, Jiang Z Q, Jiang Y Y, Xu W T, Li C X, Luo L J, Jiang Z J. RSC Adv., 2016, 6(103): 101526.
[115]
Garcia F A C, Braga V S, Silva J C M, Dias J A, Dias S C L, Davo J L B. Catal. Lett., 2007, 119(1/2): 101.

doi: 10.1007/s10562-007-9204-8
[116]
Gleizes A N, Fernandes A, Dexpert-Ghys J. J. Alloys Compd., 2004, 374(1/2): 303.

doi: 10.1016/j.jallcom.2003.11.128
[117]
On D T, Desplantier-Giscard D, Danumah C, Kaliaguine S. Appl. Catal. A: Gen., 2001, 222(1/2): 299.

doi: 10.1016/S0926-860X(01)00842-0
[118]
Arean C O, Vesga M J, Parra J B, Delgado M R. Ceram. Int., 2013, 39(7): 7407.

doi: 10.1016/j.ceramint.2013.02.084
[119]
Talavera-Pech W A, Ávila-Ortega A, Pacheco-Catalán D, Quintana-Owen P, BarrÓn-Zambrano J A. Silicon, 2019, 11(3): 1547.

doi: 10.1007/s12633-018-9975-0
[120]
Khorshidi A, Shariati S. RSC Adv., 2014, 4(78): 41469.

doi: 10.1039/C4RA05550K
[121]
Sahoo B, Devi K S P, Sahu S K, Nayak S, Maiti T K, Dhara D, Pramanik P. Biomater. Sci., 2013, 1(6): 647.

doi: 10.1039/c3bm00007a
[122]
Burkett S L, Sims S D, Mann S. Chem. Commun., 1996(11): 1367.
[123]
Vunain E, Opembe N N, Jalama K, Mishra A K, Meijboom R. J. Therm. Anal. Calorim., 2014, 115(2): 1487.

doi: 10.1007/s10973-013-3350-6
[124]
Saadatjoo N, Golshekan M, Shariati S, Kefayati H, Azizi P. J. Mol. Catal. A: Chem., 2013, 377: 173.

doi: 10.1016/j.molcata.2013.05.007
[125]
Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2003, 125(15): 4451.

doi: 10.1021/ja028650l
[126]
Vivero-Escoto J L, Slowing I I, Wu C W, Lin V S Y. J. Am. Chem. Soc., 2009, 131(10): 3462.

doi: 10.1021/ja900025f pmid: 19275256
[127]
Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T. J. Am. Chem. Soc., 2010, 132(2): 552.

doi: 10.1021/ja905793q
[128]
Kim J, Jo C, Lim W G, Jung S, Lee Y M, Lim J, Lee H, Lee J, Kim W J. Adv. Mater., 2018, 30(29): 1707557.
[129]
Climent E, MondragÓn L, Martínez-Máñez R, SancenÓn F, Marcos M D, Murguía J R, AmorÓs P, Rurack K, PÉrez-Payá E. Angew. Chem., 2013, 125(34): 9106.

doi: 10.1002/ange.201302954
[130]
Cao C, Liu J Q, Tang S Y, Dai Z R, Xiao F B, Rang W Q, Liu L, Chen T, Yuan Y L, Li L. Microchimica Acta, 2020, 187(5): 1.

doi: 10.1007/s00604-019-3921-8
[131]
Wang Z F, Yang X, Feng J, Tang Y J, Jiang Y Y, He N Y. Anal., 2014, 139(23): 6088.

doi: 10.1039/C4AN01539H
[132]
Hou L, Zhu C L, Wu X P, Chen G N, Tang D P. Chem. Commun., 2014, 50(12): 1441.

doi: 10.1039/C3CC48453J
[133]
Pascual L, Baroja I, Aznar E, SancenÓn F, Marcos M D, Murguía J R, AmorÓs P, Rurack K, Martínez-Máñez R. Chem. Commun., 2015, 51(8): 1414.

doi: 10.1039/C4CC08306G
[134]
Roushani M, Ghanbari K. Microchimica Acta, 2019, 186(2): 1.

doi: 10.1007/s00604-018-3127-5
[135]
Azadbakht A, Roushani M, Abbasi A R, Derikvand Z. Anal. Biochem., 2016, 512: 58.

doi: S0003-2697(16)30234-2 pmid: 27515992
[136]
Shi X M, Fan G C, Shen Q M, Zhu J J. ACS Appl. Mater. Interfaces, 2016, 8(51): 35091.

doi: 10.1021/acsami.6b14466
[137]
Tan H X, Guo T, Zhou H Y, Dai H J, Yu Y, Zhu H K, Wang H X, Fu Y, Zhang Y H, Ma L. Anal. Bioanal. Chem., 2020, 412(23): 5627.

doi: 10.1007/s00216-020-02778-3
[138]
Li Z, Zhang Y T, Feng N P. Expert. Opin. Drug Deliv., 2019, 16(3): 219.

doi: 10.1080/17425247.2019.1575806
[139]
Zhu C L, Lu C H, Song X Y, Yang H H, Wang X R. J. Am. Chem. Soc., 2011, 133(5): 1278.

doi: 10.1021/ja110094g
[140]
Zhang Z X, Wang F A, Balogh D, Willner I. J. Mater. Chem. B, 2014, 2(28): 4449.

doi: 10.1039/C4TB00558A
[141]
Climent E, MondragÓn L, Martínez-Máñez R, SancenÓn F, Marcos M D, Murguía J R, AmorÓs P, Rurack K, PÉrez-Payá E. Angew. Chem. Int. Ed., 2013, 52(34): 8938.

doi: 10.1002/anie.201302954
[142]
Jimenez-Falcao S, Parra-Nieto J, PÉrez-Cuadrado H, Martínez-Máñez R, Martínez-Ruiz P, Villalonga R. Electrochem. Commun., 2019, 108: 106556.
[143]
Ribes À, Aznar E, Bernardos A, Marcos M D, AmorÓs P, Martínez-Máñez R, SancenÓn F. Chem. Eur. J., 2017, 23(36): 8581.

doi: 10.1002/chem.v23.36
[144]
Sun Y L, Zhu X D, Liu H, Dai Y X, Han R, Gao D D, Luo C N, Wang X Y, Wei Q. ACS Appl. Mater. Interfaces, 2020, 12(5): 5569.

doi: 10.1021/acsami.9b20255
[145]
Yang X Y, Wang A G, Liu J L. Talanta, 2013, 114: 5.

doi: 10.1016/j.talanta.2013.03.077
[146]
Zhou Q, Lin Y X, Lu M H, Tang D P. J. Mater. Chem. B, 2017, 5(48): 9600.

doi: 10.1039/C7TB02354E
[147]
Faria H A M, Zucolotto V. Biosens. Bioelectron., 2019, 131: 149.

doi: 10.1016/j.bios.2019.02.018
[148]
Jarczewska M, ZiÓłkowski R, GÓrski Ł, Malinowska E. Bioelectrochemistry, 2014, 96: 1.

doi: 10.1016/j.bioelechem.2013.11.003 pmid: 24334186
[149]
Zhang Z X, Wang F A, Sohn Y S, Nechushtai R, Willner I. Adv. Funct. Mater., 2014, 24(36): 5662.

doi: 10.1002/adfm.v24.36
[150]
Muthamizh S, Ribes À, Anusuyajanakiraman M, Narayanan V, Soto J, Martínez-Máñez R, Aznar E. Supramol. Chem., 2017, 29(11): 776.

doi: 10.1080/10610278.2017.1390238
[151]
Wang Y H, Jiang L, Chu L, Liu W, Wu S, Wu Y H, He X X, Wang K M. Biosens. Bioelectron., 2017, 87: 459.

doi: 10.1016/j.bios.2016.08.102
[152]
Wen Y, Yuan Y L, Li L, Ma D D, Liao Q, Hou S Y. Microchimica Acta, 2017, 184(10): 3909.

doi: 10.1007/s00604-017-2397-7
[153]
Cheng H, Liu J Q, Ma W J, Duan S D, Huang J, He X X, Wang K M. Anal. Chem., 2018, 90(21): 12544.

doi: 10.1021/acs.analchem.8b02470 pmid: 30261719
[154]
Zhang H, Zhang H L, Aldalbahi A, Zuo X L, Fan C H, Mi X Q. Biosens. Bioelectron., 2017, 89: 96.

doi: S0956-5663(16)30657-1 pmid: 27459883
[155]
Xu Y, Liu Y H, Wu Y, Xia X H, Liao Y Q, Li Q G. Anal. Chem., 2014, 86(12): 5611.

doi: 10.1021/ac5010458
[156]
Ercan M, Ozalp V C, Tuna B G. Anal. Biochem., 2017, 537: 78.

doi: 10.1016/j.ab.2017.09.004
[157]
Huang F C, Guo R Y, Xue L, Cai G Z, Wang S Y, Li Y B, Liao M, Wang M H, Lin J H. Sens. Actuat. B: Chem., 2020, 312: 127958.
[158]
Tan H X, Ma L, Guo T, Zhou H Y, Chen L, Zhang Y H, Dai H J, Yu Y. Anal. Chimica Acta, 2019, 1068: 87.

doi: 10.1016/j.aca.2019.04.014
[159]
Dehghani S, Danesh N M, Ramezani M, Alibolandi M, Lavaee P, Nejabat M, Abnous K, Taghdisi S M. Anal. Chimica Acta, 2018, 1030: 142.

doi: 10.1016/j.aca.2018.05.003
[160]
Oroval M, Climent E, Coll C, Eritja R, AviñÓ A, Marcos M D, SancenÓn F, Martínez-Máñez R, AmorÓs P. Chem. Commun., 2013, 49(48): 5480.

doi: 10.1039/c3cc42157k
[161]
Oroval M, Coll C, Bernardos A, Marcos M D, Martínez-Máñez R, Shchukin D G, SancenÓn F. ACS Appl. Mater. Interfaces, 2017, 9(13): 11332.

doi: 10.1021/acsami.6b15164
[162]
Li X M, Zhang H C, Tang Y R, Wu P, Xu S X, Zhang X F. ACS Sens., 2017, 2(6): 810.

doi: 10.1021/acssensors.7b00178
[163]
Liu M, Li B X, Cui X. Biosens. Bioelectron., 2013, 47: 26.

doi: 10.1016/j.bios.2013.02.047
[164]
Chen Z H, Tan Y, Xu K F, Zhang L, Qiu B, Guo L H, Lin Z Y, Chen G N. Biosens. Bioelectron., 2016, 75: 8.

doi: 10.1016/j.bios.2015.08.006
[165]
Feng Q M, Guo Y H, Xu J J, Chen H Y. ACS Appl. Mater. Interfaces, 2017, 9(20): 17637.

doi: 10.1021/acsami.7b04553
[166]
Ma F, Sun B, Qi H L, Zhang H G, Gao Q, Zhang C X. Anal. Chimica Acta, 2011, 683(2): 234.

doi: 10.1016/j.aca.2010.10.030
[167]
Gu Z F, Fu A C, Ye L, Kuerban K, Wang Y, Cao Z J. ACS Sens., 2019, 4(11): 2922.

doi: 10.1021/acssensors.9b01303
[168]
Wang J, Li X L, Zhang J D, Hao N, Xu J J, Chen H Y. Chem. Commun., 2015, 51(58): 11673.

doi: 10.1039/C5CC03693C
[169]
Liu J Q, He D G, Liu Q Q, He X X, Wang K M, Yang X, Shangguan J F, Tang J L, Mao Y F. Anal. Chem., 2016, 88(23): 11707.

doi: 10.1021/acs.analchem.6b03317
[170]
Saha S, Chan Y T, Soleymani L. ACS Appl. Mater. Interfaces, 2018, 10(37): 31178.

doi: 10.1021/acsami.8b12286
[171]
Liu X P, Chen J S, Mao C J, Niu H L, Song J M, Jin B K. Biosens. Bioelectron., 2018, 116: 23.

doi: 10.1016/j.bios.2018.05.036
[172]
Lv S, Zhang K Y, Zeng Y Y, Tang D P. Anal. Chem., 2018, 90(11): 7086.

doi: 10.1021/acs.analchem.8b01825
[173]
Li C X, Wang H Y, Shen J, Tang B. Anal. Chem., 2015, 87(8): 4283.

doi: 10.1021/ac5047032
[174]
Wen G M, Dong W X, Liu B, Li Z P, Fan L F. Biosens. Bioelectron., 2018, 117: 91.

doi: 10.1016/j.bios.2018.05.054
[175]
Zhou Q, Lin Y X, Shu J, Zhang K Y, Yu Z Z, Tang D P. Biosens. Bioelectron., 2017, 98: 15.

doi: 10.1016/j.bios.2017.06.033
[176]
Li F, Zhang H Q, Wang Z X, Newbigging A M, Reid M S, Li X F, Le X C. Anal. Chem., 2015, 87(1): 274.

doi: 10.1021/ac5037236
[177]
Xiang Y, Lu Y. Nat. Chem., 2011, 3(9): 697.

doi: 10.1038/nchem.1092 pmid: 21860458
[178]
Zhang Y N, Xue Q W, Liu J F, Wang H S. Biosens. Bioelectron., 2017, 87: 537.

doi: 10.1016/j.bios.2016.08.103
[179]
Shan Y K, Zhang Y, Kang W J, Wang B, Li J H, Wu X P, Wang S Y, Liu F. Sens. Actuat. B: Chem., 2019, 282: 197.

doi: 10.1016/j.snb.2018.11.062
[180]
Liang X L, Wang L, Wang D, Zeng L W, Fang Z Y. Chem. Commun., 2016, 52(10): 2192.

doi: 10.1039/C5CC08611F
[181]
Wang Y W, Kao K C, Wang J K, Mou C Y. J. Phys. Chem. C, 2016, 120(42): 24382.

doi: 10.1021/acs.jpcc.6b08116
[182]
Huang L L, Yang X J, Qi C, Niu X F, Zhao C L, Zhao X H, Shangguan D H, Yang Y H. Anal. Chimica Acta, 2013, 787: 203.

doi: 10.1016/j.aca.2013.05.024
[183]
Xiong H T, Zheng X W. Anal., 2014, 139(7): 1732.

doi: 10.1039/C3AN02187D
[184]
Sun Q Q, Yan F, Su B. Biosens. Bioelectron., 2018, 105: 129.

doi: 10.1016/j.bios.2018.01.026
[185]
Li L Y, Wang L L, Xu Q, Xu L, Liang W, Li Y, Ding M, Aldalbahi A, Ge Z L, Wang L H, Yan J, Lu N, Li J, Wen Y L, Liu G. ACS Appl. Mater. Interfaces, 2018, 10(8): 6895.

doi: 10.1021/acsami.7b17327
[186]
Wu L D, Lu X B, Jin J, Zhang H J, Chen J P. Biosens. Bioelectron., 2011, 26(10): 4040.

doi: 10.1016/j.bios.2011.03.027
[187]
Xi F N, Xuan L L, Lu L L, Huang J, Yan F, Liu J Y, Dong X P, Chen P. Sens. Actuat. B: Chem., 2019, 288: 133.

doi: 10.1016/j.snb.2019.02.115
[188]
Argoubi W, Sánchez A, Parrado C, Raouafi N, Villalonga R. Sens. Actuat. B: Chem., 2018, 255: 309.

doi: 10.1016/j.snb.2017.08.045
[189]
Wang H, Zhang S J, Tian X M, Liu C F, Zhang L, Hu W Y, Shao Y Z, Li L. Environm. Sci. Pollut. R., 2016, 6: 34367.
[190]
Gao Y, Zhong S L, Xu L F, He S H, Dou Y M, Zhao S N, Chen P, Cui X J. Microporous Mesoporous Mater., 2019, 278: 130.

doi: 10.1016/j.micromeso.2018.11.030
[191]
Qu H N, Yang L R, Yu J M, Dong T T, Rong M, Zhang J F, Xing H F, Wang L, Pan F, Liu H Z. RSC Adv., 2017, 7(57): 35704.

doi: 10.1039/C7RA04444E
[192]
Ariffin E Y, Lee Y H, Futra D, Tan L L, Karim N H A, Ibrahim N N N, Ahmad A. Anal. Bioanal. Chem., 2018, 410(9): 2363.

doi: 10.1007/s00216-018-0893-1 pmid: 29504083
[193]
Liang L L, Su M, Li L, Lan F F, Yang G X, Ge S G, Yu J H, Song X R. Sens. Actuat. B: Chem., 2016, 229: 347.

doi: 10.1016/j.snb.2016.01.137
[194]
Shekari Z, Zare H R, Falahati A. J. Electrochem. Soc., 2017, 164(13): B739.

doi: 10.1149/2.1991713jes
[195]
Sun Y L, Fan J F, Cui L Y, Ke W, Zheng F J, Zhao Y. Microchimica Acta, 2019, 186(3): 1.

doi: 10.1007/s00604-018-3127-5
[196]
You M, Yang S, Tang W X, Zhang F, He P G. Biosens. Bioelectron., 2018, 112: 72.

doi: 10.1016/j.bios.2018.04.038
[197]
Shoja Y, Kermanpur A, Karimzadeh F. Biosens. Bioelectron., 2018, 113: 108.

doi: 10.1016/j.bios.2018.04.013
[198]
Wang L, Chen X H, Wang X L, Han X P, Liu S F, Zhao C Z. Biosens. Bioelectron., 2011, 30(1): 151.

doi: 10.1016/j.bios.2011.09.003 pmid: 21963391
[199]
Du Y, Guo S J, Dong S J, Wang E K. Biomaterials, 2011, 32(33): 8584.

doi: 10.1016/j.biomaterials.2011.07.091
[200]
Tang J, Tang D P, Niessner R, Knopp D, Chen G N. Analyt. Chim. Acta, 2012, 720: 1.

doi: 10.1016/j.aca.2011.12.070
[201]
Zhang J, Chai Y Q, Yuan R, Yuan Y L, Bai L J, Xie S B. Anal., 2013, 138(22): 6938.

doi: 10.1039/c3an01587d
[202]
Guo S J, Du Y, Yang X, Dong S J, Wang E K. Anal. Chem., 2011, 83(20): 8035.

doi: 10.1021/ac2019552
[203]
Lu S S, Wang S, Zhao J H, Sun J, Yang X R. Anal. Chem., 2017, 89(16): 8429.

doi: 10.1021/acs.analchem.7b01900
[204]
Qiu Z L, Shu J, He Y, Lin Z Z, Zhang K Y, Lv S, Tang D P. Biosens. Bioelectron., 2017, 87: 18.

doi: 10.1016/j.bios.2016.08.003
[205]
Loo A H, Sofer Z, Bouša D, Ulbrich P, Bonanni A, Pumera M. ACS Appl. Mater. Interfaces, 2016, 8(3): 1951.

doi: 10.1021/acsami.5b10160
[206]
Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Anal. Chem., 2001, 73(20): 4988.

pmid: 11681477
[207]
Li J M, Liu F, Shao Q, Min Y Z, Costa M, Yeow E K L, Xing B G. Adv. Health. Mater., 2014, 3(8): 1230.

doi: 10.1002/adhm.v3.8
[208]
Zhu H Y, Ding S N. Biosens. Bioelectron., 2019, 134: 109.

doi: 10.1016/j.bios.2019.04.005
[209]
Ge S G, Lan F F, Liang L L, Ren N, Li L, Liu H Y, Yan M, Yu J H. ACS Appl. Mater. Interfaces, 2017, 9(8): 6670.

doi: 10.1021/acsami.6b11966
[210]
Sun Y L, Lin Y N, Ding C F, Sun W Y, Dai Y X, Zhu X D, Liu H, Luo C N. Sens. Actuat. B: Chem., 2018, 257: 312.

doi: 10.1016/j.snb.2017.10.171
[211]
Wang W W, Liu S Q, Li C J, Wang Y, Yan C. Talanta, 2018, 182: 306.

doi: 10.1016/j.talanta.2018.01.067
[1] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[4] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[5] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[6] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[7] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[8] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[9] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[10] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[11] Ning Liu, Shuilin Liu, Suyun Wu, Lin Fu, Zhi Wu, Laibing Li. Preparation and Application of Matal-Based Mesoporous Solid Bases [J]. Progress in Chemistry, 2020, 32(5): 536-547.
[12] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[13] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[14] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[15] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.