中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2573-2587 DOI: 10.7536/PC220602 Previous Articles   Next Articles

• CONTENTS •

Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers

Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song()   

  1. Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications,Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Chunyuan Song
  • Supported by:
    National Natural Science Foundation of China(61871236)
Richhtml ( 32 ) PDF ( 338 ) Cited
Export

EndNote

Ris

BibTeX

Cardiovascular disease (CVD) is the leading cause of death worldwide, while acute myocardial infarction (AMI) is the main cause of cardiovascular death. Early and rapid diagnosis of AMI is essential to reduce mortality in patients with CVD. Due to the lack of sufficient sensitivity of common detection methods such as electrocardiogram (ECG), screening for AMI-related biomarkers and conducting sensitive detection has become an important tool for early and accurate detection of AMI. Currently, cardiac troponin I (cTnI), creatine kinase-MB isoenzymes (CK-MB) and myoglobin (Myo) are identified as important biomarkers of myocardial injury. In the past few decades, many biosensors have been developed to detect biomarkers of myocardial injury, among which surface-enhanced Raman spectroscopy (SERS)-based detections have developed rapidly and showed unique advantages and broad application prospects. In this paper, several biomarkers of myocardial injury and their associations with AMI are introduced firstly, and the principles, advantages and limitations of the conventional detection methods for AMI-related biomarkers detection are outlined. Based on this, the research progress of SERS on detection of biomarkers of myocardial injury in recent years is reviewed, and the application and prospect of SERS in AMI diagnosis and the problems and direction of further study are discussed.

Contents

1 Introduction

2 Cardiac biomarkers

2.1 Cardiac troponin

2.2 Creatine kinase-MB isoenzymes

2.3 Myoglobin

3 Conventional detection methods

3.1 ELISA

3.2 Electrochemical immunoassay

3.3 Chemiluminescence immunoassay

3.4 Fluorescence immunoassay

4 SERS detection of biomarkers of myocardial injury

4.1 SERS and SERS-based biosensing

4.2 SERS detection of myocardial injury-related biomarkers

5 Conclusion and outlook

Fig. 1 Schematic of the diagnostics on myocardial infarction.
Fig. 2 Schematic diagrams of ELISA (A), electrochemical immunoassay (B), chemiluminescence immunoassay (C), and fluorescence immunoassay (D)
Fig. 3 Schematic diagrams of sensing based on the mechanism of immune recognition (A) and aptamer recognition (B)
Fig. 4 (A): Detection of cTnI by GO/AuNPs SERS probe[116]. Copyright 2018, The Royal Society of Chemistry; (B): LFIA by gap-enhanced SERS probe[117]. Copyright 2018, Springer
Fig. 5 Detection of cTnI by SERS immunoprobe and immunomagnetic beads on a PDMS device[119]. Copyright 2017, American Chemical Society.
Fig. 6 (A) : "Au nanoplate-cTnI-SERS aptamer probe" sandwich structure detection of cTnI based on aptamer recognition[120]; Copyright 2020, Multidisciplinary Digital Publishing Institute; (B): Quantitative SERS detection of cTnI by Fe3O4@Ag@Au via aptamer recognition[121]. Copyright 2022, Springer
Fig.7 SERS detection of CK-MB by sea urchin-like gold nanoparticles SERS immunoprobe and μPAD immune-substrate
Fig. 8 Ag@SiO2 SERS probes for detecting Mb[125]. Copyright 2012, The Royal Society of Chemistry
Fig. 9 Aptamer-labeled AuNP-WS2 as SERS sensor for detection of Myo[127]. Copyright 2018, Springer
Fig. 10 (A) Dual detection of cTnI and CK-MB[128]; Copyright 2013, The Royal Society of Chemistry; (B) dual detection of H-FABP and cTnI via sandwich detection structure[129]; Copyright 2020, The Royal Society of Chemistry; (C) Simultaneous detection of cTnI and CK-MB by SERS immunoassay platform combined with gold chip[130]; Copyright 2019, The Royal Society of Chemistry; (D) PS microcavity-based on SERS immunoassay platform for dual-detection of cTnI and CK-MB[131]. Copyright 2021, Elsevier
Fig.11 (A): Multiple T-line SERS-LFIA for simultaneous and quantitative detection of Myo, cTnI and CK-MB[135]; Copyright 2018, Elsevier; (B): Single T-line SERS-LFIA for simultaneous detection of Myo, cTnI and CK-MB[136]. Copyright 2018, Elsevier
Table 1 Summary of the reported SERS detection principles and performances on myocardial injury-related biomarkers
Biomarkers Detection principles SERS materials Raman molecules LODs Linear ranges refs
cTnI Sandwich-type "capture probe(antibody functionalized magnetic bead)-cTnI-SERS immunoprobes"
Combining SERS and magnetic separation
Au NPs Malachite green isothiocyanate 5 pg/mL 0.01~1000 ng/mL 116
Sandwich-type "capture probe-cTnI-SERS immunoprobes"
Combining SERS and LFIA
Au-Au core-shell NPs 4-nitrobenzenthiole 0.1 ng/mL 0~100 ng/mL 117
Sandwich-type "capture probe(antibody functionalized magnetic bead)-cTnI-(core-shell) SERS immunoprobes "
Combining SERS and magnetic separation
Au-Ag core-shell NPs 4-mercaptobenzoic acid 9.80 pg/mL 0~2.0 ng/mL 118
Sandwich-type "capture probe (antibody functionalized magnetic bead)-cTnI-SERS immunoprobes
Combination of SERS probes and immune magnetic beads PDMS enrichment device
Ag NPs 5,5'-dithiobis(2-nitrobenzoic acid) 3.7 pg/mL 0~250 ng/mL 119
Sandwich-type "aptamer-immobilized Au nanoplate-cTnI-SERS aptamer probes "
Recognition of cTnI by aptamer
Au NPs Sulfocyanine 5 2.4 pg/mL 2.4 pg/mL~2.4 ng/mL 120
Aptamers modified bimetallic magnetic nanoparticles-cTnI
Combining SERS and magnetic separation and recognition of cTnI by aptamer
Fe3O4@Ag@Au NPs Coomassie Brilliant Blue G-250 5.50 pg/mL 0.01~100 ng/mL 121
CK-MB Sandwich-type "capture probe-cTnI-SERS immunoprobes" gold-urchin nanoparticles Tert-Butylhydroquinone 10 pg/mL 0.01~100 ng/mL 122
Myo Sandwich-type "capture substrates-Myo-SERS probes " Ag NPs 4-mercaptobenzoic acid 1.5 ng/mL - 125
Antibody-modified substrates to capture Myo Ag NPs Rhodamine 6G 10 ng/mL 5 μg/mL~10 ng/mL 126
Aptamer-labeled AuNP-WS2 nanohybrid capture Myo Au NPs Rhodamine 6G 10 ng/mL 10 fg/mL~0.1 μg/mL 127
cTnI and CK-MB Sandwich-type "capture probe (antibody functionalized magnetic bead)-cTnI and CK-MB-SERS immunoprobes
Combining SERS and magnetic separation
Au NPs Malachite green isothiocyanate and X-rhodamine-5-(and-6)-isothiocyanate 33.7 pg/mL and 42.5 pg/mL 10 pg/mL~1 mg/mL 128
Sandwich-type "capture probe-cTnI and CK-MB-SERS immunoprobes" AuNPs Malachite green isothiocyanate 8.9 pg/mL and 9.7 pg/mL 0 ~100 ng/mL 130
Sandwich-type "capture probe-cTnI and CK-MB-SERS immunoprobes"
Combining SERS and optical microcavity
Au NPs 5,5'-Dithio bis-(2-nitrobenzoic acid) and 4-mercaptobenzoic acid 3.16 pg/mL and 4.27 pg/mL 0.01~100 ng/mL 131
cTnI and H-FABP Sandwich-type "capture probe(antibody functionalized magnetic bead)-cTnI and H-FABP-SERS immunoprobes
Combining SERS and magnetic separation
Ag-Au core-shell NPs 4-mercaptobenzonitrile and Thiols-poly (ethyl-ene glycol)-COOH 639.6 pg/mL and 4.4 pg/mL 0.0~100.0 ng/mL and 0.0~1.00 ng/mL 129
cTnI、CK-MB and Myo Sandwich-type "capture probe-cTnI-SERS immunoprobes"
Combining SERS and LFIA
Ag-Au core-shell NPs Nile blue A 0.44, 3.20 and 0.55 pg/mL 0.01~50 ng/mL, 0.01~500 ng/mL and 0.02~90 ng/mL 135
Sandwich-type "capture probe-cTnI-SERS immunoprobes"
Combining SERS and LFIA
Ag-Au core-shell NPs Nile blue A,
Methylene blue and Rhodamine 6G
0.89, 4.2 and 0.93 pg/mL 0.01~50 ng/mL, 0.01~500 ng/mL and 0.02~90 ng/mL 136
[1]
Ouyang M, Tu D, Tong L, Sarwar M, Bhimaraj A, Li C, CotÉ G L, Di Carlo D. Biosens. Bioelectron., 2021, 171: 112621.
[2]
Virani S S, Alonso A, Benjamin E J, Bittencourt M S, Callaway C W, Carson A P, Chamberlain A M, Chang A R, Cheng S, Delling F N. Circulation., 2020, 141: e139.
[3]
Mythili S, Malathi N. Biomed. Rep., 2015, 3: 743.
[4]
Daubert M A, Jeremias A. Vasc. Health Risk Manag., 2010, 6: 691.
[5]
Thygesen K. Eur. Heart J., 2018, 39: 3757.
[6]
Westermann D, Neumann J T, Sörensen N A, Blankenberg S. Nat. Rev. Cardiol., 2017, 14: 472.

doi: 10.1038/nrcardio.2017.48 pmid: 28383022
[7]
Sayali U, Ambalika T, Shalini P. Adv. Health Care Technol., 2018, 4: 1.
[8]
Zhang G J, Ning Y. Anal. Chim. Acta., 2012, 749: 1.
[9]
Leisy P J, Coeytaux R R, Wagner G S, Chung E H, Mcbroom A J, Green C L, Williams J W, Sanders G D. J. Electrocardiol., 2013, 46: 92.
[10]
Hoekstra J W, O’neill B J, Pride Y B, Lefebvre C, Diercks D B, Peacock W F, Fermann G J, Gibson C M, Pinto D, Giglio J. Ann. Emerg. Med., 2009, 54: 779.

doi: 10.1016/j.annemergmed.2009.06.525 pmid: 19766352
[11]
Whiting P F, Weswood M E, Rutjes A W, Reitsma J B, Bossuyt P N, Kleijnen J. Bmc. Med. Res. Methodol., 2006, 6: 1.
[12]
Michaelides A P, Dilaveris P E, Psomadaki Z D, Richter D J, Andrikopoulos G K, Pitsilides N, Stefanadis C, Toutouzas P K, Dounis V. Clin. Cardiol., 1999, 22: 403.

doi: 10.1002/clc.4960220607 pmid: 10376179
[13]
Menown I, Allen J, Anderson J M, Adgey A. Eur. Heart J., 2001, 22: 218.

pmid: 11161933
[14]
Fathil M, Arshad M, Gopinath S C, Hashim U, Adzhri R, Ayub R, Ruslinda A, Nuzaihan M, Azman A, Zaki M. Biosens. Bioelectron., 2015, 70: 209.

doi: 10.1016/j.bios.2015.03.037 pmid: 25841117
[15]
Thygesen K, Alpert J S, Jaffe A S, Chaitman B R, Bax J J, Morrow D A, White H D, Mickley H, Crea F, Van De Werf F. Eur. Heart J., 2019, 40: 237.
[16]
Apple F S, Wu A H, Jaffe A S, Panteghini M, Christenson R H, Members N C, Christenson R H, Apple F S, Cannon C P, Francis G. Circulation., 2007, 116: e95.

doi: 10.1161/CIRCULATIONAHA.107.185266 pmid: 17630411
[17]
Strimbu K, Tavel J A. Curr. Opin. HIV AIDS., 2010, 5: 463.

doi: 10.1097/COH.0b013e32833ed177 pmid: 20978388
[18]
Wang J, Wang X, Ren L, Wang Q, Li L, Liu W, Wan Z, Yang L, Sun P, Ren L,. Anal. Chem., 2009, 81: 6210.
[19]
Apple F S, Wu A, Jaffe A S, Panteghini M, Christenson R H, Christenson R H, Apple F S, Cannon C P, Frances G S, Jesse R L. Clin. Biochem., 2008, 41: 222.

doi: 10.1016/j.clinbiochem.2007.07.001 pmid: 18035345
[20]
Xu H, Li S, Peng Z, Othman A M, Leblanc R M. Physiol. Plant., 2016, 49: 141.
[21]
Antman E, Bassand J P, Klein W, Ohman M, Sendon J, RydÉn L, Simoons M, Tendera M. J. Am. Coll. Cardiol., 2000, 36: 959.
[22]
Group N W. Clin. Chem., 2007, 53: 2086.
[23]
Bottenus D, Jubery T Z, Ouyang Y, Dong W J, Dutta P, Ivory C F. Lab Chip., 2011, 11: 890.

pmid: 21416810
[24]
Welsh P, Preiss D, Hayward C, Shah A S, Mcallister D, Briggs A, Boachie C, Mcconnachie A, Padmanabhan S, Welsh C J C. Circulation., 2019, 139: 2754.

doi: 10.1161/CIRCULATIONAHA.118.038529 pmid: 31014085
[25]
Wilkinson J M, Grand R. Nature, 1978, 271: 31.
[26]
Eric C, Christenson R H. Ann. Lab Med., 2013, 33: 309.

doi: 10.3343/alm.2013.33.5.309 pmid: 24003420
[27]
Cummins B, Auckland M L, Cummins P. Am. Heart J., 1987, 113: 1333.

pmid: 3591601
[28]
Panteghini M, Pagani F, Yeo K T J, Apple F S, Christenson R H, Dati F, Mair J, Ravkilde J, Wu A H B. Clin. Chem., 2004, 50: 327.

pmid: 14656904
[29]
Leurent G, Langella B, Fougerou C, Lentz P A, Larralde A, Bedossa M, Boulmier D, Breton H L. Arch. Cardiovasc Dis., 2011, 104: 161.
[30]
Ahammad A, Choi Y H, Koh K, Kim J H, Lee M. Int. J. Electrochem. Sci., 2011, 6: 1906.
[31]
Sörensen N A, Dönmez G, Neumann. J T, Nikorowitsch J, Rübsamen N, Blankenberg S, Westermann D, Zeller T, Karakas M. Biomolecules., 2019, 9: 108.
[32]
Roberts R. Ann. Intern. Med., 1973, 79: 741.

pmid: 4148054
[33]
Collinson P O. Eur. Heart J., 1998, 19: N16.
[34]
Zhang J, Lv X, Feng W, Li X, Li K, Deng Y. Mikrochim. Acta., 2018, 185: 1.
[35]
Jaf Fe A S, Ravkilde J, Roberts R, Naslund U, Apple F S, Galvani M, Katus H. Circulation., 2000, 102: 1216.
[36]
Wilson Tang W, Francis G S, Morrow D A, Newby L K, Cannon C P, Jesse R L, Storrow A B, Christenson R H, Members C, Christenson R H,. Circulation., 2007, 116: e99.

doi: 10.1161/CIRCULATIONAHA.107.185267 pmid: 17630410
[37]
Lai X H, Liang R L, Liu T C, Dong Z N, Wu Y S, Li L H. J Fluoresc., 2016, 26: 987.
[38]
Torabi F, Far H, Danielsson B, Khayyami M. Biosens. Bioelectron., 2007, 22: 1218.
[39]
Thygesen K, Alpert J S, White H D. J. Am. Coll. Cardiol., 2007, 50: 2173.
[40]
Wu D, Chen Y, Hou S, Fang W, Duan H J C. ChemBioChem., 2019, 20: 2432.
[41]
Jaffe A S, Babuin L, Apple F S. J. Am. Coll. Cardiol., 2006, 48: 1.
[42]
Neumann J T, Sörensen N A, Schwemer T, Ojeda F, Bourry R, Sciacca V, Schaefer S, Waldeyer C, Sinning C, RennÉ T. JAMA Cardiol., 2016, 1: 397.
[43]
Sallach S M, Nowak R, Hudson M P, Tokarski G, McCord J. J. Am. Coll. Cardiol., 2004, 94: 864.
[44]
Mair J, Artner-Dworzak E, Lechleitner P, Morass B, Smidt J, Wagner I, Dienstl F, Puschendorf B. Br. Heart J., 1992, 68: 462.

doi: 10.1136/hrt.68.11.462 pmid: 1467029
[45]
Mascini M, Tombelli S. Biomarkers., 2008, 13: 637.

doi: 10.1080/13547500802645905 pmid: 19061054
[46]
Reyes-Retana J A, Duque-Ossa L C. Curr. Probl. Cardiol., 2021, 46: 100739.
[47]
Qureshi A, Gurbuz Y, Niazi J H. Sens. Actuators B Chem., 2012, 171/172: 62.
[48]
Gomes-Filho S, Dias A, Silva M, Silva B, Dutra R F. Microchem. J., 2013, 109: 10.
[49]
Horak J, Dincer C, Qelibari E, Bakirci H, Urban G. Sens. Actuators B Chem., 2015, 209: 478.
[50]
He H Z, Leung K H, Yang H, Chan S H, Leung C H, Zhou J, Bourdoncle A, Mergny J L, Ma D L. Biosens. Bioelectron., 2013, 41: 871.
[51]
Leung C H, Zhong H J, He H Z, Lu L, Chan S H, Ma D L. Chem. Sci., 2013, 4: 3781.
[52]
Lee J, Lee Y, Park J Y, Seo H, Lee T, Lee W, Sang K K, Hahn Y K, Jung J Y, Kim S. Sens. Actuators B Chem., 2013, 178: 19.
[53]
Liu J, Zhang L, Wang Y, Zheng Y, Sun S. Measurement., 2014, 47: 200.
[54]
Balsam J, Ossandon M, Bruck H A, Lubensky I, Rasooly A. Expert Rev. Mol. Diagn., 2013, 7: 243.
[55]
Ran B, Xianyu Y, Dong M, Chen Y, Qian Z, Jiang X. Anal. Chem., 2017, 89: 6113.
[56]
Juronen E I, Viikmaa M H, Mikelsaar A. J. Immunol. Methods., 1988, 111: 109.

pmid: 2455749
[57]
Jiao L, Zhang L, Du W, Li H, Yang D, Zhu C. Nanoscale, 2019, 11: 8798.

doi: 10.1039/c8nr08741e pmid: 30820494
[58]
Dobrovolskaia E, Gam A, Slater J. Clin. Exp. Allergy., 2006, 36: 525.

pmid: 16630159
[59]
Han G R, Kim M G. Sensors, 2020, 20: 2593.
[60]
Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Anal. Chim. Acta, 2013, 758: 1.
[61]
Lin Y, Zhou Q, Lin Y, Tang D, Niessner R, Knopp D. Anal. Chem., 2015, 87: 8531.
[62]
Zhang T, Ma N, Ali A, Wei Q, Wu D, Ren X. Biosens. Bioelectron., 2018, 119: 176.

doi: S0956-5663(18)30618-3 pmid: 30125879
[63]
Zhang B, Zhang Y, Liang W, Yu X, Tan H, Wang G, Li A, Jin J, Huang L. RSC Advances., 2017, 7: 2486.
[64]
Qiao X, Li K, Xu J, Cheng N, Sheng Q, Cao W, Yue T, Zheng J. Biosens. Bioelectron., 2018, 113: 142.
[65]
Lou L, Yu K, Zhang Z, Huang R, Zhu J, Wang Y, Zhu Z. Nano Research., 2012, 5: 272.
[66]
Bailey M R, Pentecost A M, Selimovic A, Martin R S, Schultz Z D. Anal. Chem., 2015, 87: 4347.
[67]
Lu W B, Wang Y, Cao X, Li L, Dong J, Qian W. New J. Chem., 2015, 39: 5420.
[68]
Dodeigne C, Thunus L, Lejeune R. Talanta., 2000, 51: 415.

pmid: 18967873
[69]
Ekins R, Chu F, Micallef J. J. Biolumin. Chemilumin., 1989, 4: 59.

pmid: 2801243
[70]
Cho I H, Paek E H, Kim Y K, Kim J H, Paek S H. Anal. Chim. Acta., 2009, 632: 247.
[71]
Han G R, Kim M G. Biotechnol. Bioprocess Eng., 2019, 24: 206.
[72]
Zhao H, Su E, Huang L, Zai Y F, Liu Y, Chen Z, Li S, Jin L, Deng Y, He N Y. Chin. Chem. Lett., 2022, 33: 743.
[73]
Zhao L, Sun L, Chu X. Trends Analyt Chem., 2009, 28: 404.
[74]
Kurihara T, Yanagida A, Yokoi H, Koyata A, Matsuya T, Ogawa J, Okamura Y, Miyamoto D. Anal. Biochem., 2008, 375: 144.

doi: 10.1016/j.ab.2007.12.030 pmid: 18211813
[75]
Darain F, Yager P, Gan K L, Tjin S C. Biosens. Bioelectron., 2009, 24: 1744.
[76]
Hill H R, Martins T B. Methods., 2006, 38: 312.
[77]
Song S Y, Han Y D, Kim K, Yang S S, Yoon H C. Biosens. Bioelectron., 2011, 26: 3818.
[78]
Xu H, Zhang Z. Biosens. Bioelectron., 2007, 22: 2743.
[79]
Ganesh N, Block I D, Mathias P C, Wei Z, Chow E, Malyarchuk V, Cunningham B T. Opt. Express., 2008, 16: 21626.
[80]
Shen Y, Liu S, Yang J, Wang L, Tan X, He Y. Sens. Actuators B Chem., 2014, 199: 389.
[81]
Chen J, Ran F, Chen Q, Luo D, Ma W, Han T, Wang C, Wang C,. RSC Advances, 2019, 9: 4463.
[82]
Hayes M A, Petkus M M, Garcia A A, Taylor T, Mahanti P. Analyst., 2009, 134: 533.

doi: 10.1039/b809665a pmid: 19238291
[83]
Wang L H, Song C Y, Zhang L, Zhu D. Nanoplasmonic Materials and Biomedical Applications. Beijing: Beijing Science Press, 2017.
[84]
Elina A, Zul O. ACS Nano., 2009, 3: 3529.

doi: 10.1021/nn9010768 pmid: 19891490
[85]
Lin X M, Cui Y, Xu Y H, Ren B, Tian Z Q. Anal. Bioanal Chem., 2009, 394: 1729.
[86]
Nie S, Emory S R. Science., 1997, 275: 1102.

doi: 10.1126/science.275.5303.1102 pmid: 9027306
[87]
Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S. Phys. Rev. Lett., 1997, 78: 1667.
[88]
Bhardwaj V, Srinivasan S, Mcgoron A. J. Biosens. Bioelectron., 2013, 12: 2.
[89]
Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D. Anal. Chem., 2003, 75: 5936.

pmid: 14588035
[90]
Mohs A M, Mancini M C, Singhal S, Provenzale J M, Leyland-Jones B, Wang M D, Nie S. Anal. Chem., 2010, 82: 9058.
[91]
Sha M Y, Xu H, Natan M J, Cromer R. J. Am. Chem. Soc., 2008, 130: 17214.
[92]
Beier H T, Cowan C B, Chou I H, Pallikal J, Henry J E, Benford M E, Jackson J B, Good T A, CotÉ G L. Plasmonics., 2007, 2: 55.
[93]
An J H, El-Said W A, Yea C H, Kim T H, Choi J W. J. Nanosci. Nanotechnol., 2011, 11: 4424.
[94]
Zhang J J, Yang Y J, Jiang X Y, Dong C, Song C Y, Han C Q, Wang L H. Biosens. Bioelectron., 2019, 141: 111402.
[95]
Yang Y J, Jiang X Y, Jie C, Song C Y, Wang L H. Sci. China Mater., 2017, 60: 1129.
[96]
Song C Y, Yang Y J, Yang B Y, Sun Y Z, Zhao Y P, Wang L H. Nanoscale, 2016, 8: 17365.

pmid: 27714088
[97]
Fleischmann M, Hendra P J, Mcquillan A J. Chem. Phys. Lett., 1974, 26: 163.
[98]
Jeanmaire D L, Van Duyne R P. J. Electroanal. Chem. Interfacial.Electrochem., 1977, 84: 1.
[99]
Albrecht M G, Creighton J A. J. Am. Chem. Soc., 1977, 99: 5215.
[100]
Kirtley J, Jha S, Tsang J. Solid State Commun., 1980, 35: 509.
[101]
Park T H, Galperin M. Phys. Rev. B., 2011, 84: 075447.
[102]
Doering W E, Nie S. J. Phys. Chem. B., 2002, 106: 311.
[103]
Song C Y, Yang Y J, Yang B Y, Min L H, Wang L H. J. Mater. Chem. B., 2016, 4: 1811.
[104]
Song C Y, Jiang X Y, Yang Y J, Zhang J J, Larson S, Zhao Y P, Wang L H. ACS Appl. Mater. Interfaces., 2020, 12: 31242.
[105]
Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z. Nano Lett., 2010, 10: 553.

doi: 10.1021/nl903414x pmid: 20039694
[106]
Wang H, Yang R, Yang L, Tan W. ACS Nano, 2009, 3: 2451.

doi: 10.1021/nn9006303 pmid: 19658387
[107]
Ellington A D, Szostak J W. Nature, 1990, 346: 818.
[108]
Tuerk C, Gold L. Science, 1990, 249: 505.

doi: 10.1126/science.2200121 pmid: 2200121
[109]
Li A, Tang L, Song D, Song S, Ma W, Xu L, Kuang H, Wu X, Liu L, Chen X. Nanoscale, 2016, 8: 1873.
[110]
Chung E, Gao R, Ko J, Choi N, Lim D W, Lee E K, Chang S I, Choo J. Lab Chip., 2013, 13: 260.
[111]
Feng J, Wu X, Ma W, Kuang H, Xu L, Xu C. Chem. Commun., 2015, 51: 14761.
[112]
Bamrungsap S, Treetong A, Apiwat C, Wuttikhun T, Dharakul T. Mikrochim Acta, 2016, 183: 249.
[113]
Muhammad M, Huang Q. Talanta, 2021, 227: 122188.
[114]
Lee J H, Yigit M V, Mazumdar D, Yi L. Adv. Drug Deliv. Rev., 2010, 62: 592.
[115]
Porter M, Lipert R J, Siperko L M, Wang G, Narayanan R. Chem. Soc. Rev., 2008, 37: 1001.

doi: 10.1039/b708461g pmid: 18443685
[116]
Fu X, Wang Y, Liu Y, Liu H, Fu L, Wen J, Li J, Wei P, Chen L. Analyst., 2019, 144: 1582.
[117]
Khlebtsov B N, Bratashov D N, Byzova N A, Dzantiev B B, Khlebtsov N G. Nano Res., 2019, 12: 413.

doi: 10.1007/s12274-018-2232-4
[118]
Hu C, Ma L, Mi F, Guan M, Guo C, Peng F, Sun S, Wang X, Liu T, Li J. New J. Chem., 2021, 45: 3088.
[119]
Garza J T, Cote G L. Anal. Chem., 2017, 89: 13120.
[120]
Lee H, Youn H, Hwang A, Lee H, Park J Y, Kim W, Yoo Y, Ban C, Kang T, Kim B. Nanomaterials, 2020, 10: 1402.
[121]
Lin C, Li L, Feng J, Zhang Y, Lin X, Guo H, Li R. Mikrochim Acta, 2022, 189: 1.
[122]
Lim W Y, Goh C H, Thevarajah T M, Goh B T, Khor S M. Biosens. Bioelectron., 2020, 147: 111792.
[123]
Garg P, Morris P, Fazlanie A L, Vijayan S, Dancso B, Dastidar A G, Plein S, Mueller C, Haaf P. Intern. Emerg. Med., 2017, 12: 147.
[124]
Szunerits S, Mishyn V, Grabowska I, Boukherroub R. Biosens. Bioelectron., 2019, 131: 287.

doi: S0956-5663(19)30110-1 pmid: 30851492
[125]
Kong X, Yu Q, Zhang X, Du X, Gong H, Jiang H. J. Mater. Chem., 2012, 22: 7767.
[126]
El-Said W A, Fouad D M, El-Safty S A. Sens. Actuators B Chem., 2016, 228: 401.
[127]
Shorie M, Kumar V, Kaur H, Singh K, Tomer V K, Sabherwal P. Mikrochim. Acta, 2018, 185: 1.
[128]
Chon H, Lee S, Yoon S Y, Lee E K, Chang S I, Choo J. Chem. Commun., 2014, 50: 1058.
[129]
Hu C, Ma L, Guan M, Mi F, Peng F, Guo C, Sun S, Wang X, Liu T, Li J. Anal. Methods., 2020, 12: 5442.
[130]
Cheng Z, Wang R, Xing Y, Zhao L, Choo J, Yu F. Analyst., 2019, 144: 6533.

doi: 10.1039/c9an01260e pmid: 31553332
[131]
Wang J, Xu C, Lei M, Ma Y, Wang X, Wang R, Sun J. Microchem. J., 2021, 171: 106875.
[132]
Tuteja S K, Kukkar M, Suri C R, Paul A K, Deep A. Biosens. Bioelectron., 2015, 66: 129.
[133]
Jia L, MacDonald J. Biosens. Bioelectron., 2016, 83: 177.

doi: 10.1016/j.bios.2016.04.021 pmid: 27125840
[134]
Farka Z, Juík T, Ková D, Trnková L, Skládal P. Chem. Rev., 2017, 117: 9973.
[135]
Zhang D, Huang L, Liu B, Ni H, Sun L, Su E, Chen H, Gu Z, Zhao X. Biosens. Bioelectron., 2018, 106: 204.

doi: S0956-5663(18)30074-5 pmid: 29428590
[136]
Zhang D, Huang L, Liu B, Su E, Chen H Y, Gu Z, Zhao X. Sens. Actuators B Chem., 2018, 277: 502.
[137]
Lu W B, Wang Y, Cao X, Li L, Dong J, Qian W. New J. Chem., 2015, 39: 5420.
[138]
Matschulat A, Drescher D, Kneipp J. ACS Nano, 2010, 4: 3259.

doi: 10.1021/nn100280z pmid: 20503969
[139]
Cheng Z Y, Choi N, Wang R, Lee S, Moon K C, Yoon S Y, Chen L X, Choo J. ACS Nano, 2017, 11: 4926.

doi: 10.1021/acsnano.7b01536 pmid: 28441008
[140]
Hori S I, Herrera A, Rossi J, Zhou J H. Cancers, 2018, 10: 9.
[141]
Hassan E M, Willmore W G, Derosa M C. Nucleic. Acid. Ther., 2016, 26: 335.

pmid: 27736306
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[5] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[6] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[7] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[8] Miao Gong, Xiaoying Wang, Xiaoning Wang. Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies [J]. Progress in Chemistry, 2019, 31(6): 894-905.
[9] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[10] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[11] Dai Yingping, Ji Zhengping, Wang Chengyin, Hu Xiaoya, Wang Guoxiu. Microcantilever Biosensors [J]. Progress in Chemistry, 2016, 28(5): 697-710.
[12] Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei. Preparation and Biological Applications of DNA Hydrogel [J]. Progress in Chemistry, 2016, 28(5): 628-636.
[13] Tian Liang, Yao Chen, Wang Yihong*. Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic [J]. Progress in Chemistry, 2016, 28(12): 1824-1833.
[14] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.
[15] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.