中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (5): 757-770 DOI: 10.7536/PC220916 Previous Articles   Next Articles

• Review •

Immunity and Aptamer Biosensors for Cocaine Detection

Gehui Chen1, Nan Ma1, Shuaibing Yu1, Jiao Wang1, Jinming Kong1(), Xueji Zhang2   

  1. 1 School of Environmental and Biological Engineering, Nanjing University of Science and Technology,Nanjing 210094, China
    2 School of Biomedical Engineering, Shenzhen University Health Science Center,Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: j.kong@njust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21974068); National Natural Science Foundation of China(21890740); National Natural Science Foundation of China(21890742); National Natural Science Foundation of China(9195401)
Richhtml ( 17 ) PDF ( 235 ) Cited
Export

EndNote

Ris

BibTeX

Cocaine has become one of the most dangerous and illicitly abused drugs today due to the adverse effects of long-term cocaine abuse, such as arrhythmia, myocardial infarction, stroke, hypertension and aortic stiffness. Traditional cocaine chromatographic analysis methods have disadvantages such as time-consuming, cumbersome sample processing and complicated operations. Therefore, improving cocaine detection methods has a certain positive impact on crime-fighting and medicine-developing. Due to the accuracy and portability of biosensors, immunological and aptamer technologies for specific capture of targets have become an important direction for cocaine detection. In this review, different types of cocaine biosensors in recent years are mainly described, covering the research progress of cocaine detection based on electrochemical, fluorescence, colorimetric and other methods. The immuno- and aptamer-based biosensors of cocaine are reviewed, the advantages, disadvantages and development directions of cocaine sensors are summarized.

Contents

1 Introduction

2 Immunosensors for cocaine detection

2.1 Labeled immunosensors

2.2 Label-free immunosensors

3 Aptasensors for cocaine detection

3.1 Fluorescent aptasensors

3.2 Colorimetric aptasensors

3.3 Electrochemical aptasensors

3.4 Other aptasensors

4 Conclusion and outlook

Table 1 A comparison of different cocaine immunosensors and their limits of detection
Fig. 1 Schematic representation of sandwich-type LFIA test strip
Fig. 2 Schematic illustration of SELEX procedure
Fig. 3 (a) Methylene blue-labeled MAs cocaine biosensor[46]; (b) DFAs and cocaine assembly process[47]; (c) Fluorescent biosensor based on TFAs[48]
Table 2 A comparison of different cocaine aptasensors and their detection limits
Method Linear range (mol/L) Detection limit (mol/L) ref
Fluorescence 5×10-6 62
Fluorescence anisotropy 63
Fluorescence 0~1×10-5 5×10-8 (in 10% saliva) 64
Fluorescence 5×10-10~8×10-8 8.4×10-11 65
Fluorescence 0~1×10-10 5.4×10-13 66
Cas-12a based fluorescence 4.7×10-7~1.5×10-2 3.4×10-7 67
EWF-based fluorescence 1×10-5~5×10-3 1.05×10-5 68
Fluorescence 1×10-6~5×10-4 2.5×10-7 69
Fluorescence 1×10-7~1×10-4 4.6×10-9 72
Fluorescence 1×10-8~1×10-4 8×10-10 73
Colorimetric 8.25×10-9 mol (visual)
7.79×10-9 mol (camera)
75
Colorimetric 2×10-10~2.5×10-8 9.7×10-10 76
Colorimetric 1.32×10-8 mol (visual)
1.17×10-8 mol (camera)
77
Colorimetric 0~1×10-6 7.49×10-9 78
Colorimetric 1×10-9~1.5×10-7 5×10-10 79
Colorimetric 1×10-8~1.5×10-7 3.3×10-9 80
Colorimetric 2×10-9~1×10-7 4.4×10-10 81
Colorimetric 1×10-5 82
Colorimetric 1×10-5~5×10-3 5×10-5 (in urine)
2×10-4 (in sweat)
83
SWV 5×10-8~1×10-6 and 1×10-6~3.5×10-5 2.1×10-8 86
SWV 87
EIS/DPV 3.3×10-12~3.3×10-9 1.29×10-12 (EIS)
2.22×10-12 (DPV)
89
EIS 1×10-15~1×10-12 and 1×10-12~1×10-7 3.33×10-16 90
EIS 9×10-11~8.5×10-8 2.9×10-11 91
DPV 3.3×10-10~3.3×10-5 1×10-10 92
SWV 3.3×10-11~3.3×10-6 9×10-12 93
DPV 1×10-11~7×10-11 2.6×10-13 94
DPV 4×10-11~1.5×10-7 1.5×10-11 95
EMPAS 2×10-6~5×10-5 9×10-7 96
EMPAS 5×10-7~5×10-6 3×10-7 97
Interfacial capacitance sensing 1.45×10-14~1.45×10-11 7.8×10-15 98
FET 1×10-9 99
Conductance change 1×10-9~1×10-5 1×10-9 102
α-HL nanopore 5×10-8~1×10-4 5×10-8 103
Personal glucometer 1×10-8~6×10-7 5.2×10-9 104
LC optical sensor 1×10-9~1×10-5 1×10-9 106
LC optical sensor 1×10-10~1×10-5 108
LPFG 2.5×10-5~7.5×10-5 2.5×10-5 109
PIERS 5×10-9~1×10-5 5×10-9 110
ECL 1×10-10~1×10-7 6×10-11 111
Fig. 4 Schematic diagram of fluorescence detection of cocaine based on AuNPs-QD combination[72]
Fig. 5 Schematic diagram of cocaine detection based on CBSAzymes[82]
Fig. 6 Schematic diagram of AuNCs@Zr-MOF as a substrate to detect cocaine[89]
Fig. 7 Schematic diagram of LC microarray film for detection of cocaine[108]
[1]
Roushani M, Shahdost-Fard F. Anal. Chim. Acta, 2015, 853: 214.

doi: 10.1016/j.aca.2014.09.031
[2]
Gay G R, Inaba D S, Sheppard C W, Newmeyer J A. Clin. Toxicol., 1975, 8(2): 149.

doi: 10.3109/15563657508988061
[3]
Johanson C E, Fischman M W. Pharmacol. Rev., 1989, 41(1): 3.
[4]
Mu S, Fantegrossi W E, Rusch N J. Hypertension, 2018, 71(4): 561.

doi: 10.1161/HYPERTENSIONAHA.118.10278
[5]
Shahdost-Fard F, Roushani M. Talanta, 2016, 154: 7.

doi: 10.1016/j.talanta.2016.03.055 pmid: 27154642
[6]
Yüksel B, Şen N. J. Res. Pharm., 2018, 22(1): 181.

doi: 10.1016/S1043-6618(09)80224-7
[7]
Ambach L, Menzies E, Parkin M C, Kicman A, Archer J R H, Wood D M, Dargan P I, Stove C. Drug Test. Anal., 2019, 11(5): 709.

doi: 10.1002/dta.2537 pmid: 30379417
[8]
Concheiro M, Lendoiro E, de Castro A, GÓnzalez-Colmenero E, Concheiro-Guisan A, Peñas-Silva P, Macias-Cortiña M, Cruz-Landeira A, LÓpez-Rivadulla M. Drug Test. Anal., 2017, 9(6): 898.

doi: 10.1002/dta.2087 pmid: 27595432
[9]
Janicka M, Kot-Wasik A, Namienśik J. Trac-Trend. Anal. Chem., 2010, 29(3): 209.

doi: 10.1016/j.trac.2009.12.005
[10]
Rycke E D, Stove C, Dubruel P, Saeger S D, Beloglazova N. Biosens. Bioelectron., 2020, 169: 112579.

doi: 10.1016/j.bios.2020.112579
[11]
Kulkarni M B, Ayachit N H, Aminabhavi T M. Biosensors, 2022, 12(7): 543.

doi: 10.3390/bios12070543
[12]
Catal T, Kul A, Atalay V E, Bermek H, Ozilhan S, Tarhan N. J. Power Sources, 2019, 414: 1.

doi: 10.1016/j.jpowsour.2018.12.078
[13]
Asturias-Arribas L, Alonso-Lomillo M A, Domínguez-Renedo O, Arcos-Martínez M J. Talanta, 2013, 105: 131.

doi: 10.1016/j.talanta.2012.11.078 pmid: 23597999
[14]
Tappura K, Vikholm-Lundin I, Albers W M. Biosens. Bioelectron., 2007, 22(6): 912.

pmid: 16635567
[15]
Song C K, Oh E, Kang M S, Shin B S, Han S Y, Jung M, Lee E S, Yoon S Y, Sung M M, Ng W B, Cho N J, Lee H. Anal. Chim. Acta, 2018, 1027: 101.

doi: 10.1016/j.aca.2018.04.025
[16]
Kirschbaum K M, Musshoff F, Wilbert A, Röhrich J, Madea B. Forensic Sci. Int., 2011, 207(1/3): 66.

doi: 10.1016/j.forsciint.2010.09.002
[17]
Peng P, Liu C, Li Z, Xue Z, Mao P, Hu J, Xu F, Yao C, You M. Trac-Trend. Anal. Chem., 2022, 152: 116605.

doi: 10.1016/j.trac.2022.116605
[18]
Abdelshafi N A, Panne U, Schneider R J. Talanta, 2017, 165: 619.

doi: S0039-9140(17)30005-X pmid: 28153307
[19]
Abdelshafi N A, Bell J, Rurack K, Schneider R J. Drug Test. Anal., 2019, 11(3): 492.

doi: 10.1002/dta.2515 pmid: 30286276
[20]
Campbell J, Pollock N R, Sharon A, Sauer-Budge A F. Anal. Methods, 2015, 7(19): 8472.

doi: 10.1039/C5AY00264H
[21]
Zhang L, Li X, Li Y, Yu H. Analyst, 2021, 146(2): 538.

doi: 10.1039/D0AN01933J
[22]
Guo J, Chen S, Guo J, Ma X. J. Mater. Sci. Technol., 2021, 60: 90.

doi: 10.1016/j.jmst.2020.06.003
[23]
Koczula K M, Gallotta A. Essays Biochem., 2016, 60(1): 111.

doi: 10.1042/EBC20150012
[24]
Hu J, Wang S Q, Wang L, Li F, Pingguan-Murphy B, Lu T, Xu F. Biosens. Bioelectron., 2014, 54: 585.

doi: 10.1016/j.bios.2013.10.075
[25]
Mirica A C, Stan D, Chelcea I C, Mihailescu C M, Ofiteru A, Bocancia-Mateescu L A. Front. Bioeng. Biotech., 2022, 10: 922772.

doi: 10.3389/fbioe.2022.922772
[26]
Wu J, Dong M, Zhang C, Wang Y, Xie M, Chen Y. Sensors, 2017, 17(6): 1286.

doi: 10.3390/s17061286
[27]
Ghorbanizamani F, Moulahoum H, Timur S. Ieee Sens. J., 2022, 22(2): 1146.

doi: 10.1109/JSEN.2021.3133599
[28]
Finšgar M, Majer D, Maver U, Maver T. Sensors, 2018, 18(11): 3976.

doi: 10.3390/s18113976
[29]
Ahamed A, Ge L, Zhao K, Veksha A, Bobacka J, Lisak G. Chemosphere, 2021, 278: 130462.

doi: 10.1016/j.chemosphere.2021.130462
[30]
Sanli S, Moulahoum H, Ugurlu O, Ghorbanizamani F, Gumus Z P, Evran S, Coskunol H, Timur S. Talanta, 2020, 217: 121111.

doi: 10.1016/j.talanta.2020.121111
[31]
Paul M, Tannenberg R, Tscheuschner G, Ponader M, Weller M G. Biosensors, 2021, 11(9): 313.

doi: 10.3390/bios11090313
[32]
Sun Y S, Landry J P, Fei Y Y, Zhu X D, Luo J T, Wang X B, Lam K S. Langmuir, 2008, 24(23): 13399.

doi: 10.1021/la802097z pmid: 18991423
[33]
Juzgado A, Soldà A, Ostric A, Criado A, Valenti G, Rapino S, Conti G, Fracasso G, Paolucci F, Prato M. J. Mater. Chem. B, 2017, 5(32): 6681.

doi: 10.1039/c7tb01557g pmid: 32264431
[34]
Sengel T Y, Guler E, Gumus Z P, Aldemir E, Coskunol H, Akbulut H, Goen Colak D, Cianga I, Yamada S, Timur S, Endo T, Yagci Y. Sensor. Actuat. B-Chem., 2017, 246: 310.

doi: 10.1016/j.snb.2017.02.087
[35]
Tran R J, Sly K L, Conboy J C. Anal. Chem., 2020, 92(19): 13163.

doi: 10.1021/acs.analchem.0c02286
[36]
Qi S, Duan N, Khan I M, Dong X, Zhang Y, Wu S, Wang Z. Biotechnol. Adv., 2022, 55: 107902.

doi: 10.1016/j.biotechadv.2021.107902
[37]
Ellington A D, Szostak J W. Nature, 1990, 346(6287): 818.

doi: 10.1038/346818a0
[38]
Jiang B, Wang M, Chen Y, Xie J, Xiang Y. Biosens. Bioelectron., 2012, 32(1): 305.

doi: 10.1016/j.bios.2011.12.010
[39]
Qing M, Sun Z, Wang L, Du S, Zhou J, Tang Q, Luo H, Li N. Sensor. Actuat. B-Chem., 2021, 348: 130713.

doi: 10.1016/j.snb.2021.130713
[40]
Chen X, Feng Y, Chen H, Zhang Y, Wang X, Zhou N. Sensors, 2022, 22(7): 2425.

doi: 10.3390/s22072425
[41]
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Trac-Trend. Anal. Chem., 2022, 157: 116738.

doi: 10.1016/j.trac.2022.116738
[42]
Soni S, Jain U, Burke D H, Chauhan N. J. Electroanal. Chem., 2022, 910: 116128.

doi: 10.1016/j.jelechem.2022.116128
[43]
Celikbas E, Balaban S, Evran S, Coskunol H, Timur S. Biosensors, 2019, 9(4): 118.

doi: 10.3390/bios9040118
[44]
Bunka D, Stockley P. Nat. Rev. Microbiol., 2006, 4: 588.

doi: 10.1038/nrmicro1458
[45]
Moradi R, Khalili N P, Septiani N L W, Liu C, Doustkhah E, Yamauchi Y, Rotkin S V. Small, 2022, 18(10): 2104847.

doi: 10.1002/smll.v18.10
[46]
Baker B R, Lai R Y, Wood M S, Doctor E H, Heeger A J, Plaxco K W. J. Am. Chem. Soc., 2006, 128(10): 3138.

doi: 10.1021/ja056957p
[47]
Morris F D, Peterson E M, Heemstra J M, Harris J M. Anal. Chem., 2018, 90(21): 12964.

doi: 10.1021/acs.analchem.8b03637
[48]
Van Riesen A J, Le J, Slavkovic S, Churcher Z R, Shoara A A, Johnson P E, Manderville R A. ACS Appl. Bio Mater., 2021, 4(9): 6732.

doi: 10.1021/acsabm.1c00431
[49]
Ebrahimi M, Hamzeiy H, Barar J, Barzegari A, Omidi Y. Sensor Lett., 2013, 11(3): 566.

doi: 10.1166/sl.2013.2824
[50]
Stojanovic M N, de Prada P, Landry D W. J. Am. Chem. Soc., 2001, 123(21): 4928.

pmid: 11457319
[51]
Freeman R, Sharon E, Tel-Vered R, Willner I. J. Am. Chem. Soc., 2009, 131(14): 5028.

doi: 10.1021/ja809496n pmid: 19309141
[52]
Zhang D, Sun C J, Zhang F T, Xu L, Zhou Y L, Zhang X X. Biosens. Bioelectron., 2012, 31(1): 363.

doi: 10.1016/j.bios.2011.10.046
[53]
Li X, Qi H, Shen L, Gao Q, Zhang C. Electroanal., 2008, 20(13): 1475.

doi: 10.1002/(ISSN)1521-4109
[54]
He J, Wu Z, Zhou H, Wang H, Jiang J, Shen G, Yu R. Anal. Chem., 2010, 82(4): 1358.

doi: 10.1021/ac902416u
[55]
Zhang J, Wang L, Pan D, Song S, Boey F Y, Zhang H, Fan C. Small, 2008, 4(8): 1196.

doi: 10.1002/smll.200800057 pmid: 18651718
[56]
Li Y, Ji X, Liu B. Anal. Bioanal. Chem., 2011, 401: 213.

doi: 10.1007/s00216-011-5064-6
[57]
Chen J, Jiang J, Gao X, Liu G, Shen G, Yu R. Chem-Eur. J., 2008, 14(27): 8374.

doi: 10.1002/chem.v14:27
[58]
Bilge S, Dogan-Topal B, Gürbüz M M, Yücel A, Sınağ A, Ozkan S A. Trac-Trend Anal. Chem., 2022, 157: 116768.

doi: 10.1016/j.trac.2022.116768
[59]
Stokes G G. Philos. T. R. Soc. B, 1852, 142: 463.
[60]
Zhao Q, Tao J, Uppal J S, Peng H, Wang H, Le X C. Trac-Trend. Anal. Chem., 2019, 110: 401.

doi: 10.1016/j.trac.2018.11.018
[61]
Jameson D M, Ross J A. Chem. Rev., 2010, 110(5): 2685.

doi: 10.1021/cr900267p pmid: 20232898
[62]
Liu Y, Zhao Q. Anal. Bioanal. Chem., 2017, 409(16): 3993.

doi: 10.1007/s00216-017-0349-z
[63]
Billet B, Chovelon B, Fiore E, Oukacine F, Petrillo M A, Faure P, Ravelet C, Peyrin E. Angew. Chem., 2021, 133(22): 12454.

doi: 10.1002/ange.v133.22
[64]
Yu H, Canoura J, Guntupalli B, Lou X, Xiao Y. Chem. Sci., 2017, 8(1): 131.

doi: 10.1039/C6SC01833E
[65]
Abnous K, Danesh N M, Ramezani M, Taghdisi S M, Emrani A S. Anal. Methods, 2018, 10(26): 3232.

doi: 10.1039/C8AY00755A
[66]
Gao L, Wang H, Deng Z, Xiang W, Shi H, Xie B, Shi H,. New J. Chem., 2020, 44(6): 2571.

doi: 10.1039/C9NJ05147C
[67]
Zhao X, Li S, Liu G, Wang Z, Yang Z, Zhang Q, Liang M, Liu J, Li Z, Tong Y, Zhu G, Wang X, Jiang L, Wang W, Tan G, Zhang L. Sci. Bull., 2021, 66(1): 69.

doi: 10.1016/j.scib.2020.09.004
[68]
Qiu Y, Tang Y, Li B, He M. Roy. Soc. Open Sci., 2018, 5(10): 180821.
[69]
Wu Z, Zhou H, Han Q, Lin X, Han D, Li X. Analyst, 2020, 145(13): 4664.

doi: 10.1039/D0AN00675K
[70]
Liu M, Qiu J G, Ma F, Zhang C Y. Wires Nanomed. Nanobi., 2021, 13(5): 1716.
[71]
Adegoke O, Daeid N N. J. Photoch. Photobio. A., 2022, 426: 113755.

doi: 10.1016/j.jphotochem.2021.113755
[72]
Adegoke O, Pereira-Barros M A, Zolotovskaya S, Abdolvand A, Daeid N N. Microchim. Acta, 2020, 187(2): 104.

doi: 10.1007/s00604-019-4101-6
[73]
Burton K, Daeid N N, Adegoke O. J. Photoch. Photobio. A., 2022, 433: 114131.

doi: 10.1016/j.jphotochem.2022.114131
[74]
Ajay Piriya V S, Joseph P, Kiruba Daniel S C G, Lakshmanan S, Kinoshita T, Muthusamy S. Mater. Sci. Eng. C, 2017, 78: 1231.

doi: 10.1016/j.msec.2017.05.018
[75]
Wang L, Musile G, McCord B R. Electrophoresis, 2017, 39(3): 470.

doi: 10.1002/elps.v39.3
[76]
Sanli S, Moulahoum H, Ghorbanizamani F, Celik E G, Timur S. Biomed. Microdevices, 2020, 22(3): 51.

doi: 10.1007/s10544-020-00507-2
[77]
Wang L, McCord B. Anal. Biochem., 2020, 595: 113619.

doi: 10.1016/j.ab.2020.113619
[78]
Gao L, Xiang W, Deng Z, Shi K, Wang H, Shi H. Nanomedicine, 2020, 15(4): 325.

doi: 10.2217/nnm-2019-0046
[79]
Mao K, Yang Z, Li J, Zhou X, Li X, Hu J. Talanta, 2017, 175: 338.

doi: 10.1016/j.talanta.2017.07.011
[80]
Mao K, Ma J, Li X, Yang Z. Sci. Total Environ., 2019, 688: 771.

doi: 10.1016/j.scitotenv.2019.06.325
[81]
Abnous K, Danesh N M, Ramezani M, Taghdisi S M, Emrani A S. Anal. Chim Acta, 2018, 1020: 110.

doi: 10.1016/j.aca.2018.02.066
[82]
Luo Y, Yu H, Alkhamis O, Liu Y, Lou X, Yu B, Xiao Y. Anal. Chem., 2019, 91(11): 7199.

doi: 10.1021/acs.analchem.9b00507
[83]
Jing L, Xie C, Li Q, Yao H, Yang M, Li H, Xia F, Li S. J. Anal. Test., 2022, 6(2): 120.

doi: 10.1007/s41664-022-00228-w
[84]
Yan X, Cao Z, Lau C, Lu J. Analyst, 2010, 135(9): 2400.

doi: 10.1039/c0an00163e
[85]
Sharon E, Freeman R, Tel-Vered R, Willner I. Electroanalysis, 2009, 21(11): 1291.

doi: 10.1002/elan.v21:11
[86]
Tavakkoli N, Soltani N, Mohammadi F. RSC Adv., 2019, 9(25): 14296.

doi: 10.1039/c9ra01292c
[87]
Taylor I M, Du Z, Bigelow E T, Eles J R, Horner A R, Catt K A, Weber S G, Jamieson B G, Cui X T. J. Mater. Chem. B, 2017, 5(13): 2445.

doi: 10.1039/C7TB00095B pmid: 28729901
[88]
Chamorro-Garcia A, Ortega G, Mariottini D, Green J, Ricci F, Plaxco K W. Chem. Commun., 2021, 57(88): 11693.

doi: 10.1039/D1CC04557A
[89]
Su F, Zhang S, Ji H, Zhao H, Tian J, Liu C, Zhang Z, Fang S, Zhu X, Du M. ACS Sens., 2017, 2(7): 998.

doi: 10.1021/acssensors.7b00268
[90]
Roushani M, Shahdost-Fard F. Microchim. Acta, 2018, 185(4): 214.

doi: 10.1007/s00604-018-2709-6
[91]
Hashemi P, Bagheri H, Afkhami A, Ardakani Y H, Madrakian T. Anal. Chim. Acta, 2017, 996: 10.

doi: S0003-2670(17)31212-6 pmid: 29137703
[92]
Wang J, Liu J, Wang M, Qiu Y, Kong J, Zhang X. Anal. Chim. Acta, 2021, 1184: 339041.

doi: 10.1016/j.aca.2021.339041
[93]
Wang J, Qiu Y, Li L, Qi X, An B, Ma K, Kong J, Zhang X. Microchem. J., 2022, 181: 107714.

doi: 10.1016/j.microc.2022.107714
[94]
Azizi S, Gholivand M B, Amiri M, Manouchehri I, Moradian R. J. Electroanal. Chem., 2022, 907: 116062.

doi: 10.1016/j.jelechem.2022.116062
[95]
Abnous K, Abdolabadi A K, Ramezani M, Alibolandi M, Alinezhad Nameghi M, Zavvar T, Khoshbin Z, Lavaee P, Taghdisi S M, Danesh N M. Talanta, 2022, 241: 123276.

doi: 10.1016/j.talanta.2022.123276
[96]
Neves M A D, Blaszykowski C, Bokhari S, Thompson M. Biosens. Bioelectron., 2015, 72: 383.

doi: 10.1016/j.bios.2015.05.038
[97]
Neves M A D, Blaszykowski C, Thompson M. Anal. Chem., 2016, 88(6): 3098.

doi: 10.1021/acs.analchem.5b04010
[98]
Oueslati R, Cheng C, Wu J, Chen J. Biosens. Bioelectron., 2018, 108: 103.

doi: S0956-5663(18)30156-8 pmid: 29524683
[99]
Chen X, Zhou C, Guo X. Chin. J. Chem., 2019, 37(9): 897.

doi: 10.1002/cjoc.v37.9
[100]
Xie Z, Yang M, Luo L, Lv Y, Song K, Liu S, Chen D, Wang J. Talanta, 2020, 219: 121213.

doi: 10.1016/j.talanta.2020.121213
[101]
Laucirica G, Toum Terrones Y, CayÓn V, Cortez M L, Toimil-Molares M E, Trautmann C, MarmisollÉ W, Azzaroni O. Trac-Trend. Anal. Chem., 2021, 144: 116425.

doi: 10.1016/j.trac.2021.116425
[102]
Wang J, Hou J, Zhang H, Tian Y, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10(2): 2033.

doi: 10.1021/acsami.7b16539
[103]
Rauf S, Zhang L, Ali A, Liu Y, Li J. ACS Sens., 2017, 2(2): 227.

doi: 10.1021/acssensors.6b00627
[104]
Li G, Tang D. J. Mater. Chem. B, 2017, 5(28): 5573.

doi: 10.1039/C7TB00670E
[105]
Luan C, Luan H, Luo D. Micromachines, 2020, 11(2): 176.

doi: 10.3390/mi11020176
[106]
Wang S, Zhang G, Chen Q, Zhou J, Wu Z. Microchim. Acta, 2019, 186(11): 724.

doi: 10.1007/s00604-019-3855-1
[107]
Xiao F, Tan H, Wu Y, Liao S, Wu Z, Shen G, Yu R. Analyst, 2016, 141(10): 2870.

doi: 10.1039/C6AN00504G
[108]
Wang S, Qi Y, Chen Q, Zhang G, Liu B, Xiao F, Zhou J, Wu Z, Yu R. Anal. Chem., 2021, 93(34): 11887.

doi: 10.1021/acs.analchem.1c02920
[109]
Celebanska A, Chiniforooshan Y, Janik M, Mikulic P, Sellamuthu B, Walsh R, Perreault J, Bock W J. Opt. Lett., 2019, 44(10): 2482.

doi: 10.1364/OL.44.002482 pmid: 31090712
[110]
Man T, Lai W, Xiao M, Wang X, Chandrasekaran A R, Pei H, Li L. Biosens. Bioelectron., 2020, 147: 111742.

doi: 10.1016/j.bios.2019.111742
[111]
Wang X, Zhang T, Wang B, Qi H, Zhang C. J. Electrochem., 2019, 25(2): 223.
[112]
Oliveira N C L, El Khoury G, Versnel J M, Moghaddam G K, Leite L S, Lima-Filho J L, Lowe C R. Sensor. Actuat. B-Chem., 2018, 270: 216.

doi: 10.1016/j.snb.2018.05.009
[113]
Chantada-Vazquez M P, de-Becerra-Sánchez C, Fernández-del-Río A, Sánchez-González J, Bermejo A M, Bermejo-Barrera P, Moreda-Piñeiro A. Talanta, 2018, 181: 232-238.

doi: S0039-9140(18)30022-5 pmid: 29426506
[114]
Florea A, Cowen T, Piletsky S, De Wael K. Talanta, 2018, 186: 362.

doi: S0039-9140(18)30419-3 pmid: 29784374
[115]
Florea A, Cowen T, Piletsky S, De Wael K. Analyst, 2019, 144(15): 4639.

doi: 10.1039/c9an00618d pmid: 31250860
[1] Zhiyuan Xu, Guowei Gao, Yansheng Li, Qingwei Liao, Jingfang Hu, Xueji Zhang. Home Diagnosis of Myocardial Infarction: Aptamer-Based cTnI Sensing Technology [J]. Progress in Chemistry, 2023, 35(8): 1266-1274.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[5] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[6] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[7] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[8] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[9] Miao Gong, Xiaoying Wang, Xiaoning Wang. Electrochemical Sensing Detection of Biomarkers in Hematological Malignancies [J]. Progress in Chemistry, 2019, 31(6): 894-905.
[10] Yanqun Shan, Xiaoying Wang*. Electrochemical Aptasensor for Detection of Ochratoxin A [J]. Progress in Chemistry, 2018, 30(6): 797-808.
[11] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[12] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[13] Dai Yingping, Ji Zhengping, Wang Chengyin, Hu Xiaoya, Wang Guoxiu. Microcantilever Biosensors [J]. Progress in Chemistry, 2016, 28(5): 697-710.
[14] Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei. Preparation and Biological Applications of DNA Hydrogel [J]. Progress in Chemistry, 2016, 28(5): 628-636.
[15] Tian Liang, Yao Chen, Wang Yihong*. Recent Advances in Electrochemical Biosensors for In Vitro Diagnostic [J]. Progress in Chemistry, 2016, 28(12): 1824-1833.